ccop guideline on the methodologies for selecting ... · ccs-m guideline for co2 storage! !page 1...

31
CCOP CO 2 Storage Mapping Program (CCS-M) CCOP Technical Secretariat - June 25, 2014 CCS-M GUIDELINE FOR CO2 STORAGE PAGE OF 1 31 CCOP Guideline on the Methodologies for Selecting Geological Carbon Dioxide (CO 2 ) Storage and Estimation of Storage Capacities

Upload: vankhanh

Post on 25-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

CCOP CO2 Storage Mapping Program (CCS-M) !!CCOP Technical Secretariat - June 25, 2014

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �1 31

CCOP Guideline on the Methodologies for Selecting Geological Carbon Dioxide

(CO2) Storage and Estimation of Storage Capacities

!

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �2 31

Table  of  Contents  !

CONTENTS PAGE

Abbreviations and Acronyms 5

Key Organizations / Agencies in the CCOP Member Countries 6

Acknowledgements 7

1. Introduction 8

2. The Guiding Principle 9

3. Where are we now in CCS? - Geological storage 10

3.1 Status of CCOP Member Countries 12

4. The CCS-M Guideline Development 22

4.1 Characterization Workflow 25

4.2 Quantitative CO 27

5. Guideline Implementation 28

6. Guideline Evaluation and Revision 29

7. References 29

Figures and Tables

Figure 1: Sedimentary basins of East and Southeast Asia identified using the filtering process described in the GEODISC project (Rigg & Al, 2001) (USGS, 2000)

12

Figure 2: Distribution of potential aquifer and reservoir for COstorage, total potential estimated at ~141 BT

17

Figure 3: Outline of sedimentary basins for CCS Projects in Korea

18

Figure 4: Map of the case study area of Malaysia (PETRONAS) 19

Figure 5: Initial results from the CORed River basin in North Vietnam

21

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �3 31

!!!

Figure 6: Techno-Economic Resource-Reserve pyramid for COstorage capacity in geological media within a jurisdiction or geographic region (modified from CSLF, 2005; Bradshaw et al., 2006).!

22

Figure 7: DNV GL CO2Qualstore 25

Figure 8: Schematic showing open aquifer systems versus closed or semi-closed systems (Zhou et al., 2008).

28

Table 1: Result of the recent study of selected oil and gas basins and their CO

14

Table 2: Screening criteria developed by Bachu (2003) modified for CCOP

26

Table 3: Sample input for Monte Carlo simulation for storage capacity estimation

27

CONTENTS PAGE

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �4 31

!!

Abbreviations and Acronyms !

ANP   Autoridade  Nacional  Do  Petroleo  (Timor  Leste)  APEC   Asia-­‐Pacific  Economic  Coopera<on    ASCOPE     ASEAN  Council  on  Petroleum  BGR   German  Federal  Ins<tute  for  Geosciences  and  Natural  Resources  BGS   Bri<sh  Geological  Survey  BPMIGAS   Execu<ve  Agency  for  Upstream  Oil  &  Gas  Business  Ac<vi<es,  Indonesia  BRGM   The  French  Geological  Survey  CCOP  TS   CCOP  Technical  Secretariat  CCOP   Coordina<ng  CommiMee  for  Geoscience  Programmes  in  East  and  Southeast  Asia  CCS   CO2  Capture  and  Storage  CCUS   CO2  Capture  Use  and  Storage  CCS-­‐M   CCOP  CO2  Storage  Mapping  Program  CGS   China  Geological  Survey  CNOOC   China  Na<onal  Offshore  Oil  Company  CNPA   Cambodia  Na<onal  Petroleum  Authority  CNPC   China  Na<onal  Petroleum  Corpora<on  CSIRO   Australian  Commonwealth  Science  and  Industrial  Research  Organiza<on  DGMV   Department  of  Geology  and  Minerals  of  Vietnam  DGSM   Department  of  Geological  Survey  and  Minerals,  Myanmar  DGM   Department  of  Minerals  and  Geology,  Lao-­‐PDR    DMF   Department  of  Mineral  Fuels,  Thailand  DMR   Department  of  Mineral  Resources,  Thailand  DOE   Department  of  Energy,  Philippines  DPE     Department  of  Petroleum  and  Energy,  PNG  ECBM     Enhanced  Coal  Bed  Methane  EGCFE     Expert  Group  on  Clean  Fossil  Energy  (under  APEC)  EPPM   CCOP-­‐Norway  Program  on  Enhancing  Public  Petroleum  Management  for  the  CCOP  

Member  Countries  EUR   Es<mated  Ul<mate  Recovery  GCCSI   Global  CCS  Ins<tute  GHG   Greenhouse  Gas  GSC   Geological  Survey  of  Canada  GSJ   Geological  Survey  of  Japan  Gt   Gigaton  IEA   Interna<onal  Energy  Agency  IEAGHG   IEA  Greenhouse  Gas  R  &  D  Programme  IPG   Ins<tute  of  Petroleum  and  Geology,  Timor-­‐Leste  JMG   Minerals  and  Geoscience  Department,  Malaysia  ITB   Ins<tut  Teknologi  Bandung,  Indonesia  JOGMEC   Japan  Oil,  Gas  and  Metals  Na<onal  Corpora<on  KIGAM   Korea  Ins<tute  of  Geoscience  &  Mineral  Resources  KNOC   Korea  Na<onal  Oil  Corpora<on  KOGAS   Korea  Gas  Corpora<on  LEMIGAS   Research  and  Development  Center  for  Oil  and  Gas  Technology,  Indonesia  MC   CCOP  Member  Countries  MEMR   Ministry  of  Energy  and  Mineral  Resources,  Indonesia  MGB   Mines  and  Geosciences  Bureau,  Philippines  MIGAS   Directorate  General  of  Oil  and  Gas,  Indonesia  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �5 31

MIME   Ministry  of  Industry,  Mines  and  Energy,  Cambodia  MLR   Ministry  of  Land  and  Resources,  China  MKE   Ministry  of  Knowledge  and  Economy,  Korea  MOGE   Myanmar  Oil  and  Gas  Enterprise  MONRE   Ministry  of  Natural  Resources  and  Environment,  Lao-­‐PDR  MOPE     Ministry  of  Petroleum  and  Energy,  Norway  Mt   Megaton  NOEX   Nippon  Oil  Explora<on  Ltd    NOK   Norwegian  Kroner  NORAD   Norwegian  Agency  for  Development  Coopera<on  NPD   Norwegian  Petroleum  Directorate  PEPRIS   Petroleum  Explora<on  &  Produc<on  Research  Ins<tute,  SINOPEC  PETRAD   Interna<onal  Programme  for  Petroleum  Management  and  Administra<on  PETRONAS   Petroliam  Nasional  Berhad,  Malaysia  PNG   Papua  New  Guinea  PNOC   Philippine  Na<onal  Oil  Company  PTTEP   PTT  (formerly  known  as  Petroleum  Authority  of  Thailand)  Explora<on  and  

Produc<on  Company  SINOPEC   China  Petroleum  &  Chemical  Corpora<on  SSNR   Secretariat  of  State  for  Natural  Resources,  Timor  Leste  TNO   Geological  Survey  of  Netherlands  USGS   United  States  Geological  Survey  VPI   Vietnam  Petroleum  Ins<tute  WebGIS   Web-­‐based  Geographic  Informa<on  System  !!!KEY  ORGANIZATIONS/AGENCIES  IN  THE  CCOP  MEMBER  COUNTRIES  !China     MLR,  CGS,  SINOPEC,  CNOOC,  PETROCHINA  Cambodia   CNPA,  MIME  Indonesia   MEMR,  BPMIGAS,  MIGAS,  LEMIGAS,  PERTAMINA,  ITB  Japan     GSJ,  JOGMEC  Korea     MKE,  KIGAM,  KNOC,  KOGAS  Lao-­‐PDR   DGM,  MONRE  Malaysia   PETRONAS,  JMG  PNG     DPE  Philippines   DOE,  PNOC,  MGB,  ASCOPE  Thailand   DMF,  DMR,  PTTEP  Timor  Leste   ANP,  SSNR,  IPG  Vietnam   PETROVIETNAM,  VPI,  DGMV  !Observer  Country  Myanmar   MOGE,  DGSM  !

!!

