cds 140b joris vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/jori… · hamiltonian...

35
Hamiltonian aspects of fluid dynamics CDS 140b Joris Vankerschaver [email protected] CDS 01/29/08, 01/31/08 Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 1 / 34

Upload: others

Post on 01-Jun-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Hamiltonian aspects of fluid dynamicsCDS 140b

Joris [email protected]

CDS

01/29/08, 01/31/08

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 1 / 34

Page 2: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Outline for this week

1. Dynamics of point vortices;

1.1 Vorticity;1.2 Fluid dynamics in 2D;1.3 Dynamics of N vortices;1.4 The Kirchhoff-Routh function;1.5 Dynamics of N = 1, 2, 3 vortices;

2. Chaotic advection;

2.1 Aref’s stirring mechanism;2.2 The ABC flow.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 2 / 34

Page 3: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Vortex dynamics

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 3 / 34

Page 4: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

References

1. P. Newton: The N-vortex problem. Analytical techniques. AppliedMathematical Sciences, vol. 145. Springer-Verlag, 2001.

2. H. Aref: Point vortex dynamics: A classical mathematics playground.J. Math. Phys. 48, 065401 (2007).

3. P. G. Saffmann: Vortex Dynamics. Cambridge Monographs onMechanics and Applied Mathematics. Cambridge University Press,1992.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 4 / 34

Page 5: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Dynamics of an inviscid flow

1. Euler equations:

du

dt:=

∂u

∂t+ u · ∇u = −∇p,

together with the incompressibility condition ∇ · u = 0. Pressure pacts as a Lagrange multiplier for this constraint, and satisfies∇2p = 0.

2. Take the curl of Euler, and put ω = ∇× u:

dt= ω · ∇u.

(vorticity form of Euler eqns).

Due to the presence of p, system (1) is much more complicated than (2).

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 5 / 34

Page 6: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

What is vorticity?

Intuitively: vorticity is a measure for the amount of rotation of the fluid.

I Suppose given a flow with velocity field u(x , y , z , t).

I Mathematically, vorticity is a vector field ω given by

ω = ∇× u.

Why study vorticity?

I Localised patches of vorticity appear quite often in nature;

I numerically, vortex methods are very attractive;

I vorticity equation contains just as much information as the Eulerequation;

I vortices are “a classical mathematics playground” (Aref).

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 6 / 34

Page 7: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Hurricane Rita

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 7 / 34

Page 8: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Example (point vortex)

u =1

2√

x2 + y 2(−y , x , 0) ⇒ ω = (0, 0, δ(x , y)).

This will be the building block of our subsequent treatment. Think of apoint vortex as being similar to a point mass.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 8 / 34

Page 9: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Fluid dynamics in 2D

We will only be concerned with 2D flows in these lectures!

I Consider a fluid with velocity u(x, t) = (ux(x, t), uy (x, t)) in 2D.

I Fluid is incompressible if

∇ · u =∂ux

∂x+∂uy

∂y= 0.

I Incompressibility: there exists a stream function ψ such that

ux =∂ψ

∂yand uy = −∂ψ

∂x.

I If u is independent of t: steady flow.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 9 / 34

Page 10: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Trajectories of fluid particles

I Motion of individual fluid particles:

x =∂ψ

∂yand y = −∂ψ

∂x.

Obvious Hamiltonian structure, with Hamiltonian ψ and conjugatevariables x and y .

I Poisson form: f = {f , ψ} for all functions f on R2, and where thePoisson bracket is given by

{f , g} =∂f

∂x

∂g

∂y− ∂f

∂y

∂g

∂x.

Result: use the heavy machinery from Hamiltonian dynamical systems toget results about fluid dynamics.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 10 / 34

Page 11: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Preservation of vorticity

I Recall the equation governing the dynamics of the vorticity field. Ingeneral:

dt= ω · ∇u.

I In 2D: u = (ux , uy , 0) and ω is proportional to ez . Therefore

ω · ∇u = 0.

Hencedω

dt= 0.

Result: vorticity is simply advected with the flow!

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 11 / 34

Page 12: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Getting u if ω is known

Note: in 2D, ω is a scalar.

I Fact: any vector field u on the whole of R2 can be written as

u = ∇φ+∇× (ψez),

(Helmholtz-Hodge decomposition).

I Take the curl: ∇2ψ = −ω.

I Solution of this Poisson equation gives you ψ:

ψ(x) = −∫

1

2πlog ‖x− y‖ω(y)dy.

(Similar formulas work in 3D).

