cdilect1 - the university of edinburgh · 2015. 9. 21. · 9/21/15 4 introduction to social...

11
9/21/15 1 Kaneda71 2008 Case Studies in Design Informatics 1 & 2 Jon Oberlander Lecture 1: Overview and Introduction to Social Robotics Slides quote or paraphrase cited papers http://www.inf.ed.ac.uk/teaching/courses/cdi1/ 2 Structure of lecture 1. Overview of Case Studies Course – Goal – Structure – Assessment 2. Introduction to Social Robotics by Design Bartnek and Forlizzi 2004 Fong, Nourbakhsh and Dautenhahn 2003 – Summary 3 Kaneda71 2008

Upload: others

Post on 15-Sep-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: cdiLect1 - The University of Edinburgh · 2015. 9. 21. · 9/21/15 4 Introduction to Social Robotics by Design 1. Bartnek and Forlizzi 2004 2. Fong, Nourbakhsh and Dautenhahn 2003

9/21/15  

1  

Kaneda71 2008

Case Studies in Design Informatics 1 & 2 Jon Oberlander

Lecture 1: Overview and Introduction to Social Robotics

Slides quote or paraphrase cited papers

http://www.inf.ed.ac.uk/teaching/courses/cdi1/

2

Structure of lecture

1.  Overview of Case Studies Course –  Goal –  Structure –  Assessment

2.  Introduction to Social Robotics by Design –  Bartnek and Forlizzi 2004 –  Fong, Nourbakhsh and Dautenhahn 2003 –  Summary

3 Kaneda71 2008

Page 2: cdiLect1 - The University of Edinburgh · 2015. 9. 21. · 9/21/15 4 Introduction to Social Robotics by Design 1. Bartnek and Forlizzi 2004 2. Fong, Nourbakhsh and Dautenhahn 2003

9/21/15  

2  

Courtesy Boris Lau

Page 3: cdiLect1 - The University of Edinburgh · 2015. 9. 21. · 9/21/15 4 Introduction to Social Robotics by Design 1. Bartnek and Forlizzi 2004 2. Fong, Nourbakhsh and Dautenhahn 2003

9/21/15  

3  

Course Goal

!  How would you do it differently?

!  Every time a design decision is made to pursue one course of action, other routes are closed off.

!  The goal is: –  to work in groups to see why specific project design decisions

were taken, and –  to envisage a different service or product that could be built

from the same components.

9

Course Structure

!  There are two main linked case studies: –  Human robot interaction in the JAMES project –  Personal data obfuscation in the SOCIAM project

!  The link is this: –  How can design elicit the “correct” human behaviour?

!  Assessment is by term paper only; there is no final exam. –  A1 30%: first term paper on HRI (Group). –  A2 40%: second term paper on PDO (Group). –  A3 30%: third term paper on implementation & learning (Group).

!  Feedback: –  Summative:

•  Term papers will be marked, and written feedback given

–  Formative: •  All tutorials provide formative verbal feedback; •  1 tutorial provides formative written feedback on draft A2 reports

10

Course Assessment

!  Assignment 1: –  Start: Week 2, Monday, 16:00: 28th September. Available from course page. –  Submit: Week 4, Thursday, 16:00: 15th October

•  (30% of overall coursework grade). –  Use Informatics submit, or DVD/thumbdrive to Informatics Teaching Office. –  Return: Week 5, Friday, 16:00: 23rd October.

!  Assignment 2: –  Start: Week 5, Monday, 16:00: 19th October. Available from course page. –  Submit: Week 8, Thursday, 16:00: 12th November

•  (40% of overall coursework grade).

–  Use Informatics submit, or DVD/thumbdrive to Informatics Teaching Office. –  Return: Week 9, Friday, 16:00: 20th November.

!  Assignment 3: –  Start: Week 9, Monday, 16:00: 16th November. Available from course page. –  Submit: Week 11, Thursday, 16:00: 3rd December

•  (30% of overall coursework grade).