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �6 31

!Acknowledgements !The  CCOP  Technical  Secretariat  is  grateful  to  the  Global  CCS  Ins<tute  and  Norwegian  Ministry  of  Foreign  Affairs  for  providing  funding  of  the  CCS-­‐M  Program. !Thank  you  also  to  the  exper<se  and  dedica<on  of  some  individuals  from  the  Norwegian  Petroleum  Directorate  (NPD),  Interna<onal  Program  for  Petroleum  Management  and  Administra<on  (PETRAD),  Australian  Commonwealth  Science  and  Industrial  Research  Organisa<on  (CSIRO),  and  the  Interna<onal  Energy  Agency  (IEA)  for  guiding  the  CCS-­‐M  training  courses  and  workshops  that  enhanced  the  understanding  of  CCOP  member  countries  on  CCS.    These  include  experts  from  the  networks  of  these  organiza<ons.  

!

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �7 31

!1.   IntroducUon  

The   Coordina<ng   CommiMee   for   Geoscience   Programmes   in   East   and   Southeast   Asia  (CCOP)  was  founded  under  the  auspices  of  the  United  Na<ons  (ESCAP)  in  1966.  Ini<ally  its  remit   was   to   “promote   and   coordinate   the   planning   and   implementa<on   of   joint  prospec<ng  programmes  and  research   in  Asian  offshore  and  geologically  related  areas  of  countries  who  are  members  of  CCOP”.  !In  1987,  CCOP  became  an   independent   intergovernmental  organiza<on,  with  13  Member  Countries   to   date:   Cambodia,   China,   Indonesia,   Japan,   Republic   of   Korea,   Lao   PDR,  Malaysia,   Papua  New  Guinea,   Philippines,   Singapore,   Thailand,   Timor-­‐Leste   and  Vietnam  with  headquarters  in  Bangkok,  Thailand.

The  CCOP  region  is  one  of  the  important  areas  for  fossil  fuel  explora<on  and  produc<on  -­‐  oil,  gas  and  coal  resources  for  energy.    As  a  source  for  economic  prosperity,  the  CCOP  Member  Countries  have  placed  great  importance  and  interests  in  enhancing  the  sustainable  development  and  produc<on  of  these  resources.    In  fact,  petroleum  exploita<on  (and  also  coal)  is  one  of  the  most  important  economic  ac<vi<es  for  several  of  the  member  countries  with  significant  contribu<on  to  their  GDP.    To  ini<ate  the  geological  storage  of  carbon  dioxide  (CO2)  as  part  of  Carbon  Capture  and  Storage  (CCS),  most  of  the  member  countries  consider  that  the  sedimentary  basins  with  oil  and  gas  reserves  are  the  priority  areas  to  study,  due  mainly  to  the  data  and  knowledge  that  are  available  from  the  oil  and  gas  industry.  

To  further  the  region’s  understanding  of  CCS  and  CO2  storage,  a  number  of  the  thema<c  seminars  and  workshops  were  conducted  under  the  Norway  – CCOP  coopera<on  (2008-­‐2012).      In  addi<on,  a  BGR-­‐CO2  GeoNET  Workshop  was  conducted  in  Bangkok  in  2009  that  helped  the  technical  personnel  in  the  member  countries  understand  the  concepts  of  CCS  and  geological  storage  of  CO2  as  one  mi<ga<on  op<on  for  reducing  greenhouse  gas  (GHG)  emissions.      

These  events  resulted  in  requests  from  the  member  countries  to  the  CCOP  Technical  Secretariat  to  implement  a  capacity  building  program  on  CCS  with  the  objec<ve  of  mapping  the  poten<al  geological  storage  areas  in  the  region.  This  program  has  been  implemented  and  a  key  part  of  the  capacity  building  is  the  development  of  a  CCOP  Methodology  Guideline  for  the  selec<on  of  geological  CO2    storage  sites  and  es<ma<on  of  CO2  storage  capaci<es,  referred  to  as  CCS-­‐M  Guideline  or  simply  Guideline  in  this  report.    

The  goals  of  CCS-­‐M  are  to  enable  the  government  organiza<ons  in  the  CCOP  Member  Countries  responsible  for  mapping  the  geological  storage  of  CO2  to:

• Provide  a  high  level  overview  of  the  poten<al  for  large-­‐scale  CO2  storage,  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �8 31

• Enhance  the  member  countries  capacity  and  capability  in  the  assessment  of  geological  sites  for  the  safe  and  long-­‐term  storage  of  CO2,  and  

• Increase  their  understanding  of  the  poten<al  of  CO2  for  enhanced  oil  and  gas  recovery.    

During  the  60th  CCOP  Steering  CommiMee  Mee<ng  (March  26,  2014  Ubon  Ratchathani,  Thailand),  CCOP  and  the  Global  CCS  Ins<tute  signed  a  Sponsorship  Agreement  for  the  implementa<on  of  the    CCOP  carbon  dioxide  (CO2)  Storage  Mapping  Program  (CCS-M)  Facilita<on    Phase  or  Year  1.    In  December  2013,  the  Norwegian  Ministry  of  Foreign  Affairs  thru  the  Royal  Norwegian  Embassy  -­‐  Jakarta  provided  addi<onal  funding  to  the  Program.  

This  document  will  introduce  the  guiding  principle  adopted  by  CCOP,  give  a  brief  overview  of  the  current  status  of  storage  capacity  assessments  per  CCOP  country,  provide  some  details  regarding  the  development  of  the  Guideline,  such  as  the  workflow  and  adopted  capacity  es<ma<on  calcula<on  methods.    Finally,  this  document  introduces  how  this  Guideline  will  be  further  implemented  in  each  CCOP  country  and  reviewed.  

!2.    The  Guiding  Principle  

Carbon  Capture  and  Storage  (CCS)  is  a  term  that  encompasses  a  chain  of  technologies  that  can  be  used  to  capture  CO2  from  point  sources,  such  as  power  plants  and  other  industrial  facili<es;  compress  the  captured  CO2  into  a  liquid-­‐like  dense  phase;  transport  it  (mainly  by  pipeline)  to  suitable  loca<ons;  and  safely  inject  it  into  deep  subsurface  geological  forma<ons  for  isola<on  from  the  atmosphere.    CCS  is  a  cri<cal  op<on  in  the  pormolio  of  solu<ons  available  to  combat  climate  change,  because  it  allows  for  significant  reduc<ons  in  CO2  emissions  from  fossil-­‐based  plants,  enabling  it  to  be  used  as  a  bridge  to  a  sustainable  energy  future.  

At  the  star<ng  point  for  the  development  of  the  Guideline,  the  member  countries  broadly  agreed  that  CCS  will  most  likely  be  needed  to  achieve  the  magnitude  of  CO2  emissions  reduc<on  required  to  stabilize  and  reduce  atmospheric  concentra<ons  of  Greenhouse  Gases  (GHGs).    The  oil  and  gas  industry’s  experience  in  assessing  subsurface  characteris<cs,  and  CO2  injec<on  for  enhanced  oil  recovery  over  the  previous  decades  gives  us  the  confidence  that  large  scale  storage  of  CO2  in  the  subsurface  can  be  undertaken.

The  objec<ves  of  developing  the  Guideline  are  to  provide  a  tool  and  useful  reference  for  the  CCOP  member  countries  for  their  own  na<onal  CO2  storage  mapping.    This  will  assist  the  technical  personnel  in  the  CCOP  Member  Countries  who  will  be  tasked  to  provide  a  high  level  overview  of  the  poten<al  for  large-­‐scale  CO2  storage  in  their  country  and  understand  the  emission  reduc<on  poten<al  of  CCS.    Also,  the  decision  makers  in  the  member  countries  need  to  understand  the  amount  of  CO2  that  can  be  safely  stored  in  the  subsurface  and  the  geographical  distribu<on  of  storage  resources.  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �9 31

The  CO2  storage  capacity  es<mate  parameters  in  this  guideline  will  not  include  economic  or  regulatory  constraints;  only  physical  constraints  are  used  in  the  guideline  to  define  the  accessible  part  of  the  subsurface.    However,  member  countries  may  apply  economic  or  other  constraints  in  their  own  assessments.    If  possible  also,  these  constraints  may  be  added  to  the  Guidelines  in  the  future.  