I Finally, put u = ∇× (ψez). This determines u up to a gradient of ascalar function.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 12 / 34

Page 13: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Example: sum of point vortices

I Take a vorticity field of the following form:

ω(x) =N∑

i=1

Γiδ(x− xi ).

I Associated stream function:

ψ(x) = −∑

Γi

∫1

2πlog ‖x− y‖ δ(y − xi (t))dy

= −∑ Γi

2πlog ‖x− xi‖ .

I Velocity field:

u(x) = ∇× (ψez) = −∑ Γi

(−(y − yi ), x − xi )

‖x− xi‖2.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 13 / 34

Page 14: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Dynamics of N vortices: fluid dynamics

Take again N point vortices, located at xi (t), i = 1, . . . ,N.

I The velocity field of the fluid due these vortices is

x(t) =N∑

i=1

∇× (ψiez) where ψi = − Γi

2πlog ‖x− xi‖ .

I Since the vortices are advected, their velocity is simply the velocity ofthe surrounding flow:

xi (t) =∑i 6=j

∇× (ψjez).

Note: we removed singular terms.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 14 / 34

Page 15: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

The Kirchhoff-Routh function

I The stream function for the fluid due to N vortices is

ψ =N∑

i=1

ψi (x), where ψi = − Γi

2πlog ‖x− xi‖ .

I Define the Kirchhoff-Routh function H as the following function:

H = −∑i 6=j

ΓiΓj

4πlog ‖xi − xj‖ .

H is related to ψ, but without the singular contributions. Physically,H represents the kinetic energy of the N-vortex system.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 15 / 34

Page 16: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Dynamics of N vortices: Hamiltonian formMain idea: vortex motion = finite-dimensional Hamiltonian system.

1. Configuration space is R2N ;

2. Hamiltonian: Kirchhoff-Routh function H.{Γi xi (t) = ∂H

∂yi

Γi yi (t) = −∂H∂xi

Rescale variables to obtain “true” Hamiltonian system.Explicitly:

xi (t) = − 1

∑i 6=j

Γjyi − yj

‖xi − xj‖2and yi (t) =

1

∑i 6=j

Γjxi − xj

‖xi − xj‖2

Poisson bracket:

{f , g} =N∑

i=1

1

Γi

(∂f

∂xi

∂g

∂yi− ∂g

∂xi

∂f

∂yi

).

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 16 / 34

Page 17: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Dynamics of vortices for N = 1, 2N = 1: vortex just sits there.

N = 2 (see also example 1.8 in Newton)

Assume that Γ1 = Γ2 = Γ 6= 0.

I Two conserved quantities:

C =1

2(x1(t) + x2(t)) and D2 = ‖x1(t)− x2(t)‖2 .

(C : center of “mass”/barycenter/. . . )

I System decouples and can be rewritten in action-angle variables(Ri , θi ) by the following canonical trafo:

xi − C =√

2Ri (t) exp(iθi (t)),

giving Ri = 0 and θi = 0. Result: vortices rotate on a circle around C(integrability).

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 17 / 34

Page 18: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Dynamics of vortices for N = 3, 4, . . .

I N = 3: Still integrable. Four integrals of motion: H, linear impulse Iand angular impulse L, where

I =N∑

i=1

Γixi and L =N∑

i=1

Γi ‖xi‖2 .

(think Noether: invariance under time translation, spatial translation,and rotation). Three involutive quantities: H, L, and I2

x + I2y .

I N = 4: Arnold-Liouville integrable if∑4

i=1 Γi = 0. Nonintegrable ingeneral.

I N → +∞: Statistical mechanics. Euler equations? Chaos?

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 18 / 34

Page 19: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Hamiltonian reduction

Hamiltonian

I Kinetic energy of a fluid:

H =1

2

∫‖u‖2 dx =

1

2

∫ωψdx.

I Plug in ω =∑N

i=1 Γiδ(x− xi ), and remove singular terms:

H = − 1

∑i 6=j

ΓiΓj log ‖xi − xj‖ .

Marsden and Weinstein: the passage from Euler to vortex dynamics is aspecial case of symplectic reduction.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 19 / 34

Page 20: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Further outlook

I Generalisations and applications:

1. Consider vortices in the presence of solid bodies: Karman vortex street,stability, etc.

2. look at vorticity concentrated in patches, along lines, etc.3. quantum theory of vortices in superfluid helium.

I For (1), see Dr Kanso’s lectures next week.