–  Use Informatics submit, or DVD/thumbdrive to Informatics Teaching Office. –  Return: Week 12, Friday, 16:00: 11th December.

11

Course Timetable

Week Topic Mon Mon Thu Submit 16:00 Thu

1 HRI Intro (JO) <No class>

2 HRI Designing a robot (JO) Tutorial State-of-the-art (JO)

3 HRI Towards JAMES (JO) Tutorial JAMES (JO)

4 HRI HRI vs HDI (JO) Tutorial Animals A1

5 Eval Usability evaluation (JO) Tutorial Usability evaluation (JO)

6 Data Personal data (DMR) Tutorial Personal data (DMR) A2-draft

7 Data Personal data (DMR) Tutorial* Personal data (DMR)

8 Data Personal data (DMR) Tutorial Personal data (DMR) A2

9 New Reflection (JO) Tutorial ADI 1

10 New ADI 2 Tutorial ADI 3

11 New ADI 4 (Tutorial) ADI 5 A3

12

Page 4: cdiLect1 - The University of Edinburgh · 2015. 9. 21. · 9/21/15 4 Introduction to Social Robotics by Design 1. Bartnek and Forlizzi 2004 2. Fong, Nourbakhsh and Dautenhahn 2003

9/21/15  

4  

Introduction to Social Robotics by Design

1.  Bartnek and Forlizzi 2004 2.  Fong, Nourbakhsh and Dautenhahn 2003 3.  Summary

13

Bartnek  and  Forlizzi  2004  

!  A    Design-­‐Centred  Framework  for  Social  Human-­‐Robot  InteracBon  

!  Proceedings  of  the  2004  IEEE  InternaBonal  Workshop  on  Robot  and  Human  InteracBve  CommunicaBon,  Kurashiki,  Japan,  September  20-­‐22,  2004  –  Defines  social  robots  –  Classifies  properBes  of  social  robots  

14 Quoting Bartneck and Forlizzi 2004

Robots  

!  Industrial  (e.g.  automoBve)  

!  Professional  service  (e.g.  mining,  nuclear)  

!  Personal  service  (e.g.  home,  hospital)  –  Robust  enough  to  be  deployed,  but  …  –  “how  these  robots  should  behave  and  interact  with  humans  -­‐  act  socially  -­‐  

remains  largely  unclear”  

–  “Researchers  and  designers  have  only  just  begun  to  understand  these  criBcal  issues”  

15 Quoting Bartneck and Forlizzi 2004

Defining  social  robots  

!  The  lnternaBonal  FederaBon  of  RoboBcs  (IFR)  –  personal  service  –  A  robot  which  operates  semi  or  fully  autonomously  to  perform  services  

useful  to  the  well  being  of  humans  and  equipment,  excluding  manufacturing  operaBons.  

!  Engelhardt  and  Edwards  1992  –  personal  service  –  Systems  that  funcBon  as  smart,  programmable  tools,  that  can  sense,  think,  

and  act  to  benefit  or  enable  humans  or  extend/enhance  human  producBvity.  

!  Bartnek  and  Forlizzi  2004  –  social  –  A  social  robot  is  an  autonomous  or  semi-­‐autonomous  robot  that  interacts  

and  communicates  with  humans  by  following  the  behavioral  norms  expected  by  the  people  with  whom  the  robot  is  intended  to  interact.

16 Quoting Bartneck and Forlizzi 2004

Page 5: cdiLect1 - The University of Edinburgh · 2015. 9. 21. · 9/21/15 4 Introduction to Social Robotics by Design 1. Bartnek and Forlizzi 2004 2. Fong, Nourbakhsh and Dautenhahn 2003

9/21/15  

5  

Social  robots  

!  Exclude:  –  Purely  virtual  –  Teleoperated  –  Robots  that  interact  only  with  other  robots  

!  Include:  –  CooperaBve  robots  –  CompeBBve  robots  (e.g.  in  a  game)  

–  Silent  partners  (as  well  as  talking  partners)  !  Being  social:  

–  understanding  (and  in  some  cases,  mimicking)  human  acBvity,  and  

–  (understanding)  the  surrounding  society  and  culture,  which  shapes  social  values,  norms  and  standards.  

