ce491c report

Upload: diogo-vinhas-godinho

Post on 03-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 CE491C Report

    1/35

    PEDESTRIAN CABLE-STAYED

    BRIDGE PROJECT

    CE 491C - SENIOR DESIGN

    SPRING 2000

  • 8/12/2019 CE491C Report

    2/35

    Table of Contents

    IntroductionA-1 to A-3

    Deck Analysis.B-1 to B-7

    Girder/oist Desi!n.C-1 to C-7

    Cable AnalysisD-1 to D-"

    Colu#n Analysis$-1 to $-%

    &oundation Desi!n..&-1 to &-%

    Cost $sti#ate..G-1 to G-'

    (u##ary.)-1

    A**endi+ A, oist/Girder &orce Dia!ra#s

    A**endi+ B, lan (et

  • 8/12/2019 CE491C Report

    3/35

    &i!ures

    &i!ure 1, aysille0 entucky Brid!e...A-1

    &i!ure ', (i#*le &orce (yste#..A-'

    &i!ure 3, reli#inary Conce*t Dra2in!A-3

    &i!ure 1-B, Deck Cross-(ectionB-1

    &i!ure '-B, (tress-(train Dia!ra#.B-'

    &i!ure 3-B, Transfor#ation of o#ent of Inertia.B-3

    &i!ure 1-$, Colu#n &orce Dia!ra#...$-1

    Tables

    Table 1-B, o#ent of Inertia of Bea#...B-"

    Table 1-D, Cable &orces on i!4t (ide...D-3

    Table '-D, Cable &orces on 5eft (ide.D-%

    Table 1-G, Bill of aterials.G-'

  • 8/12/2019 CE491C Report

    4/35

    Introduction

    T4is researc4 *ro6ect ealuates t4e feasibility of usin! a cable stay brid!e on as4ort s*an *edestrian structure. Cable-stayed brid!es 4ae beco#e an establis4ed solution

    for lon! s*an structures in t4e last % years but fe2 4ae been constructed for s4ort s*ans

    *ossibly due to t4e co#*licated analysis of t4eir structural be4aior. A cable-stayed

    brid!e consists of an ort4otro*ic deck and continuous !irders su**orted by stays0 i.e.

    inclined cables attac4ed to one or #ore su**ortin! to2ers as s4o2n in &i!ure 1. T4is

    desi!n effort is t4e cul#ination of C$ %81C0 a senior desi!n class e#*4asi9in! structures

    and foundations at :4io ;niersity.

    Figure 1.aysille0 entucky Brid!e

    T4e structural be4aior of t4e cable-stayed brid!e 2ill be ealuated usin! a

    si#*lified linear-elastic analysis. T4e results of t4e linear-elastic analysis 2ill be

    co#*ared to a finite ele#ent analysis. T4e structural *rinci*al be4ind a cable-stayed

  • 8/12/2019 CE491C Report

    5/35

    brid!e is si#*le. It is a trian!ulated force syste#. T4e #ulti*licity of trian!les *roides

    static indeter#inacy of t4is structural ty*e. T4e a**lied loads *roduce tension in t4e

    cables t4at are resisted by co#*ression in t4e deck and to2ers. T4ese forces are indicated

    in &i!ure '. In an actual brid!e0 nonlinear effects due to c4an!es in t4e *osition of t4e

    a**lied loads0 t4e distribution of t4e loads0 lateral loadin!0 and defor#ation of t4e

    structure #ay induce bendin! #o#ents and s4ear into t4e structure.

  • 8/12/2019 CE491C Report

    6/35

    #etal-deck su**orted concrete slab 2as selected for t4e surface of t4e brid!e. T4e brid!e

    is a conce*tual desi!n so t4e e+act !eo#etric *ara#eters 2ere assu#ed. T4e brid!e is '"

    #eters lon! and 3 #eters 2ide. T4e structure is a 1' #eter 4i!40 sin!le to2er desi!n 2it4

    t4e cable stays attac4ed near t4e to* of t4e to2er and s*readin! out to t4e deck in a ray

    fas4ion. T4e *reli#inary conce*t is s4o2n in &i!ure 3.

    Figure 3. reli#inary Conce*t Dra2in!

  • 8/12/2019 CE491C Report

    7/35

    Deck Analysis,

    T4is brid!e desi!n 2ill utili9e co#*osite deck construction0 consistin! of ' !a!e

    corru!ated #etal deck oriented laterally across t4e t2o #ain !irders. Concrete 2ill be

    *laced on t4e deckin! to a #a+i#u# t4ickness of %. inc4es in t4e corru!ation trou!4s

    and a #ini#u# t4ickness of '." inc4es at t4e corru!ation *eaks as s4o2n in &i!ure 1-B.