CCOP  also  recognizes  that  es<mates  of  storage  capaci<es  need  to  be  made  using  reliable  and  consistent  methods.    The  two  training  courses  recently  conducted  in  the  CCS-­‐M  Program,  T1  (Bali,  April  2013),  T2  (Bangkok,  August  2014)  and  T4  (Penang,  May  2014),  have  highlighted  some  of  the  methodologies  used  in  many  countries  and  organiza<ons.  There  is  a  general  agreement,  that  we  will  use  the  works  done  by  others  as  a  basis  and  specifically  the  IEA  Report  (2013)  “Methods  to  assess  geologic  CO2  storage  capacity:  status  and  best  prac<ce” will  be  used  as  reference  for  the  development  of  the  CCOP  Guideline.    Based  on  the  feedback  from  the  par<cipant  of  the  3  training  courses,  there  is  a  need  to  learn  in  greater  depth,  how  the  characteriza<on  of  reservoirs  are  performed  and  how  the  es<ma<on  of  storage  capaci<es,  par<cularly  CO2  injec<vity  and  calcula<on  of  storage  efficiency  values  are  calculated.  In  CCS-­‐M  ac*vi*es  the  code  for  training  course  is  “T”,  seminar  “S”,  workshop  “W”  and  case  study  “C”,  wherein  T1  means  training  course  1.

The  above-­‐men<oned  IEA  report  is  an  outcome  of  workshops  that  were  conducted  in  2011  and  in  2012,  which  brought  together  experts  from  na<onal  geological  survey  organiza<ons  United  States  Geological  Survey  (USGS),  Geoscience  Australia,  German  Federal  Ins<tute  for  Geosciences  and  Natural  Resources  (BGR),  Bri<sh  Geological  Survey  (BGS),  Geological  Survey  of  Netherlands  (TNO)  and  Geological  Survey  of  Canada  (GSC)  to  review  the  geologic  CO2  storage  assessment  methodologies  and  make  recommenda<ons  on  how  to  harmonize  CO2  storage  assessment  worldwide.

Another  important  references  are  the  CO2CRC  report  (2008)  “Storage  Capacity  Es<ma<on,  Site  Selec<on  and  Characteriza<on  for  CO2  Storage  Projects” which  was  highlighted  in  the  CCS-­‐M  T1  -­‐  Bali  and  the  CO2  Storage  Atlases  published  by  Norway,  USGS  and  Australia.  

!3.    Where  are  we  now  in  CCS  – geological  storage?  

CCS  capacity  development  is  also  reflected  in  the  level  of  economic  development  of  each  CCOP  member  country.    CCS-­‐related  research  ac<vi<es  in  Japan,  China  and  Korea  are  on-­‐going  ac<vi<es  of  their  geological  surveys  and  na<onal  research  ins<tutes.    These  countries  have  also  gained  a  lot  of  knowledge  in  CCS    and  in  par<cular  CO2  storage  through  their  par<cipa<on  in  various  CCS  projects  outside  the  CCOP  region,  and  therefore,  are  compara<vely  advanced  compared  to  the  other  member  countries.      

Indonesia,  Philippines,  Thailand  and  Vietnam  were  beneficiaries  of  the  Asian  Development  Fund  (ADB)-­‐funded  Project  “Exploring  the  poten<al  for  CCS  in  SE  Asia”,  that  was  completed  in  late  2011  and  resulted  in  an  enhanced  level  of  knowledge  about  CCS,  par<cularly  on  the  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �10 31

geological  storage  aspect.    The  same  ADB  Project  resulted  in  a  report  “Prospects  for  CCS  in  Southeast  Asia  (Sep  2013)”  and  is  also  used  as  a  reference  in  this  report.  

Malaysia  is  at  about  the  same  level  as  the  4  (four)  men<oned  countries  and  led  by  its  na<onal  oil  company  – PETRONAS,  together  with  PERTAMINA  (Indonesia),  these  2  companies  ini<ated  the  crea<on  of  a  CCS  task  force  within  the  Associa<on  of  Southeast  Asian  Na<ons  (ASEAN)  Council  on  Petroleum  (ASCOPE)  for  capacity  building  purposes  and  to  look  into  the  feasibility  of  CCS  pilot  projects  for  CO2  storage  and  enhancing  oil  and  gas  recovery  using  CO2  (CO2  EOR).    The  other  CCOP  member  countries  can  be  described  as  s<ll  in  an  early  stage  of  CCS  knowledge  development.  

In  2003,  the  Expert  Group  on  Clean  Fossil  Energy  (EGCFE)  under  the  Asia-­‐Pacific  Economic  Coopera<on  (APEC),  ini<ated  a  mul<-­‐phase  carbon  capture  and  storage  program  led  by  Canada.    The  CCS  ini<a<ve  was  designed  to  assist  non-­‐industrialized  APEC  members  (many  CCOP  countries  are  also  members  of  APEC)  to  successfully  iden<fy,  evaluate  and  develop  CO2  capture  and  geological  storage  opportuni<es  in  their  economies.    The  implementa<on  was  done  in  2  themes,  as  follows:

Theme  I     – studies  to  assess  the  poten<al  for  CO2  capture  and  geological  storage  in  the  APEC  region  

Theme  II     – ac<vi<es  to  raise  awareness  of  and  build  capacity  in  CO2  capture  and  geological  storage  in  APEC.  

Theme  I  iden<fied  major  sources  of  CO2  emissions  and  provided  a  high-­‐level  ranking  of  sedimentary  basins  in  China  and  South  East  Asia  according  to  low  and  no  “prospec<vity” potential for  CO2  storage.    The  types  of  geological  storage  reservoirs  examined  included  deep  saline  forma<ons,  depleted  oil  and  gas  fields  and  deep  coal  seams.  !!!!!!!!!!!

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �11 31

  !!!!!!!!!!!!!!!!!!!Figure  1:  Sedimentary  basins  of  East  and  Southeast  Asia  iden*fied  using  the  filtering  process  described  in  the  GEODISC  project  (Rigg  &  Al,  2001)  (USGS,  2000)  !3.1  Status  of  CCOP  Member  Countries  in  CCS  – geological  storage  potenUal

This  sec<on  gives  an  overview  of  some  of  the  informa<on  available  on  CCS  developments  in  selected  countries  that  have  on-­‐going  ac<vi<es  related  to  mapping  of  geological  storage.

1.    China  

China  is  the  most  populated  country  and  is  currently  the  second  largest  economy  in  the  world,  an  economy  that  has  grown  at  a  tremendous  pace  for  the  last  20  years.    The  total  energy  consump<on  of  China  is  dominated  by  fossil  fuel  with  coal  and  oil/gas  contribu<ng  ~93%  (USIA,  2008),  and  this  will  con<nue  to  be  the  case  in  the  foreseeable  future.    Emissions  from  energy-­‐related  ac<vi<es  account  for  ~90%  of  China’s  total  emissions.

Early  this  year  (2013),  China’s  Na<onal  Development  and  Reform  Commission  issued  a  document  to  Promote  Carbon  Capture  U<liza<on  (CCSUS)  and  Storage  Pilot  and  Demonstra<on.    This  document  notes  that  promo<ng  CCUS  is  an  important  task  in  the  12th  Five-­‐Year  Work  Plan  on  Controlling  GHG  Emissions  approved  by  the  State  Council,  which  clearly  indicates  the  need  to  develop  CCS  pilot  and  demonstra<on  plants  in  a  range  of  industries  (GCCSI,  2013).

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �12 31

As  learned  from  the  country  report  of  SINOPEC  during  the  CCS-­‐M  training  course  2  (T2,  August  2013),  China  has  done  some  studies  on  the  poten<al  of  geological  storage.    A  total  of  ~860  research  and  mapping  studies  have  been  conducted  targe<ng  onshore  and  offshore  basins.    The  es<mated  poten<al  capacity  from  these  studies  is  as  follows:

• Saline  aquifer  – 1,435  gigatons  (Gt)  

• Petroliferous  (oil  and  gas)  basins  – 7.8  Gt  

• Coal  beds  – 12  Gt  1

The  same  report  also  showed  that  the  Southeast  (SE)  China  fold  belt  had  only  small  con<nental  basins  with  limited  CO2  storage  capacity.    However,  the  offshore  basins  are  large  and  of  high  poten<al  for  CO2  storage  and  may  account  for  >50%  of  the  total  storage  poten<al.    These  basins  also  match  well  with  the  large  emission  sources  along  the  coast  of  SE  China.    The  depleted  oil  &  gas  fields  are  considered  as  early  opportuni<es  for  geological  storage.    By  u<lizing  exis<ng  data,  oil  &  gas  plamorms  and  other  facili<es,  the  cost  of  offshore  CO2  injec<on  may  be  greatly  reduced.  