–  e.g.  roboBc  butler  –  follow  established  rules  of  good  service:  •  an#cipate,  be  reliable,  be  discreet.  

17 Quoting Bartneck and Forlizzi 2004

A  design-­‐centred  perspecBve  on  robot  properBes  

!  Social  robots  =  –  products  that  facilitate  co-­‐experience  and  social  interacBon.

!  Designed  form  =  –  the  total  expression  of  the  product.  –  not  just  appearance,  but  whole  experience  of  interacBng  with  the  product.  

18 Quoting Bartneck and Forlizzi 2004

Bartnek  and  Forlizzi’s  Framework  

19

robot as “A reprogrammable, multifunctiional manipulator designed to move material, parts, tools, or specialized devices through various programmed motions for the performance of a variety of tasks” and the International Standard Organization (ISO) in IS0 8373 defines a robot as “An automatically controlled, reprogrammable, multipurpose, manipulator programmable in three or more axes, which may be either fixed in place or mobile for use in industrial automation applications.”

These definitions are clearly targeted to autonomous or semi-autonomous industrial robots aind do not take interaction with humans into account aside from the attached safety regulations, such as ANSIIRIA R15.06-1999 and IS012100. The growth in personal service robots necessitates a definition for the kinds of robots that work with people. The lnternational Federation of Robotics (IFR) has adopted a preliminary definition of Service Robots as “A robot which operates semi or fully autono~nously to perform services useful to the well being of humans and equipment, excluding manufacturing operations.”

What is not explicitly mentioned in this definition is the interaction between people and robots, which is mentioned by Engelhardt (Engelhardt & Edwards, 1992) in his definition of service robots as “Systems that function as smart, programmable tools, that can sense, think, and act to benefit or enable humans or extendlenhance human productivity.” This definition speaks more about human productivity and less about social interaction, the goals of which are not always productivity. For example, entertainment robots including products such as the Sony Aibo (Sony, 1999) are not exceedingly productive but are still very valuable to their owners. We would like to propose the following definition of a social robot:

A social robot is an autonomous or semi-autonomous robot that interacts and communicates with hwnans by following the behavioral norms expected by the people with whom the robot is intended to interact.

This definition implies that a social robot has a physical embodiment. Screen characters or any kiind of virtual agent would be excluded by this definition. Rlecently, a class of robots have been developed that use a screen to display the robot’s head (RoboticPerformanceCompany, 2004). Because the screen-based head sets an expectation for and a locus of interaction, it can be considered to be a social robot.

Autonomy is a requirement for a social robot. A semi- autonomous robot can be defined as social if it communicates an acceptable set of social norms. A completely remote controlled robot cannot be considered to be social since it does not make decisions by itself. It is merely an extension of another human.

Communication and interaction with humans is a critical point in this definition. Therefore, robots that only interact and communicate with other robots would not be considered to be social robots. The interaction is likely to be

cooperative, but is not limited to it. Also uncooperative behavior can be considered social in certain situations. The robot could, for example, exhibit competitive behavior within the framework of a game. The robot could also interact with a minimum or no communication. It could, for example, hand tools to an astronaut working on a space station (Goza, Ambrose, Diftler, & Spain, 2004).

In our definition, being social is bound to understanding and in some cases, mimicking human activity and the surrounding society and culture, which shapes social values, norms and standards. For example, a robotic butler should comply with established rules of good service. It should anticipate, be reliable, and most of all, be discreet. However, the precise activities are likely to vary between cultures since social values, norms and standards differ between cultures (Hofstede, 1984). With this definition in place we can now turn to a framework that classifies properties of social robots.

4. The Framework Our framework takes a design-centered perspective, viewing social robots as products that facilitate co-experience and social interaction (Forlizzi & Battarbee, 2004). The framework also focuses on the notion of designed form. Design approaches form as the total expression of the product - not just how something appears, but the whole experience of the interacting with the product. Form includes a product’s physical manifestation, materials, and behavioral qualities (DiSalvo, Gemperle, Forlizzi, & Montgomery, 2003). Designers use form to balance the needs of people, the capabilities of technology, and the context of use into a single product.