    (tand-off scre2s 2ill act as s4ear studs in t4e desi!n0 addin! stren!t4 and ri!idity. T4efollo2in! alues 2ere assu#ed as *ro*erties of t4e deck #aterials,

    nor#al 2ei!4t concrete, fc= > 3? *si $ > 3" ksi

    A3? steel, f c= > 3? ksi $ > '80 ksi

    Bending:

    T4e #etal deck *roides stiffness in only one direction@ t4erefore0 t4e *ri#ary

    consideration in t4e analysis is t4at of fle+ure. T4e deck 2as desi!ned as a one-2ay slab0

    &i'($e 1-B) De!* C$oss-

  • 8/12/2019 CE491C Report

    8/35

    24ere it is assu#ed to be a ty*ical bea# 2it4 a rectan!ular cross-section. T4e centroid

    of t4e #etal deck 2as deter#ined and used as t4e botto# of t4e rectan!ular concrete

    bea#. T4e #etal deck acts as reinforcin! steel located at t4e e+tre#e li#it of t4e tensile

    *ortion of t4e bea# i.e. t4e botto#. T4e area of #etal deck in a one foot 2idt4 2as

    deter#ined to be ."7 in.'/ft.. T4is alue 2as used as t4e area of reinforcin! steel in t4e

    ideali9ed bea# for t4e re#ainin! calculations. &i!ure '-B s4o2s t4e rectan!ular bea#=s

    strain and stress dia!ra#s0 as 2ell as t4e resultin! co#*ression and tension forces,

    &i!ure '-B, (tress-(train Dia!ra#

    T4e result 2as t4at t4e deckin! 2as analy9ed as a 1 foot 2ide reinforced concrete

    bea# 3.' inc4es dee* 2it4 reinforcin! steel at li#it of tensile 9one. T4e first ste* in t4e

    analytical *rocess 2as deter#inin! t4e de*t4 of t4e ideal rectan!ular stress block,

    As> ."7 in.'/ft. t4ickness of steel, .%7" in.

    in.""8.in.1'.ksi3.?".

    ksi3?in."7.

    ".

    '

    ===bf

    fAa

    c

    ys

    )ain! obtained t4e di#ensions of our stress block0 t4e total factored #o#ent ca*acity

    for t4e bea# can be calculated as,

    %%in.k3.83"'

    in..""8-in.ksi3.'3?in..8."7

    ' ' ====

    adfAM ysn

    3.' in.

    c

    cu> .3

    st

    a Cn

    Tn

  • 8/12/2019 CE491C Report

    9/35

  • 8/12/2019 CE491C Report

    10/35

    Figure 3-B: Transformation of Moment of Inertia

    T4e area of t4e cross-section of t4e bea# and its centroid 2ere deter#ined,

    ''

    c in.%."'

    in./1'in.."7-in.3.'in./ft.1'ft..1'A ==

    in.?%.1=cy

    ''st in.."7in./1'in.."7in./ft.1'ft.1.A ==

    in.7.7'3C=sty

    .in1.%?in.."7in.%."

    in.'3.in.."7in.?%.1in.%."

    ''

    ''

    =+

    +=

    =

    A

    yAy

    T4e ideal bea#=s #o#ent of inertia 2as t4en calculated,

    ''3' in..'3-in.1.%?in.."7in./1'in.."71'1'

    1 +=+= AdII

    '3 ".1in.1.%?-in.in.1.?%3.1in./ft.ft.1'.1'in.3.1in./ft.ft.1'1'.1'

    1 =++

    A su##ary of t4e calculations is s4o2n in Table 1-B,

    Table 1-B: Moment of Inertia of Beam

    Portion of Beam Area in2. !entroid about "-a#is in. I in.$

    Transfor#ed Concrete %." 1.?% 1.1(teel ."7 .'3 %.

    > ".1" Ay/A > 1.%? in. > ".1

  • 8/12/2019 CE491C Report

    11/35

    Fit4 t4e #o#ent of inertia successfully transfor#ed into t4at of one #aterial0

    analysis can be co#*leted by findin! t4e reactions of t4e bea# to t4e a**lied loadin!.