China  will  host  a  case  study  on  CO2  storage  and  use  of  CO2  for  EOR  in  CCS-­‐M.  The  par<cipa<on  of  China  in  CCS-­‐M  is  led  by  SINOPEC  Explora<on  and  Produc<on  Research  Ins<tute  (PEPRIS).  

2.   Indonesia  

Indonesia  is  the  second  most  populated  country  in  CCOP  and  4th  most  populated  country  in  the  world.    Fossil  fuels  dominate  Indonesia’s  energy  supply,  and  will  con<nue  to  do  so  in  the  foreseeable  future.    Similar  to  the  growing  economic  performance,  the  emission  trend  is  also  growing  at  an  alarming  rate  with  land  use/forestry  and  peat  fire  accoun<ng  for  62%  and  energy  at  22%  of  the  total  emission  (GCCSI  2013).      

Indonesia  is  commiMed  to  reduce  its  GHG  emissions  by  adop<ng  the  Na<onal  Ac<on  Plan  Addressing   Climate   Change   (RAN-­‐PI)   through   Presiden<al   Decree   No.   61/2011.     The  government  believes  that  current  efforts  are  s<ll   insufficient  to  achieve  the  target  of  26%  CO2  emission  abatement  target  by  2020,  thus  it  is  implemen<ng  programs  to  focus  on  

• Energy  mix  improvements  

• Switch  to  less  carbon  intensive  fuels  

• Renewable  resource  deployment.  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �13 31

However,  it  should  be  noted  that  storage  in  coal  seams  is  technically  less  mature  than  1

storage  in  depleted  oil  and  gas  fields,  or  saline  aquifers.    

Indonesia   is   also   planning   to   implement   a   strategy   on   energy   security   with   CCS   in  conjunc<on  with:  

• Enhanced  Oil  Recovery   (EOR)  –  using   (5-­‐8)  opera<onal  projects  around  the  world  as  case  studies  

• Coal  to  Liquid  and  Coal  to  Gas  

• Biomass.  

As   presented   during   the   CCS-­‐M   Launching   Seminar   (April   2013),   various   joint   studies  related  to  CCS  implementa<on  in  Indonesia  were  conducted  since  2003  with  interna<onal  companies   and   organiza<ons.     The   general   findings   of   these   studies   with   regards   to  Indonesia’s  CO2  storage  poten<al  are  as  follows:    

• Oil  and  Gas  upstream  sector   is  the  most  suitable  for  near-­‐term  deployment  of  CCS,  and  

• More  than  600  Mt  of  CO2  can  be  stored  in  depleted  oil  and  gas  reservoirs  while  

the   latest   study   indicates   South   and   Central   Sumatra  may   have   a   theore<cal  storage  capacity  of    >10  GT  CO2.  

Table  1:  Results  of   the   recent   study  of   selected  oil  and  gas  basins   in   Indonesia:   their  CO2  storage  capaci*es  and  storage  suitability  score  (LEMIGAS,  2011).  

Basin EffecUve  Storage  Capacity  (Mt)

Storage  Suitability  Score  (%)

Kutei 0.5 91

Tarakan 129 91

South  Sumatra 144 76

Seram -­‐ 74

NW  Java 7 72

Barito 10 72

Central  Sumatra 229 72

North  Sumatra -­‐ 70

Salawa< 18 70

NE  Java 19 68

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �14 31

Main  criteria  considered  in  the  LEMIGAS  study,  and  that  were  used  to  obtain  the  ‘Storage  Suitability  Score’  in  the  table  above  were:  !

1.   Reservoirs  having  been  the  object  of  good  characteriza<on  

2.   Favorable  and  well-­‐known  geological  structure  

3.   There  is  poten<al  to  reuse  exis<ng  infrastructure.  

The  higher  the  percentage  score,  the  more  likely  it  will  be  suitable  for  CO2  storage  projects.  

The  ADB  report  (Sept  2013)  es<mated  the  theore<cal  storage  capacity  for  saline  aquifers  of  7.7  Gt  and  effec<ve  storage  capacity  of  0.9  Gt  from  oil  and  gas  fields  in    South  Sumatra  basin.    The  study  was  conducted  in  just  1  of  over  60  sedimentary  basins  in  Indonesia.  

The  par<cipa<on  of  Indonesia  in  CCS-­‐M  is  represented  by  Geological  Agency  Indonesia,  LEMIGAS  and  ITB.

3.   Japan  

Japan  is  currently  the  third  largest  economy  in  the  world,  auer  the  USA  and  China.    Although  Japan  consumes  a  large  amount  of  energy  it  is  almost  100%  reliant  on  imported  energy.    Japan’s  energy  sector  accounts  for  over  90%  of  the  total  GHG  emission.    

The  framework  for  CCS  research  in  Japan  is  implemented  mainly  by  the  Ministry  of  Economy,  Trade  and  Industry  (METI)  –providing  budget  and  subsidy  for  research  and  development  (R  &  D)  and  demonstra<on  of  CCS.    Japan  has  done  several  studies  and  evalua<on  on  greenhouse  gas  (GHG)  emission  sources  and  matching  the  distribu<on  of  poten<al  reservoir  for  CO2  storage  which  is  es<mated  at  ~141  Bt.

R  &  D  ac<vi<es  on  CCS  which  included  various  storage  op<ons,  e.g.  ocean  storage,  and  Enhanced  Coal  Bed  Methane  (ECBM),  started  in  late  1980s.  

From  July  2003  to  January  2005,  10,400  tons  of  CO2  were  injected  into  saline  acquifer  1,110  meters  below  the  ground  surface  of  Iwanohara,  Nagaoka  site,  Niigata  Prefecture.    Japan’s  Research  Ins<tute  of  Innova<ve  Technology  for  the  Earth  (RITE),  s<ll  con<nue  various  on-­‐site  measurements  of  wells  to  understand  CO2  behavior  auer  the  end  of  injec<on.    For  that  reason,  its  monitoring  results  have  drawn  great  aMen<on  from  all  over  the  world.    Many  of  these  studies  are  shared  to  CCOP  member  countries  through  CCS-­‐M.  

Auer  the  successful  geological  storage  test  in  Nagaoka  and  the  preliminary  evalua<on  of  storage  poten<al  in  Japan,  the  priority  of  R  &  D  has  been  shiued  to  “sub-­‐seabed” geological  storage.  Current  R  &  D  ac<vi<es  include  various  capture  op<ons  (chemical  absorp<on,  membrane,  and  oxyfuel),  monitoring  techniques,  and  long-­‐term  computa<onal  simula<ons  of  CO2  plume  in  a  reservoir.  

In  August  2009,  the  Ministry  of  Economy,  Trade  and  Industry  (METI)  compiled  a  guideline,  “For  safe  opera<on  of  a  CCS  demonstra<on  project”.  This  guideline  is  a  standard  to  be  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �15 31

followed  from  the  safety  and  environment  viewpoints  in  implemen<ng  a  large-­‐scale  CCS  demonstra<on  project.  

In  April  2012,  METI  ini<ated  a  full-­‐chain  CCS  demonstra<on  project  in  Tomakomai,  Hokkaido.  They  commissioned  its  delivery  to  Japan  CCS  Co.,  Ltd.,  which  was  established  in  May  2008  for  implemen<ng  CCS  demonstra<on  in  Japan.  Prior  to  the  launch  of  the  project,  the  company  had  carried  out  feasibility  studies  for  integrated  CCS  systems  and  geological  surveys  at  a  couple  of  candidate  fields,  including  Tomakomai,  for  the  demonstra<on  and  had  completed  basic  designing  of  the  demonstra<on  in  Tomakomai  by  2011. Japan’s  road  map  for  CO2  storage  plans  is  as  follows:

• 2016  -­‐2020:  Start  of  industrial  ini<a<ve  at  ~250,000  T/Year  

• 2020:  Commercial  projects  at  >1M  T/Year.  