Form 1 I I ebsbect womorphii ao”pMnomhrc

Modaltty

Untmodal

Social norma

munimadsl

nohowledge minimal knowledge iull knowladge ot m a l “ 5 ofsocis]” of social I”

Autonomous

Figure 1. Framework for classifying social robots.

Our framework (Figure 1) contains the following properties:

a. form For the purposes of this investigation, we group form

(shape, materials, and behavioral qualities) into three categories that suggest social behavior: abstract, biomorphic

- 592 -

Quoting Bartneck and Forlizzi 2004

Bartnek  and  Forlizzi’s  Framework  

!  Form  –  Shape,  materials,  behavioural  qualiBes  –  Abstract  –  Biomorphic  (lifelike)  –  Anthropomorphic  (humanlike)  

!  Modality  –  Number  of  communicaBon  channels  

•  Varying  over  one,  few,  many  –  Channels  include:    

•  Visual,  auditory,  hap#c,  olfactory,  gustatory  !  Social  norms  

–  Behaviour  is  influenced  by  that  of  other  members  of  the  group  –  Varying  over  no  norms  (e.g.  Furby)  to  reciprocal  norms  

!  Autonomy  –  Capability  to  act  on  behalf  of  humans,  without  direct  input. –  Varying  over  non,  semi,  full  

!  InteracBvity  –  PotenBal  to  show  causal  behaviour  (respond  to  human  acBon)  –  Varying  over  non,  semi,  full  

20 Quoting Bartneck and Forlizzi 2004

Page 6: cdiLect1 - The University of Edinburgh · 2015. 9. 21. · 9/21/15 4 Introduction to Social Robotics by Design 1. Bartnek and Forlizzi 2004 2. Fong, Nourbakhsh and Dautenhahn 2003

9/21/15  

6  

Design  Guideline  1.  The  form  of  the  social  robot  should  match  its  abiliBes.  

!  Shape,  size,  and  material  qualiBes  of  a  social  robot  should  match  the  task  it  is  designed  for  to  avoid  false  expectaBons.  

!  A  humanoid  robot,  for  example,  is  usually  expected  to  have  robust  speech  recogniBon  capabiliBes,  and  users  are  confused  when  their  expectaBons  are  not  met.  

!  A  biomorphic  form,  such  as  a  dog  or  cat,  may  be  more  appropriate  in  sedng  expectaBons  about  the  robot's  capabiliBes.  

21 Quoting Bartneck and Forlizzi 2004

Design  Guideline  2.  The  social  robot  should  mimic  human-­‐human  dialogue  in  human-­‐robot  dialogue  and  be  able  to  manage  communicaBon  failures.  

!  Social  robots  should  recognize,  respond  to,  and  employ  where  possible  all  modaliBes  that  humans  naturally  use  to  communicate.  

!  These  include  verbal  cues  such  as  speech,  intonaBon,  and  tone  of  voice,  and  non-­‐verbal  cues  such  as  gesture,  posture,  and  stance,  among  others.    

!  However,  the  robot  should  only  communicate  states  it  actually  has.  

!  It  should  not  fake  emoBons  if  it  does  not  genuine[ly]  use  them  for  its  own  benefit.  

!  Such  a  fake  would  be  detected  and  eventually  it  would  be  perceived  negaBvely.  

22 Quoting Bartneck and Forlizzi 2004

Design  Guideline  3.  The  robot  should  mimic  human  social  norms  and  be  able  to  provide  a  consistent  set  of  behaviors.  

!  Social  robots  should  be  aware  of  human  social  rules  and  norms,  and  grant  privilege  to  them  at  all  Bmes.  

!  When  possible,  the  robot  should  be  aware  of  its  own  social  role,  its  world  knowledge,  and  what  it  does  not  know.  