    Deflection of t4e bea# in res*onse to t4e loads is calculated belo20 usin! unfactored

    loads in t4e for#ulae,

    Dead load, in..7in.*si".11+3%'8

    in.1'/ft.in./1%%*sf""?.'

    3%

    "%?

    %''%

    #a+ ===EI

    wl

    5ie load, in..1'"in.*si".11+3%'8

    in.1'/ft.in.*sf/1%%"1

    3%

    "%?

    %''%

    #a+ ===EI

    wl

    in..18"in..1'"in..7dead =+=+= livetotal

    T4e total force in t4e co#*ression and tension 9ones of t4e bea# is,

    lb.'0"'?in.in.1'*si.""8."3?D". ==== abfTC cnn

    )ain! kno2n 1=0 and 4ain! found a=0 t4e location of t4e neutral a+is of t4e bea# canbe deter#ined usin! t4e follo2in! eEuation,

    in..?"C.C"

    in..""8

    1

    1 ====

    acca

    &inally0 usin! t4e neutral a+is0 t4e strain of t4e reinforcin! steel at t4e *oint of failure for

    t4e concrete can be calculated by t4e si#ilar trian!le #et4od. T4is yields t4e follo2in!

    ratio,

    .11?in..?"-in.3.'

    in.?".

    3.y

    y==

  • 8/12/2019 CE491C Report

    12/35

    By usin! t4e eEuation > $to relate stress and strain0 t4e follo2in! strain can be

    obtained for A3? steel,

    > /$ > 3?0 *si/'8 + 1?*si > .1' H y

    T4e strain at failure is si!nificantly less t4an t4e allo2able.

    %andrail:

    &or desi!n *ur*oses0 an a**lied lateral load of " *ounds *er foot at t4e to*#ost rail %

    ft. 2as assu#ed. To c4oose a**ro*riate bolts for t4e 4andrail base*lates0 t4e tensile

    force on t4e bolts 2as found. T4e bolts 2ere desi!ned to a distance of '.1 inc4es fro#

    t4e center of t4e sEuare 4andrail *ost,

    > > " lb./ft.% ft. - bolts'.1 in. bolts> 11%3 lb./ft. tensile force

    eac4 bolt, 11%3 lb./ft./' bolts *er side > "7' lb./ft.

    &or eac4 foot of rail0 a sin!le bolt 2ill be sub6ected to "7' lb. of tensile force. &tAbn

    Ab> .7"."7' ki*s/3? ksi > .1' in.

    '

    *er foot of rail

    (ince our desired s*an bet2een t4e ertical *osts is 13=%,

    13.33 ft..1' in.'/ ft. > .1? in.'needed for bolts

    .1? in.'> r' r > .''? in. d > .%"' in. use J bolts

  • 8/12/2019 CE491C Report

    13/35

    (ocket dia#eter for "/ bolts is 1 K. T4is reEuire#ent 2as used for desi!n of t4e

    base*late and a#*le clearance 2as *roided.

  • 8/12/2019 CE491C Report

    14/35

    Girder / oist Desi!n

    In t4e desi!n of t4e cable-stayed brid!e four !irders F1'L'' 2ere utili9ed.

    Girders MA and MC 2ill bot4 be 3ft. in len!t40 !irders MB and D %'ft. in len!t4.

    T4e !irders 2ill be asse#bled on site and a full *enetration 2eld 2ill connect !irder MA

    to MB dra2in! 3 N Bea# &abrication Details. T2o ?in's*lice *lates 2it4 Oin.

    t4ickness 2ill t4en be attac4ed on bot4 sides of t4e 2eb to connect t4e t2o !irders. T4e

    *lates 4ae four 13/1?in. dia#eter 4oles and Kin. dia#eter bolts 2ill be used to attac4 t4e

    s*lice *late and !irders to!et4er. Girders MC and MD 2ill be asse#bled in t4e sa#e

    #anner@ 4o2eer0 t4ey 2ill be orientated in reerse of !irder MA and MB. Fit4 t4e

    !irders sta!!ered0 additional safety is added to t4e brid!e. Also0 t4e !irders and 6oists

    2ere bot4 oer desi!ned *ri#arily for safety reasons. (een 6oists F1L'' at 13.33ft.

    interals 2ill run *er*endicular to t4e deck. T4ese 6oists 2ere co*ed to t4e !irders so t4at

    t4ey 2ould be flus4ed for t4e deckin!.

    :nce t4e total load of t4e deck 2as calculated0 t4e s4ear and bendin! #o#ents for

    t4e !irders and 6oists 2ere deter#ined A**endi+ A. T4e s4ear force and bendin!