!

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �16 31

! !

!!!!!!!!!!!!!!

!!Figure  2:  Distribu*on  of  poten*al  aquifer  and  reservoir  for  CO2  storage,  total  poten*al  es*mated  at  ~141  BT  (CCS-­‐M  T4  country  report  presenta*on,  May  2014)  

Japan’s  par<cipa<on  in  the  CCS-­‐M  program  is  represented  by  the  Geological  Survey  of  Japan,  AIST.

4.    Korea  

Korea  has  seen  very  rapid  development  over  the  last  several  decades  and  its  economy  is  heavily  dependent  on  interna<onal  trade.    In  2010,  Korea  was  the  sixth  largest  exporter  and  tenth  largest  importer  in  the  world.    Korea  imports  nearly  all  its  energy  resources,  including  oil  and  natural  gas  and  coal.    According  to  IEA  (2009),  Korea  was  ranked  eighth  among  the  world’s  top  emiMers  of  CO2  in  the  world.

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �17 31

As  reported  by  Korea  Ins<tute  of  Geoscience  &  Mineral  Resources  (KIGAM)  during  CCS-­‐M  training  course  4  (T4,  May  2014)  characteriza<on  of  geological  basin  poten<al  for  CO2  storage  is  currently  an  on-­‐going  ac<vity.    Under  the  Korea  CCS  Roadmap  “Prac<cal  use  of  CCS  technology  by  2020”,  KIGAM  will  be  leading  CO2  storage  researches  from  site  selec<on,  injec<on  and  monitoring,  through  to  closure  of  CCS  projects.    Site  selec<on  and  drilling  ac<vi<es  will  be  conducted  during  the  period  2015-­‐2017  with  a  vision  of  star<ng  a  small-­‐scale  pilot  test  in  2015  to  run  un<l  2020.  The  main  components  of  KIGAM’s  R  &  D  are  as  follows:  

1. Site  screening  and  geological  characteriza<ons;  

2. Development  of  CO2  injec<on  system;  

3. Development  of  CO2  monitoring  technologies;  and  

4. Mineral  carbona<on  using  industrial  mineral  wastes  and  natural  minerals  

Figure  3:  Outline  of  sedimentary  basins  for  CCS  Projects  in  Korea  (CCS-­‐M  T4  country  report  presenta*on,  May  2014)

Korea’s  par<cipa<on  in  the  CCS-­‐M  Program  is  represented  by  KIGAM.  

!

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �18 31

Ulleong BGunsan B

Gyeongsang B

5.   Malaysia

When  compared  with  other  developing  countries  within  the  Associa<on  of  Southeast  Asian  Na<ons  (ASEAN),  the  carbon  intensity  of  Malaysia’s  economy  is  rela<vely  high.    Malaysia  is  commiMed  in  addressing  its  steadily  increasing  emissions  profile  and  has  tasked  its  Ministry  of  Natural  Resources  and  Environment  with  the  responsibility  of  developing  an  emissions  reduc<on  roadmap  to  iden<fy  how  this  target  can  be  achieved.  Malaysia  has  established  a  significant  renewable  energy  pormolio  to  address  this.  The  Government  of  Malaysia  is  exploring  many  different  mi<ga<on  and  energy  efficiency  op<ons,  including  CCS.    !According   to   a   United   States   Geological   Survey   (USGS)   assessment   undertaken   in   2000,  Malaysia’s   total   hydrocarbon   pore   space   is   considerable.   The   es<mate   for   Malaysia’s  ‘known’   (cumula<ve   produc<on   plus   reserves)   hydrocarbons   in   the   Malay   and   Greater  Sarawak  basins  is  ~4.4  billion  barrels  (bbls)  of  oil  and  ~125  trillion  cubic  feet  (TCF)  of  gas.    !The  Malay  basin   is   located  close   to  76%  of  Malaysia’s  CO2  sources.  Data  gathered  by   the  USGS   in   2000   from   hydrocarbon   field   data   suggests   there   is   ouen   good   porosity   and  permeability  in  the  Malay  basin.    !The  USGS  es<mate  of  the  Malay  basin’s  poten<al  to  store  CO2  is  ~  4.3  Gt.  The  same  assessment  also  noted  that  the  deple<on  status  of  specific  fields  is  unknown  and  that  this  pore  space  will  not  be  available  for  storage  for  some  <me.  !Malaysia  will  host  a  case  study  on  CO2  storage  in  Sarawak  Basin  for  the  CCS-­‐M.  Malaysia’s  par<cipa<on  in  the  CCS-­‐M  Program  is  represented  by  PETRONAS. !!!!!!

!!  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �19 31

!Figure  4:  Map  of  the  case  study  area  of  Malaysia  (CCS-­‐M  T4  country  report  

presenta<on,  May  2014).  

6.    Philippines  !The  Philippines  is  one  of  the  focus  countries  of  the  above-­‐men<oned  ADB  study.    The  ADB  report  (September  2013)  es<mated  theore<cal  capacity  from  saline  aquifers  in  the  Philippines  at  22.7  Gt  and  effec<ve  capacity  from  oil  and  gas  fields  at  0.3  Gt.    These  es<mates  are  based  on  2  out  of  16  sedimentary  basins  covered  by  the  study.      !

7.    Thailand  

Thailand  is  an  emerging  economy  and  is  presently  a  newly  industrialized  country.    The  economy  of  Thailand  is  heavily  export-­‐dependent.    According  to  the  UN  Sta<s<cs  report  (2010),  Thailand  is  the  22nd  largest  GHG  emiMer  in  the  world  at  286  MT/Year,  54%  from  energy  sector,  19%  from  agriculture  sector,  and  6%  from  industrial  sector.    The  2013-­‐2050  Climate  Change  Master  Plan  (drau)  of  Thailand  is  an  integrated  plan  with  the  goal  of  sustainable  development.    A  key  intermediate  milestone  in  this  Plan  is  to  reduce  7-­‐20%  of  CO2  emission  in  energy  and  transport  sectors  by  2021.  The  long-­‐term  objec<ves  are  to  reduce  CO2  emission/GDP  and  to  promote  low  CO2  industries.  

More  than  90%  is  located  offshore  in  the  Gulf  of  Thailand  where  major  oil  and  gas  produc<on  is  also  located.    The  ADB  report  (September  2013)  es<mated  the  theore<cal  storage  capacity  of  saline  aquifers  at  8.9  Gt  and  effec<ve  storage  capacity  of  oil  and  gas  fields  at  1.4  Gt.    This  es<mate  is  based  on  the  study  conducted  on  10  of  94  sedimentary  basins  in  Thailand.  

Thailand’s  par<cipa<on  in  the  CCS-­‐M  Program  is  represented  by  Department  of  Minerals  Fuels  (DMF).  

8.    Vietnam  

Vietnam  is  among  the  oil  producing  member  countries  of  CCOP.    Though  oil  and  gas  is  a  rela<vely  new  sector  in  Vietnam,  it  is  currently  the  3rd  largest  oil  producer  in  SE  Asia.    Manufacturing,  informa<on  technology  and  high-­‐tech  industries  now  form  a  large  and  fast-­‐growing  part  of  the  economy.    The  main  source  of  CO2  emissions  (~90%)  are  the  power  and  gas  processing  plants.  

In  2009,  the  French  Geological  Survey  (BRGM)  and  Vietnam  Department  of  Geology  and  Mineral  Resources  (DGMV)  publish  the  report  ”Where  is  the  capacity  of  CO2  storage  in  Vietnam?”.  Also  in  the  same  year,  Vietnam  Petroleum  Ins<tute  (VPI),  PetroVietnam,  Japan  Oil  Gas  and  Metal  Corpora<on  (JOGMEC)  and  Nippon  Oil  Explora<on  Ltd  (NOEX)  implemented  the  Project  ”Studying  the  ability  o  fusing  CO2  to  enhance  oil  recovery  in  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �20 31

offshore  oil  fields  in  Vietnam  to  partly  respond  with  climate  change”.    In  June  2013,  Vietnam  Ins<tute  of  Geosciences  and  Mineral  Resources  (VIGMR)  ini<ated  a  study  looking  into  the  poten<al  and  the  technological  solu<ons  for  CO2  storage  in  geological  forma<ons  in  Northern  Vietnam.  