!  It  must  be  able  to  deal  with  uncertainty,  and  adhere  to  the  ethical  principle  of  least  harm.  

23 Quoting Bartneck and Forlizzi 2004

Bartnek  and  Forlizzi’s  design  guidelines:  summary  

1.   Form  should  match  ability  

2.   Use  human  dialogue  modaliBes  –  Do  not  fake  internal  states  

3.   Use  human  social  norms  –  Respect  humans  –  Be  consistent

24 Quoting Bartneck and Forlizzi 2004

Page 7: cdiLect1 - The University of Edinburgh · 2015. 9. 21. · 9/21/15 4 Introduction to Social Robotics by Design 1. Bartnek and Forlizzi 2004 2. Fong, Nourbakhsh and Dautenhahn 2003

9/21/15  

7  

Fong,  Nourbakhsh  and  Dautenhahn  2003  

!  A  survey  of  socially  interacBve  robots  

!  RoboBcs  and  Autonomous  Systems,  42,  143-­‐166.  –  Reviews  “socially  interacBve  robots”  –  The  forms  of  social  robots  

–  Design  methods,  components  

–  Impact  of  robots  on  humans  

25 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

Another  definiBon  of  social  robots  

!  Dautenhahn  and  Billard  1999  -­‐  Social  robots:  –  Embodied  agents  that  are  part  of  a  heterogeneous  group:  a  society  of  

robots  or  humans.  

–  They  are  able  to  recognize  each  other  and  engage  in  social  interacBons,  –  they  possess  histories  (perceive  and  interpret  the  world  in  terms  of  their  

own  experience),  and  

–  they  explicitly  communicate  with  and  learn  from  each  other.  

26 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

Concepts  

!  Breazeal  defines  four  classes  of  social  robots  in  terms  of:  1.   how  well  the  robot  can  support  the  social  model  that  is  ascribed  to  it  and  

2.   the  complexity  of  the  interacBon  scenario  that  can  be  supported  

27 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

Breazeal’s  four  classes  

!  Socially  evocaBve.  –  Robots  that  rely  on  the  human  tendency  to  anthropomorphize  and  capitalize  on  

feelings  evoked  when  humans  nurture,  care,  or  [are]  involved  with  their  “creaBon”.  

!  Social  interface.  –  Robots  that  provide  a  “natural”  interface  by  employing  human-­‐like  social  cues  and  

communicaBon  modaliBes.  –  Social  behavior  is  only  modeled  at  the  interface,  which  usually  results  in  shallow  

models  of  social  cogniBon.  

!  Socially  recepBve.  –  Robots  that  are  socially  passive  but  that  can  benefit  from  interacBon  (e.g.  learning  

skills  by  imitaBon).  –  Deeper  models  of  human  social  competencies  are  required  than  with  social  interface  

robots.  

!  Sociable.  –  Robots  that  pro-­‐acBvely  engage  with  humans  in  order  to  saBsfy  internal  social  aims  

(drives,  emoBons,  etc.).  –  These  robots  require  deep  models  of  social  cogniBon.  

28 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

Page 8: cdiLect1 - The University of Edinburgh · 2015. 9. 21. · 9/21/15 4 Introduction to Social Robotics by Design 1. Bartnek and Forlizzi 2004 2. Fong, Nourbakhsh and Dautenhahn 2003

9/21/15  

8  

FND  add  three  classes:  

!  Socially  situated.  –  Robots  that  are  surrounded  by  a  social  environment  that  they  perceive  and  

react  to.  

–  Socially  situated  robots  must  be  able  to  disBnguish  between  other  social  agents  and  various  objects  in  the  environment.  

!  Socially  embedded.  –  Robots  that  are:  

•  (a)  situated  in  a  social  environment  and  interact  with  other  agents  and  humans;  

•  (b)  structurally  coupled  with  their  social  environment;  and  

•  (c)  at  least  par#ally  aware  of  human  interac#onal  structures  (e.g.,  turn-­‐taking).  

!  Socially  intelligent.  –  Robots  that  show  aspects  of  human  style  social  intelligence,  based  on  deep  

models  of  human  cogniBon  and  social  competence.