I Crowds of exceedingly interesting cases present themselves. (Kelvin1880)

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 20 / 34

Page 21: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Chaotic advection

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 21 / 34

Page 22: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

References

I V. V. Meleshko, H. Aref: A blinking rotlet model for chaoticadvection. Phys. Fluids 8 (12), Dec. 1996, 3215-3217. Erratum:Phys. Fluids 10 (6), June 1998.

I V. I. Arnold, B. A. Khesin: Topological Methods in Hydrodynamics.Applied Mathematical Sciences 125. Springer (1998).

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 22 / 34

Page 23: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Topology of stream lines

I Let ψ(x , y) be an autonomous stream function in 2D.

I Particle trajectories are lines of constant ψ (streamlines): severelylimits possible regions for chaos, ergodicity, mixing, etc.

What happens if we allow for

1. non-autonomous stream functions?

2. higher-dimensional flows?

Chaotic advection (Lagrangian chaos)

I Fluid is quite simple, but particle trajectories show remarkablycomplicated behaviour.

I Note: don’t confuse with Eulerian chaos (turbulence, etc.)

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 23 / 34

Page 24: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Aref’s stirring mechanism

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 24 / 34

Page 25: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Background: Stokes flow

I Consider the non-dimensional Navier-Stokes equations:

∂u

∂t+ u · ∇u = −∇p + (Re)−1∇2u,

where the Reynolds number Re = ρULµ gives the ratio of inertial to

viscous forces.

I For very viscous flows or small length scales, inertial terms arenegligible.

I Stokes equation:∇p = (Re)−1∇2u,

No explicit time dependence, other than through the (possibly timedependent) boundaries.No-slip boundary condition: fluid sticks to boundaries.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 25 / 34

Page 26: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Non-autonomous stream functions

I Aref’s example: viscous fluid in a cylinder, with two rotating rods(parallel to the cylinder) in the container.

I Aim: stir fluid by alternating between rotating rod #1 and rod # 2.

Stream function for one rotating rod at location (r , theta) = (b, 0) (rotletflow):

ψ(r , θ) =σ

2

(ln

r 2 − 2br cos θ + b2

a2 − 2br cos θ + b2r 2/a2+

(1− r 2/a2)(a2 − b2r 2/a2)

a2 − 2br cos θ + b2r 2/a2

).

Not terribly complicated. . .

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 26 / 34

Page 27: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Rotlet stream lines

Each stirring rod is placed at a stagnation point in the flow of the othercylinder. Hence, they don’t exert a force on each other.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 27 / 34

Page 28: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Poincare section of Aref’s flow

Figures courtesy of H. Aref and V. V. Meleshko (Phys. Fluids 8).

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 28 / 34

Page 29: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Computation of LCS structures?

(See movies)

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 29 / 34

Page 30: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

The ABC flow

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 30 / 34

Page 31: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Euler equations in 3D

I Consider again the Euler equations for an inviscid, incompressibleflow, but now in three dimensions.

I Stationary flow: ∂u∂t = 0. So

u · ∇u +∇p = 0,

oru× (∇× u) = ∇α,

where α = p + u2/2, the Bernoulli function (first integral).

I α = 0: so-called force-free velocity fields.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 31 / 34

Page 32: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Regularity in fluid motion

I Force free velocity field: u× (∇× u) = 0. Assume that u vanishesnowhere.

I So, there exists a function f such that

∇× u = f u.

I v is tangent to the level sets of f ⇒ compact level surfaces of fare tori.

I The same goes for non-free force flows by looking at the level sets ofα.

All this hints, under well-defined assumptions, at remarkably regularbehaviour!

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 32 / 34

Page 33: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

The ABC flow

I To open the door for chaos, we should tinker with these assumptions.One way out: look for u such that

∇× u = λu,

with λ a constant (Beltrami fields).

I A famous example: ABC flows on the 3-torus {(x , y , z) mod 2π}(i.e. R3 with periodic boundary conditions).

vx = A sin z + C cos y ,vy = B sin x + A cos z ,vz = C sin y + B cos x .

Integrable when A, B, or C is zero, chaotic otherwise.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 33 / 34

Page 34: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Trajectories for regular motion

A = 0,B =√

2/3,C =√

1/3.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 34 / 34

Page 35: CDS 140b Joris Vankerschaver jv@caltechmarsden/wiki/uploads/cds140b-08/home/Jori… · Hamiltonian aspects of uid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08,

Poincare section for chaotic case

A = 1,B =√

2/3,C =√

1/3.

See also computation of LCS structures in Philip’s lectures.

Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 35 / 34