The  ADB  report  (September  2013)  es<mated  the  theore<cal  storage  capacity  of  Vietnam’s  saline  aquifer  at  10.4  Gt  and  effec<ve  capacity  for  oil  and  gas  fields  at  1.4  Gt.    This  es<mates  is  based  on  the  study  conducted  on  6  out  of  8  sedimentary  basins  in  Vietnam.  

!

Figure 5: Initial results from the CO2 storage potential study of the Red River basin in North Vietnam.

Vietnam’s  par<cipa<on  in  the  CCS-­‐M  Program  is  represented  by  PetroVietnam  and  VIGMR.  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �21 31

Sandstone layers: thickness: 10-30m, porosity: 5-30%; !

115 coal beds (lignite)

9.    Other  Member  Countries  (Cambodia,  Lao-­‐PDR,  Papua  New  Guinea,  and  Timor-­‐Leste  and  Myanmar  (observer  country)  !

The  remainder  of  the  CCOP  member  countries  par<cipa<ng  in  the  CCS-­‐M  program  has  no  current  CCS  or  CO2  geological  storage  ac<vi<es.    Their  GHG  emission  reduc<on  strategy  is  focused  mainly  on  energy  efficiency  and  other  technologies.    Papua  New  Guinea,  Timor-­‐Leste  and  Myanmar  are  currently  producing  oil  and  gas  and  may  offer  opportuni<es  for  CO2  storage  poten<al  in  the  future.  

!4.    The  CCS-­‐M  Guideline  Development  

One  of  the  outcomes  of  the  CCS-­‐M  Program  will  be  the  development  of  the  Geologic  CO2    

Storage  atlas   (CCOP  Atlas)  of   the  CCOP   region.     The  CCOP  Atlas  will   give  an  overview  of  reservoir  forma<ons  within  relevant  burial  depth  in  defined  areas.  .    An  atlas  is  based  on  a  large   set   of   high   quality   data.   In   areas   with   poor   data   coverage,   other   methods   of  assessment,  e.g.    probabilis<c  methods  could  be  applied.    

The  CCOP  par<cipa<ng  members  learned  that  there  are  two  different  types  of  classifica<on  systems  used  in  the  CO2  storage  atlases  that  are  currently  published:  the  first  type  comprises  a  variety  of  capacity  or  matura<on  pyramids,  the  second  approach  tries  to  set  up  a  system  analogue  to  the  resource-­‐reserves  concept  used  in  the  petroleum  industry.      The  first  one,  the  classifica<on  concept  of  a  ‘capacity  pyramid’,  is  widely  used  in  the  CO2  community.  Most  widespread  is  the  classical  storage  resource  pyramid,  as  suggested  originally  by  Bachu  (2007).      

!!!!!!!!!Figure   6:   Techno-­‐Economic   Resource-­‐Reserve   pyramid   for   CO2     storage   capacity   in  geological   media   within   a   jurisdic*on   or   geographic   region   (modified   from   CSLF,   2005;  Bradshaw  et  al.,  2006).  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �22 31

The  pyramid  shows  the  rela<onship  between  Theore<cal,  Effec<ve,  Prac<cal  and  Matched  capaci<es.  

A. TheoreUcal  Storage  Capacity  represents  the  physical  limit  of  what  the  geological  system  can  accept  and  it  occupies  the  whole  of  the  resource  pyramid.  It  assumes  that  the  en<re  volume  is  accessible  and  u<lized  to  its  full  capacity  to  store  CO2  in  the  pore  space,  or  dissolved  at  maximum  satura<on  in  forma<on  fluids.  This  represents  a  maximum  upper  limit  to  a  capacity  es<mate,  however  it  is  an  unrealis<c  number  as  in  prac<ce  there  always  will  be  physical,  technical,  regulatory  and  economic  limita<ons  that  prevent  full  u<liza<on  of  this  storage  capacity.  

B. EffecUve  Storage  Capacity  (Bachu  and  Shaw,  2005),  called  previously  Realis<c  Capacity  (CSLF,  2005)  this  storage  es<mate  represents  a  subset  of  the  theore<cal  capacity  and  is  obtained  by  applying  a  range  of  technical  (geological  and  engineering)  cut-­‐off  limits  to  a  theore<cal  storage  capacity  assessment,  including  considera<on  of  that  part  of  the  storage  capacity  that  can  be  physically  accessed.  This  es<mate  usually  changes  with  the  acquisi<on  of  new  data  and/or  knowledge.  

C. PracUcal  (or  Viable)  Storage  Capacity  is  that  subset  of  the  effec<ve  capacity,  and  is  obtained  by  considering  technical,  legal  and  regulatory,  infrastructure  and  general  economic  barriers  to  CO2  geological  storage.  As  such,  it  is  prone  to  rapid  changes  as  technology,  policy,  regula<ons  and/or  economics  change.  The  Prac<cal  Storage  Capacity  corresponds  to  the  reserves  used  in  te  energy  and  mining  industries.  

D. Matched  Storage  Capacity  is  that  subset  of  the  prac<cal  capacity  that  is  obtained  by  detailed  matching  of  large  sta<onary  CO2  sources  with  geological  storage  sites  that  are  suitable  in  terms  of  capacity,  injec<vity  and  supply  rate.  This  capacity  is  at  the  top  of  the  resource  pyramid  and  corresponds  to  the  proved  marketable  reserves  used  by  the  mining  industry.  The  difference  between  matched  and  prac<cal  storage  capaci<es  represents  stranded  storage  capacity  that  cannot  be  realized  because  of  lack  of  infrastructure  and/or  CO2  sources  within  economic  distance.  !

The  advantage  of  the  capacity  or  matura<on  pyramids  is  that  it  depicts  the  different  degrees  of  certainty  of  a  storage  volume  in  a  simple  manner.  The  main  disadvantages  is  there  is  no  common  agreement  on  one  capacity  pyramid,  and  defini<ons  ouen  remain  vague  (Prelicz  et  al.,  2012).  This  underscores  the  need  for  the  CCOP  region  to  agree  on  a  par<cular  approach.    !The  USA  &  Canada  atlas  (Carbon  Sequestra<on  Atlas  of  the  United  States  and  Canada  III,  2010)  

and  the  New  South  Wales  atlas  (CO2CRC,  2010)  uses  the  second  approach.  Analogous  to  the  petroleum  industry,  the  term  ‘resource’  is  used  for  a  volumetric  es<mate  reflec<ng  physical  and  geological  constraints.  The  term  ‘storage  capacity’  would  be  the  analogue  to  reserves,  and  would  depend  on  a  development  plan.  As  a  result,  different  development  scenarios  would  affect  the  es<mate  of  CO2  storage  capacity  of  a  specific  site,  just  as  a  development  plan  in  the  petroleum  industry  influences  the  reserves  (e.g.  infill  drilling  or  enhanced  oil  recovery  (EOR)  will  increase  reserves).    Capaci<es  would  then  always  include  present  economic  and  regulatory  considera<ons,  while  prospec*ve  storage  resources  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �23 31

would  be  mainly  based  on  geological  parameters.    The  USA  Department  of  Energy  (DOE)  stresses  the  importance  of  a  common  terminology  that  can  be  used  for  making  regulatory  and  business  decisions.  

Most  CCOP  member  countries  have  displayed  a  preference  for  the  (first)  ‘pyramid’  classifica<on  approach.    

CCOP  member  countries,  through  CCS-­‐M  training  courses  1,  2,  and  4  (T1,  T2  and  T4)  have  gained  some  knowledge  on  the  methodologies  used  in  Australia  (CO2CRC  and  Geoscience  Australia)  Norway  (NPD  and  Statoil)  and  USA  (USGS).  The  T2  and  T4  workshops  resulted  in  the  following  consensus  from  the  par<cipants:  

• Type  of  assessment  and  coverage  –  Onshore  and  offshore  areas  

• Scale:  High  level  assessment  (basin  scale)  

o Saline   aquifers:   to   be   assessed   at   basin   level   and   offer   theore<cal  storage   es<mates.     When   more   detailed   data   becomes   available,  es<mates  of  effec<ve  or  prac<cal  geological  storage  capacity  can  be  developed  depending  on  the  extent  of  the  data  available.  

o Depleted   hydrocarbon   (oil   and   gas)   fields:   storage   es<mates  represent  the  effec<ve  storage  capacity  and  based  on  the  es<mated  ul<mate  recovery   (EUR)  of  oil  and  gas.    The  EURs  are  converted  to  CO2   storage   es<mates   by   using   forma<on   volume   factors   and   the  density  of  the  CO2  at  reservoir  condi<ons.    The  scale  of  the  data  also  influences  the  certainty  of  the  es<mates.  