29 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

FND  also  define  …  

!  Socially  interacBve  robots.  –  Robots  for  which  social  interacBon  plays  a  key  role.    

!  CharacterisBcs:  –  express  and/or  perceive  emoBons;  

–  communicate  with  high-­‐level  dialogue;  

–  learn/recognize  models  of  other  agents;  –  establish/maintain  social  relaBonships;  

–  use  natural  cues  (gaze,  gestures,  etc.);  –  exhibit  disBncBve  personality  and  character;  –  may  learn/develop  social  competencies.  

30 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

Fong,  Nourbakhsh  and  Dautenhahn’s  Landscape  

31

T. Fong et al. / Robotics and Autonomous Systems 42 (2003) 143–166 145

Fig. 6. Fields of major impact. Note that “collective robots” and“social robots” overlap where individuality plays a lesser role.

social” collective robots (Fig. 6). In particular, sociallearning and imitation, gesture and natural languagecommunication, emotion, and recognition of interac-tion partners are all important factors. Moreover, mostresearch in this area has focused on the applicationof “benign” social behavior. Thus, social robots areusually designed as assistants, companions, or pets, inaddition to the more traditional role of servants.

1.2. Social robots and social embeddedness:concepts and definitions

Robots in individualized societies exhibit a widerange of social behavior, regardless if the society con-tains other social robots, humans, or both. In [19],Breazeal defines four classes of social robots in termsof: (1) how well the robot can support the social modelthat is ascribed to it and (2) the complexity of the in-teraction scenario that can be supported as follows.Socially evocative. Robots that rely on the human

tendency to anthropomorphize and capitalize on feel-ings evoked when humans nurture, care, or involvedwith their “creation”.Social interface. Robots that provide a “natural”

interface by employing human-like social cues andcommunication modalities. Social behavior is onlymodeled at the interface, which usually results in shal-low models of social cognition.Socially receptive. Robots that are socially passive

but that can benefit from interaction (e.g. learningskills by imitation). Deeper models of human social

competencies are required than with social interfacerobots.Sociable. Robots that pro-actively engage with hu-

mans in order to satisfy internal social aims (drives,emotions, etc.). These robots require deep models ofsocial cognition.Complementary to this list we can add the following

three classes:Socially situated. Robots that are surrounded by a

social environment that they perceive and react to [48].Socially situated robots must be able to distinguishbetween other social agents and various objects in theenvironment.1Socially embedded. Robots that are: (a) situated in

a social environment and interact with other agentsand humans; (b) structurally coupled with their socialenvironment; and (c) at least partially aware of humaninteractional structures (e.g., turn-taking) [48].Socially intelligent. Robots that show aspects of hu-

man style social intelligence, based on deep modelsof human cognition and social competence [38,40].

1.3. Socially interactive robots

For the purposes of this paper, we use the term “so-cially interactive robots” to describe robots for whichsocial interaction plays a key role. We do this, not tointroduce another class of social robot, but rather todistinguish these robots from other robots that involve“conventional” human–robot interaction, such as thoseused in teleoperation scenarios.In this paper, we focus on peer-to-peer human–robot

interaction. Specifically, we describe robots that ex-hibit the following “human social” characteristics:

• express and/or perceive emotions;• communicate with high-level dialogue;• learn/recognize models of other agents;• establish/maintain social relationships;• use natural cues (gaze, gestures, etc.);• exhibit distinctive personality and character;• may learn/develop social competencies.

Socially interactive robots can be used for a vari-ety of purposes: as research platforms, as toys, as ed-ucational tools, or as therapeutic aids. The common,

1 Other researchers place different emphasis on what sociallysituated implies (e.g., [97]).

Quoting Fong, Nourbakhsh & Dautenhahn 2003

Uses  of  socially  interacBve  robots  

!  Socially  interacBve  robots  are  important  for  domains  in  which  robots  must  exhibit  peer-­‐to-­‐peer  interacBon  skills,  either  –  because  such  skills  are  required  for  solving  specific  tasks,  or  –  because  the  primary  funcBon  of  the  robot  is  to  interact  socially  with  people.  