    #o#ent for t4e !irders of eEual s*ans and loads 2ere deter#ined by 5&D %-'?. T4e

    factored unifor#ly distributed load 2as calculated earlier to be 1.1"ki*s/ft and t4e entire

    s*an len!t4 2as ft.

    a+i#u# (4ear0 P > 2l ?3/1% > 1.1"k/ft ft ?3/1% > "".7ki*s

    a+i#u# o#ent0 > 2l'.1? > 1.1"k/ft ft' .1? > 7k-ft.

    T4e F1'L'' !irder is su**orted by t4e cables eery 13.33ft. ;sin! 5&D %-8'

    t4e #a+i#u# factored unifor# load 2as deter#ined to be ?3ki*s. &or a distance of

    13.33ft bet2een eac4 su**ort0 t4e factored load of t4e bea# 2as calculated to be

    1".3ki*s. T4erefore0 t4e !irder can safely acco##odate t4e factored load.

  • 8/12/2019 CE491C Report

    15/35

    5ike2ise0 T4e s4ear force and bendin! #o#ent for t4e 6oists 2ere deter#ined by

    5&D %-18" consistin! of a bea# fi+ed at bot4 ends 2it4 a unifor#ly distributed load.

    a+i#u# (4ear0 P > 2l / ' > 3.1k/ft L 1ft / ' > 1"."ki*s

    a+i#u# o#ent 0 > 2l'/ 1' > 3.1k/ft L 1ft'/ 1' > 1'.8'k-ft.

    &or a F1L'' t4e #a+i#u# factored unifor#ed load0 usin! 5&D %-8%0 2as

    deter#ined to be 7ki*s for a s*an of 1ft. T4e load for t4e bea# 2as calculated to be

    31ki*s0 24ic4 2as #ore t4an adeEuate.

    GID$-GID$ C: KQ 1/ > 7/Ty*e connection A3'"late A"7' Gr" &u> ?"ksilate Di#ensions ?+ ?+ O

    A > r'> '

    %/3 in'> .%%' in'

    (4ear on Girder Pn > "".7 ki*s

    Pn > &Pn A "".7 ki*s > .?" &Pn'.%%'in'

    8?.8 ki*s

    (o0 need yield stren!t4 &y to be !reater t4an 8?.8 ki*s.

    ;se A-%8-+ &y> 1" ki*s

    Gross Area > A!> ".1?%

    1 =inin in'

  • 8/12/2019 CE491C Report

    16/35

    An > R?-'1S.'" > 1.1?in'

    a+ a+ An > ."A! > '.""in'

    $ffectie Area > Ae> An > 1.?in'

    Area of Bolt > Ab> '

    %/3

    in'

    > 1.17 in'

    ield in Gross

    Tn> &yA!> .8" ksi1."in' > ?7." ki*s

    ield in &uAe> .7"?" ksi1.?in' > "1.?7" ki*s

    Desi!n (tren!t4 in (4ear since t2o *lates0 # > ' due to double s4ear

    n> .%&ub#Ab> .7".%1"ksi'1.17in

    ' > 1?.' ki*s/bolt

    Desi!n (tren!t4 in Bearin! on O late

    n> '.%&udt > .7"'.%?"ksiKin Oin > '1.8% ki*s/bolt

    GID$-GID$ C:

  • 8/12/2019 CE491C Report

    17/35

    n2> .7"te.?&$LL 7?.7".'

    7.""Aksi

    kips= A >

    .% in'

    5en!t4 of 2eld needed > inin

    in

    ThicknessThroat

    A1

    %.

    %.'

    '

    == eac4 side of

    !irder

    (ince t4e connection 2ill be 2elded all t4e 2ay around0 t4ere 2ill be a 1'in 2eld on eac4

    side of t4e !irder0 24ic4 satisfies t4e 1in len!t4 of 2eld needed.

    ini#u# and a+i#u# Felds

    in Feld (i9e > 1/

    a+ Feld (i9e > 3/1?

    T4e 2eld si9e 2ill be a 1/ 2eld0 24ic4 satisfies t4e criteria.

    late ieldin!