• Es<ma<on  methods:    probabilis<c   (determinis<c  es<ma<on  will  be  used   if  sufficient  data  is  available  and/or  the  basin/field  is  considered  mature)  

• Use  of   the  Geographic   Informa<on  System  (GIS)  mapping  system  to   locate  the   storage   sites   –   a   system   that   will   provide   the   possibility   for   member  countries  to  update  their  informa<on  and  view  updates  from  other  member  countries  online.    This  will  leverage  on  past  &  exis<ng  GIS  projects  in  CCOP  (WebGIS).  

• Support  from  Member  Countries  –  available  data  (public  domain  data)  and  exper<se.  

The  member  countries  also  agreed  not  to  include  in  the  storage  assessment  the  reservoir  that  is  known  to  contain  potable  water  and  those  within  an  area  of  poten<al  petroleum  migra<on.  

!!!!

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �24 31

4.1  CharacterizaUon  Workflow  !As  shown  below,  the  Det  Norske  Veritas  (DNV)  CO2Qualstore  recommenda<on  for  the  overall  CO2  storage  project  workflow  is  a  long  process  that  begins  with  the  screening  of  storage  sites.

!Figure 7: DNV GL CO2Qualstore !!The  CCS-­‐M  Methodology  for  the  screening  of  basins  and  reservoirs  is  following  the  basic  steps  adopted  in  various  atlases  and  studies: !

1. Iden<fica<on  of  sedimentary  basins.    

2. Review,  data  coverage  (availability  of  exis<ng  well  and  seismic  data).      

3. Determine  if  a  basin  is  generally  suitable  for  storage  of  supercri<cal  CO2  (reservoir  – seal  pairs  exis<ng  below  ~800  m).      

4. Qualita<vely  and/or  quan<ta<vely  ranking  of  sedimentary  basins  in  order  of  suitability.    

5. Quan<ta<ve  CO2  storage  capacity  es<ma<on  using  probabilis<c  method  (Monte  Carlo)

!CCOP  will  use  the  screening  criteria  originally  developed  by  Bachu  (2003)  and  modified  for  screening  the  sedimentary  basins  in  CCOP  countries.    This  will  also  result  in  ranking  of  basins  in  order  of  storage  suitability.  !!!!!!

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �25 31

!Table 2: Screening criteria developed by Bachu (2003) modified for CCOP  

Basin  CriterionClasses

1 2 3 4 5

1Tectonics  (Seismicity) High High/Medium Medium

Medium/Low Low

2Size Small  

(<5000km2)

Medium  (5000-­‐25000km2)

Large  (25000-­‐50000km2)

Very  Large  (>50000km2)    

3Depth Shallow  

(<1,500m)Deep  (>3,500m)

Intermediate  (1,500  -­‐  3,500m)  

4 Type Non-­‐marineNon-­‐marine  and  marine Marine    

5Faul<ng  intensity Extensive Moderate Limited    

6

Hydrogeology

Poor  (fractured  rock  system,  short  flow  system)

Intermediate  (faulted-­‐fractured  rock  system,  intemediate  flow)

Good  (regional,  long-­‐range  flow  systems;  topography  or  erosional  flow    

7 Geothermal  Warm  basin  (>40

Moderate  (30-­‐40

Cold  basin  (<30    

8Hydrocarbon  poten<al None Small Medium Large   Giant

9 Maturity Unexplored Explora<on Developing MatureOver-­‐mature

10 Coal  and  CBM NoneShallow  (200-­‐800m)

Deep  (>800m)  

11 Reservoir None Poten<al Poor   Good Excellent

12 Seal None Poten<al Poor   Good Excellent

 Reservoir/Seal  Pairs None Poor Good  (Single)

Excellent  (Mul<ple)  

13

Onshore  /  offshore

Deep  offshore  (>200  m)

Shallow  offshore  (<200  m) Onshore    

14 Infrastructure None Minor Moderate Extensive  

15 CO None Few Moderate Major  

16Data  availability Poor Moderate Good Excellent  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �26 31

4.2  QuanUtaUve  CO2  Storage  Capacity  EsUmaUon  

In  order  to  measure  ‘theore<cal  storage  capacity’  the  general  concept  is  that  first  the  pore  volume  of  the  reservoir  forma<on  is  calculated,  by  mul<plying  the  available  rock  volume  with  the  average  porosity.    Next,  this  volume  is  mul<plied  by  the  amount  of  pure  CO2  (density  at  reservoir  condi<ons),  to  determine  the  mass  of  CO2  that  can  be  stored.  Then  an  efficiency  factor  (E:  0.1  –  5%)  is  applied  in  order  to  account  for  a  number  of  geological  and  physical  constraints  that  limit  the  volume  that  can  actually  be  u<lized  for  CO2  storage  within  an  aquifer.        

Considering  the  nature  of  regional  assessments,  some  calcula<on  parameters  (especially  porosity  values)  cannot  be  determined  accurately  for  each  storage  structure.    The  calcula<ons  are  therefore  partly  based  on  analogues.    In  order  to  account  for  parameter  uncertain<es  on  the  calculated  storage  capaci<es,  Monte  Carlo  simula<ons  are  performed.    For  each  poten<al  storage  area  at  least  ~5000  runs  of  simula<ons  are  performed.    The  results  are  presented  as  sta<s<cal  distribu<on:  P10  –  P50  –  P90.  

!

�  

Table  3:  Sample  input  for  Monte  Carlo  simula<on  for  storage  capacity  es<ma<on  (CCS-­‐M  T2  workshop,  August  2013)  

The  Norwegian  Petroleum  Directorate  (NPD)  reported  that  the  theore<cal  storage  efficiency  (E)  calculated  from  pore  volume  in  a  closed  aquifer  is  typically  0.5  to  1%  because  of  pressure  build-­‐up.    Higher  values  for  E  in  depleted  oil  and  gas  fields  or  if  forma<on  water  is  produced.    In  half-­‐open  aquifers  a  value  of  4%  is  regarded  as  typical,  but  should  be  tested  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �27 31

by  reservoir  simula<on.    The  theore<cal  storage  efficiency  in  a  closed  structure  (prospect  or  depleted  oil  and  gas  field)  can  be  much  higher,  but  is  limited  by  the  capacity  of  the  communica<ng  aquifer.    It  should  also  be  noted  that  the  storage  efficiency  factors  are  scale-­‐dependent,  according  to  whether  applied  at  basin,  region,  forma<on  or  site  scales.

! !!!!!!!!!!!!!!!!!!!!!!!!!

Figure  8:    Schema*c  showing  open  aquifer  systems  versus  closed  or  semi-­‐closed  systems  (Zhou  et  al.,  2008).    

!5.    Guideline  ImplementaUon  

These  guiding  principles  will  be  tested  through  CCS-­‐M  case  study  projects.    The  3  countries  that  will  be  hos<ng  the  case  studies  are

1.   Case  Study  1  (CS1)  – Indonesia  

2.   Case  Study  2  (CS2)  – Malaysia  

3.   Case  Study  3  (CS3)  – China.  

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �28 31

The  implementa<on  of  the  case  studies  is  through  thema<c  workshops  and  seminars.    Best  prac<ces,  challenges  and  solu<ons  will  be  recorded  in  the  course  of  case  study  implementa<on  and  will  be  added  in  the  Guideline.    Geological  fieldwork  to  outcrops  or  analogue  storage  reservoir  will  also  be  conducted  during  the  case  studies.  

!6.    Guideline  EvaluaUon  and  Revision  

The  Guideline  will  go  through  a  process  of  tes<ng/applica<on  (via  case  studies  and  or  storage  projects),  review  and  comments.    The  CCS-­‐M  website  www.ccop.or.th/ccsm      will  also  be  used  for  review  and  comments  from  the  member  countries  and  also  from  resource  persons.