!  Robot  as  persuasive  machine.  –  used  to  change  the  behavior,  feelings  or  adtudes  of  humans.  

–  e.g.  when  robots  mediate  human–human  interacBon,  as  in  auBsm  therapy  

!  Robot  as  avatar.  –  a  representaBon  of,  or  representaBve  for,  the  human.  

–  e.g.  a  remote  communicaBon  robot  may  need  to  act  socially  in  order  to  effecBvely  convey  informaBon.  

32 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

Page 9: cdiLect1 - The University of Edinburgh · 2015. 9. 21. · 9/21/15 4 Introduction to Social Robotics by Design 1. Bartnek and Forlizzi 2004 2. Fong, Nourbakhsh and Dautenhahn 2003

9/21/15  

9  

Design  methods:  Biologically  inspired  

!  Robots  that  internally  simulate  social  intelligence  –  To  be  understandable  (by  users),  must  have  naturalisBc  embodiment,  

interact  with  environment,  and  perceive  salience  as  humans  do.  

–  To  allow  tesBng  of  scienBfic  theories  •  e.g.  ethology,  dialogue,  joint  aAen#on,  developmental  psychology

33 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

Design  methods:  FuncBonally  designed  

!  Robots  that  merely  appear  socially  intelligent  –  Only  need  superficial  social  competence.  

•  e.g.  only  for  short-­‐term  interac#on    

–  Limited  embodiment,  or  capability  for  interacBon.  •  Or  may  be  constrained  by  the  environment.  

–  Even  limited  social  expression  improves  usability.  •  e.g.  Recorded  or  scripted  speech  sufficient.  

–  ArBficial  designs  can  provide  compelling  interacBon.  •  e.g.  Many  video  games  engage,  even  no  real-­‐world  counterparts.

34 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

FuncBonal  design  methods  

!  HCI  design.  –  e.g.  cogniBve  modelling,  heurisBc  evaluaBon  

!  Systems  engineering.  –  e.g.  criBcal  path  design  

!  IteraBve  design.  –  e.g.  sequenBal  improvement  via  formaBve  evaluaBon  

35 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

Design  issues  

!  All  robots  need  mulBple  design  problems  to  be  solved:  –  CogniBon,  percepBon,  acBon,  interacBon,  architecture  

!  Socially  interacBve  robots  also  need  to  address  social  interacBon:  –  Human-­‐oriented  percepBon  

•  Perceive,  interpret  human  ac#vity,  including  gestures,  and  other  social  cues  to  intent  and  human  state  

!  Natural  human-­‐robot  interacBon  –  For  peer  interacBon,  robot  must  express  believable  behaviour,  sedng  and  

meeBng  social  expectaBons,  regulaBng  interacBon  

!  Readable  social  cues  –  Express  signals  to  

•  Provide  feedback  on  internal  state  •  Allow  transparent  interac#on  

–  Channels  for  [emoBonal]  expression  include  face,  body,  gesture,  voice.  

!  RealBme  performance  –  Solve  all  of  these  problems  (and  task  behaviour)  at  human  interacBon  rates.

36 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

Page 10: cdiLect1 - The University of Edinburgh · 2015. 9. 21. · 9/21/15 4 Introduction to Social Robotics by Design 1. Bartnek and Forlizzi 2004 2. Fong, Nourbakhsh and Dautenhahn 2003

9/21/15  

10  

Embodiment  

!  The  more  a  robot  can  perturb  an  environment,  and  be  perturbed  by  it,  the  more  it  is  embodied.  

!  This  also  means  that  social  robots  do  not  necessarily  need  a  physical  body.  

!  For  example,  conversaBonal  agents  might  be  embodied  to  the  same  extent  as  robots  with  limited  actuaBon.  