    Tn> &yA! > .8"ksi1/%in?in > ?7." ki*s

    Tn> &yAe > .8"ksi1.1'"in1/%in > 113.8? ki*s

    late u*ture

    2 > ?in 5 > ?in 1."2 > 1."in?in > 8in

    so0 u > .7"

    Tn> &uuAn > .7"?"ksi.7"1/%in?in > "%.% ki*s

    Tn> &uuAe > .7"?"ksi.7"1.1'"in1/%in > 8'."" ki*s

  • 8/12/2019 CE491C Report

    18/35

  • 8/12/2019 CE491C Report

    19/35

    ACC.%3U'AUU?"U%.'U7".UUU%.'U%1

    %3

    boltk

    nbun !tdF! ===

    T4e !ross area of t4e an!le0 24ic4 is sub6ect to s4ear0 is A ! 1."in

    '

    . T4e no#inal areaof t4e an!le0 24ic4 is sub6ect to s4ear0 is Ans 1.?'"in

    '. &or t4e tension force t4e !ross

    area is A! .37"in'0 and t4e no#inal area is An .1"?'"in

    '. T4e forces t4at t4e

    an!les can encounter are as follo2s.

    okaretheysoan#leone$ustforisthatkipskips!

    kips!FAFA!

    kips!FAFA!

    n

    ny#unsn

    nunyv#n

    A%.%1A'.""U7".

    A'.?"U37".?"U?'".1U?.AUAUU?.A

    A'.""?"U1"?'".A"U".1U?.AUAUU?.A

    ==

    =+=+=

    =+=+=

    T4e 2eld stren!t4 is calculated by t4e follo2in! eEuations. T4e #ini#u# t4roat

    t4ickness of t4e 2eld t4at a Euarter in t4ick *iece of steel can 4ae is 1/in.

    A'

    A77.1U7U?.U7".A7.""

    ACC%.U77.

    ACC%.

    A77.1

    '

    C1

    '

    inneededweldofLen#th

    inAAkips

    inthroat

    in

    in

    thicknessthroatA ===

    ==

    ==

    $ac4 an!le 2ill only need 1in of 2eld0 because t4e 'in is for bot4 an!les at t4e

    #ini#u# t4roat t4ickness. T4e 2elds 2ill be sufficient because t4e an!le 2ill be fillet

    2elded all t4e 2ay around 24ic4 4as a len!t4 of 1in.

  • 8/12/2019 CE491C Report

    20/35

    Cable Analysis

    T4e cables 2e are usin! are K in. dia#eter cables0 IFC inner 2ire core class

    ?.180 t4at can sufficiently su**ort t4e deck. Fe 2anted to find t4e tension in t4e cables

    in order to deter#ine t4e a#ount of a+ial force our to2er 2ould be e+*eriencin!. &irst0

    t4e a#ount of ertical force for eac4 cable needed to be co#*uted. T4e load of t4e entire

    deck 2as calculated,

    ft3

    113eeryload*ointlb11ft"

    ft

    lb''

    ''F1

    ,Bea#s

    ft

    lb''''0F1'

    ,Girders

    ft

    lb?3.%

    ft

    lb1"ft1

    in1'

    ft1in'".3A

    ,Concrete

    ft

    lb".1

    ft

    lb%.38?ftload

    sectionfoot1*erft.38?

    sectionft'.3

    #1

    ft'.3

    ##1

    #1##1'7

    section#1

    ##1'7

    A

    ,sConersion

    ,Deckin!etal

    3c

    3

    '

    '

    '''

    '

    s

    =

    ==

    ==

    =

    =

    =

  • 8/12/2019 CE491C Report

    21/35

  • 8/12/2019 CE491C Report

    22/35

    3 38.00 40.00 43.53 14.11 13.4 19.46

    4 37.33 26.67 54.46 9.57 13.4 16.47

    5 36.67 13.33 70.02 4.87 13.4 14.26

    S! 69.74 67.00

    T4e 4ori9ontal tension co#*onents in t4e cables #ust be eEuialent on bot4 sides of t4eto2er0 so t4e to2er doesn=t e+*erience any #o#ent.

    T1+>T1+0 T'+> T8+0 T3+> T+0 etc.

    ;sin! t4e eEuations aboe0 t4e ertical co#*onent of t4e tension can be found0

    ki*s13.%7tanki*s%.7T ?y ==

    T4e eEuations can be used to find t4e total tension force in eac4 cable0

    ki*s1%.?7cos

    ki*s%.7T

    ? ==

    resented belo2 are t4e results of t4e left side of t4e brid!e,Table '-D

    cable # h (ft) l (ft) () Tx(kips) Ty(kips) T (kips)

    6 36.67 13.33 70.02 4.87 13.400 14.26

    7 37.33 16.33 66.37 9.57 21.878 23.88

    8 38.00 19.33 63.03 14.11 27.725 31.11

    9 38.67 22.33 59.99 18.48 32.000 36.95

    10 39.33 25.33 57.22 22.71 35.264 41.94

    S! 69.74 130.27

    (u##in! u* t4e ertical forces results in a ertical force0 u > 187 ki*s.

    efer to fi!ure % for a isual su##ary.