The  final  version  of  the  Guideline  will  also  be  refined  in  the  future  to  evaluate  whether  or  not  it  is  necessary  for  further  expansion  or  mapping  to  other  methodologies  (i.e.  United  Na<ons  Framework  Classifica<on  for  Fossil  Energy  and  Mineral  Reserves  and  Resources,  UNFC  2009).

The  CCS-­‐M  Guideline  will  reflect  the  CCOP  Member  Countries  consensus  on  the  methodologies  to  be  adopted  for  the  screening  and  characteriza<on  of  basins  that  could  be  used  for  the  geological  storage  of  CO2  ,  as  well  as  for  the  quan<ta<ve  es<ma<on  of  storage  capaci<es.  

 The  Guideline  will  be  an  important  tool  for  communica<on  and  can  provide  a  star<ng  point  for  a  specific  storage  project  screening.    This  will  be  made  available  to  all  member  countries;  its  usage,  however  is  not  mandatory.

!7.    References  !1. Asian  Development  Bank,  Prospects  for  the  Carbon  Capture  and  Storage  in  Southeast  

Asia,  September  2013. 2. Bachu,  S.,  Bonijoly,  D.,  Bradshaw,  J.,  Burruss,  R.,  Holloway,  S.,  Christensen,  N.P.,  and  

Mathiassen,  O.M.,  2007,  CO2  storage  capacity  es<ma<on—Methodology  and  gaps:  Interna<onal  Journal  of  Greenhouse  Gas  Control,  v.  1,  p.  430–443.  

3. Bachu,  S.  2008  Comparison  between  Methodologies  Recommended  for  Es<ma<on  of  CO2  Storage  Capacity  in  Geological  Media  by  the  CSLF  Task  Force  on  CO2  Storage  Capacity  Es<ma<on  and  the  US  DOE  Capacity  and  Fairways  Subgroup  of  the  Regional  Carbon  Sequestra<on  Partnerships  Program-­‐  Phase  III  Report  –Available  online  at  hap://www.cslforum.org/publica*ons/documents/PhaseIIIReportStorageCapacityEs*ma*onTaskForce0408.pdf

4. Bradshaw,  B.E.,  Spencer,  L.K.,  Lah<nen,  A.C.,  Khider,  K.,  Ryan,  D.J.,Colwell,  J.B.,  Chirinos,  A.  and  Bradshaw,  J.  (2009).  Queensland  Carbon  Dioxide  Geological  Storage  Atlas.

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �29 31

5. Brennan,  S.T.,  and  Burruss,  R.C.,  2006,  Specific  storage  volumes—A  useful  tool  for  CO2  storage  capacity  assessment:  Natural  Resources  Research,  v.  15,  no.  3,  p.  165–182,  doi:10.1007/s11053–006–9019–0.

6. Brennan,  S.T.,  Burruss,  R.C.,  Merrill,  M.D.,  Freeman,  P.A.,  and  Ruppert,  L.F.,  2010,  A  probabilis<c  assessment  methodology  for  the  evalua<on  of  geologic  carbon  dioxide  storage:  U.S.  Geological  Survey  Open-­‐File  Report  2010–1127,  31  p.,  available  only  at  hMp://pubs.usgs.gov/of/2010/1127

7. Burruss,  R.C.,  Brennan,  S.T.,  Freeman,  P.A.,  Merrill,  M.D.,  Ruppert,  L.F.,  Becker,  M.F.,  Herkelrath,  W.N.,  Kharaka,  Y.K.,  Neuzil,  C.E.,  Swanson,  S.M.,  Cook,  T.A.,  KleM,  T.R.,  Nelson,  P.H.,  and  Schenk,  C.J.,  2009,  Development  of  a  probabilis<c  assessment  methodology  for  evalua<on  of  carbon  dioxide  storage:  U.S.  Geological  Survey  Open-­‐File  Report  2009–1035,  81  p.,  available  only  online  at  tp://pubs.usgs.gov/of/2009/1035/.

8. CO2CRC,  2013,  Capturing  Carbon  Dioxide,  available  online  at  hMp://www.co2crc.com.au/dls/brochures/Capture_Brochure_2013_spread.pdf

9. CSLF  June  2007  (hMp://www.cslforum.org/publica<ons/documents/PhaseIIReportStorageCapacityMeasurementTaskForce.pdf).

10. CCS-­‐M  Program,  Member  Country  Presenta<ons,  available  online  at  hMp://ccop.or.th/ccsm/.  

11. DNV, April 2012, Recommended Practice, DNV-RP-J203, Geological Storage of Carbon Dioxide, available online at http://www.dnv.com/news_events/news/2012/newcertificationframeworkforco2storage.asp

12. Global  CCS  Ins<tute,  2013,  The  Global  Status  of  CCS  2013,  available  online  at  hMp://decarboni.se/sites/default/files/publica<ons/115203/Global-­‐Status-­‐CCS-­‐2013-­‐Summary.pdf.

13. Global  CCS  Ins<tute,  2014,  The  Global  Status  of  CCS,  February  2014  available  online  at  hMp://decarboni.se/sites/default/files/publica<ons/121016/global-­‐status-­‐ccs-­‐february-­‐2014_0.pdf.

14. Gorecki,C.D.  et  al,  Development  of  Storage  Co-­‐coefficients  for  Carbon  Dioxide  storage  in  Deep  Saline  Forma<ons  and  depleted  Hydrocarbon  Reservoirs,  EERC  Power  Point  presenta<on  available  online  at  :www.ifp.com/content/download/68004/1473899/file/32_Gorecki.pdf

15. Heidug,  Wolf,  Interna<onal  Energy  Agency,  Workshop  Report  2013,  Methods  to  assess  geologic  CO2  storage  capacity:  status  and  best  prac<ce  (pdf).

16. R.  M  Prelicz,  E.A.V.  Mackie  and  C.J.  OMo,  Methodologies  for  CO2  storage  es<ma<on:  review  and  evalua<on  of  CO2  storage  atlases,  First  Break,  Volume  30,  February  2012  available  online  at  hMp://www.earthdoc.org/publica<on/publica<ondetails/?publica<on=56444

17. NACSA  2012  First  Edi<on  (hMp://www.netl.doe.gov/technologies/carbon_seq/refshelf/NACSA2012.pdf).

18. NETL,  2010,  Carbon  Sequestra<on  Atlas  of  the  United  States  and  Canada  III,  available  online  at  www.netl.doe.gov/technologies/  carbon  seq/refshelf/atlasIII/    !

19. Norwegian  Petroleum  Directorate,  Compiled  CO2  Atlas  for  the  Norwegian  Con<nental  Shelf,  June  2014,    available    online  at  hMp://npd.no/en/Publica<ons/Reports/Compiled-­‐CO2-­‐atlas/

20. Norwegian  Petroleum  Directorate,  CO2  Storage  Atlas  Barents  Sea,  December  2013,    available    online  at  hMp://npd.no/en/Publica<ons/Reports/CO2-­‐storage-­‐atlas-­‐Barents-­‐Sea/

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �30 31

21. Norwegian  Petroleum  Directorate,  CO2  Storage  Atlas  Norwegian  Sea,  January  2013,    available    online  at  hMp://npd.no/en/Publica<ons/Reports/CO2-­‐storage-­‐altas-­‐Norwegian-­‐Sea/

22. Norwegian  Petroleum  Directorate,  CO2  Storage  Atlas  North  Sea,  December  2011,    available    online  at  hMp://npd.no/en/Publica<ons/Reports/CO2-­‐Storage-­‐Atlas-­‐/

23. U.S.  Department  of  Energy,  Na<onal  Energy  Technology  Laboratory,  2008a,  Carbon  sequestra<on  atlas  of  the  United  States  and  Canada  (2d  ed.;  Atlas  II):  142  p.,  available  online  at  hMp://www.netl.doe.gov/technologies/carbon_seq/refshelf/atlasII/2008%20ATLAS_Introduc<on.pdf.

24. Vercelli  S.  et  al,  2014,  Choosing  good  sites  for  storing  CO2  underground,  available        online  at  http://www.sitechar-co2.eu/SciPublicationsData.aspx?IdPublication=339&IdType=557

CCS-M GUIDELINE FOR CO2 STORAGE! ! PAGE � OF �31 31