!  e.g.  Aibo  is  more  embodied  than  Khepera:  –  more  actuators,  more  sensors  

–  so,  more  perturbatory  channels  and  bandwidth  

37 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

Embodiment:  morphology  

!  Form  and  structure  help  set  (iniBal)  social  expectaBons  –  e.g.  dog  versus  humanoid  

!  RelaBve  familiarity  -­‐>  accessibility,  apracBveness,  expressiveness  

!  Form  may  constrain  interacBon  opBons    –  e.g.  head  vs  torso  vs  mobile  plaqorm  

!  To  date,  liple  work  has  focussed  on  industrial  design.

38 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

Embodiment:  design

!  Morphology  must  match  funcBonal  category  –  Robot  as  Tool  -­‐>  productness  –  Robot  as  Partner  -­‐>  humanness  

!  Morphology  must  control  expectaBons  –  Both  -­‐>  robotness  

!  Morphology  must  maintain  Familiarity  via  Similarity  –  While  avoiding  the  “uncanny  valley”  (Mori)

39 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

Embodiment  design

!  Embodiment  design  1:  anthropomorphic  –  [Humans  establish  a  peer-­‐peer  or  carer-­‐charge  relaBonship]  

–  To  interact  as  humans  do,  need  structural  and  funcBonal  similarity.  

–  To  learn  (with  feedback),  must  behave  as  humans  do.  

–  Requires  balance  of  illusory  sophisBcaBon  and  real  funcBonality  

!  Embodiment  design  2:  zoomorphic  –  Animals  establish  an  owner-­‐pet  relaBonship  

•  e.g.  dogs,  cats,  companions  

–  Avoids  the  uncanny  valley  

!  Embodiment  design  3:  caricatured  –  Disney  showed  that  realism  not  needed  for  believability  

–  Caricature  biases  user  apenBon  towards  some  features  (and  away  from  others)  •  e.g.  cartoon  face  as  “focal  point”  for  apenBon  

!  Embodiment  design  4:  funcBonal  –  Alternately,  robot  form  follows  only  physical  funcBon  (task)  

•  e.g.  service  robots  in  health  care;  toy  robots  in  play

40 Quoting Fong, Nourbakhsh &

Dautenhahn 2003

Page 11: cdiLect1 - The University of Edinburgh · 2015. 9. 21. · 9/21/15 4 Introduction to Social Robotics by Design 1. Bartnek and Forlizzi 2004 2. Fong, Nourbakhsh and Dautenhahn 2003

9/21/15  

11  

Summary: definitions

!  Bartnek  and  Forlizzi  2004  –  social  –  A  social  robot  is  an  autonomous  or  semi-­‐autonomous  robot  that  interacts  

and  communicates  with  humans  by  following  the  behavioral  norms  expected  by  the  people  with  whom  the  robot  is  intended  to  interact.  

!  Breazeal  –  sociable  –  Robots  that  pro-­‐acBvely  engage  with  humans  in  order  to  saBsfy  internal  

social  aims  (drives,  emoBons,  etc.)  [and  require  deep  cogniBve  models]  

!  Fong  et  al.  2003  –  socially  intelligent  –  Robots  that  show  aspects  of  human  style  social  intelligence,  based  on  deep  

models  of  human  cogniBon  and  social  competence.  

!  Fong  et  al.  2003  –  socially  interacBve  –  Robots  for  which  social  interacBon  plays  a  key  role.    

41

Summary: guidelines

!  Bartnek  and  Forlizzi  2004  –  guidelines  1.   Form  should  match  ability  

2.   Use  human  dialogue  modaliBes  •  Do  not  fake  internal  states  

3.   Use  human  social  norms  •  Respect  humans  

•  Be  consistent  

!  Fong  et  al.  2003  -­‐  guidelines  1.   Morphology  must  match  funcBonal  category  

•  Robot  as  Tool  -­‐>  productness  

•  Robot  as  Partner  -­‐>  humanness  

2.   Morphology  must  control  expectaBons  •  Both  -­‐>  robotness  

3.   Morphology  must  maintain  Familiarity  via  Similarity  •  While  avoiding  the  “uncanny  valley”  (Mori)

42

43