    !able &late connections

  • 8/12/2019 CE491C Report

    23/35

    After t4e cable forces are calculated and an adeEuate cable ty*e is found0 t4e connection

    of t4e cable to t4e to2er needs to be detailed. T4e connection on t4e deck side of t4e

    to2er 2ill consist of fie ?L?L10 1 filleted *lates 2elded to eac4 to2er. T4e

    *lates 2ill be 2elded at interals fro# t4e to* of t4e to2er. (ince t4e an!les of t4e

    cables is !reatly increased on t4e dead #an side of t4e to2er t4e connection *lates

    #ust decrease in area fro# ?L?L1to %-1/'L?L1to aoid any interference.

    &ie ?L?L10 1 filletted *late 2ill also be used to connect t4e cables to eac4 side

    of t4e deck. $ac4 *late 2ill be 2elded to t4e !irder. In order to #ake sure t4at

    t4ese *lates are adeEuate in si9e and 2ill not fail0 tension yieldin! and tension

    ru*ture 2ere calculated.

    Total Area: 'ffecti(e area:

    )ltimate *oad:

    Tu> %1.8% ki*s

    Tension +ielding:

    Tension ,u&ture:

    $1.$ i&s / 10$. i&s a" Design

    T4e *ins and fasteners used in t4e connection are su**lied by t4e #anufacturer of t4ecables and *roide adeEuate stren!t4.

    2in%.'"in11'".?'".1in?A-A!

    in1."?in."A!."in?in.?in.1A!

    ''

    4ole

    '''

    =+==

    =====

    ki*s%.18%?inksi3?.8A!&yTn ' ===

    1%.8ki*sin%.'"ksi"7".Ae&uTn ' ===

  • 8/12/2019 CE491C Report

    24/35

    !olumn Anal"sis:

    nce te resultant force of te cables is found te column as designed to

    carr" te resultant com&ressi(e force. 4ince te safet" factors ere used in te dec

    design te resultant force is te factored load 5Pu6 on te column. Te total

    factored load 5Pu6 on te column is 17i&s. Te lengt of te column is $8ft. Te

    steel used is 9r8. Te folloing are te calculations for te si;ing of te steel

    column.

    '333%"8

    40+t

    P( , 19-*i#s

    P( , 19-*i#s

    &i!ure 1-$, Colu#n &orce Dia!ra#

    Factored !om&ressi(e *oad: Pu < 17i&s

    !olumn *engt: l < $8ft

    4lenderness ,atio Assumed: =yr

    kl

    Design 4trengt: Fcr< 21.0 si < 18.= MPa 5)sing AI4! =-1$76

  • 8/12/2019 CE491C Report

    25/35

    ,adius f 9"ration: r"< in

    ftft

    in

    kl.?

    %1'.1

    == 5uired Area f !olumn: A,'?) ' ft.

  • 8/12/2019 CE491C Report

    29/35

    '7.7 Ty0left> 13.3 ki*s

    8 3'.

    1 3".3

    T4e follo2in! #o#ent ar# calculation !ies t4e len!t4,

    > 7. ft

    T4e follo2in! *ro*erties 2ere obtained for a ty*ical saturated soil in t4e area,

    ;sin! t4e Teri9a!4i eEuation0 t4ese alues can be substituted into t4e eEuation to obtain

    t4e bearin! ca*acity0 t4en t4e safety factor can be co#*uted.

  • 8/12/2019 CE491C Report

    30/35

    3." in of coer 2ill be *roided

    T4e deelo*#ent len!t4s of t4e -bolts for t4e anc4ors need to be calculated also.

    4 for Mdead #an > '." ft > 3 in

    d for Mdead #an > 3 in N 3." in > '?." in

    tail for deelo*#ent len!t4 2it4 8bend > '." in N '?." in > ' in

    lead-in-len!t4 > '?." in

    a*artin1Wbars1use07.1in1

    in33?

    in033?ft'5

    a*artin1Wbars8use01in1

    in1in01ft1"B

    in1s*acin!

    ===

    ===

    =

    in".'%0'"

    1.1.1.ksi?0in7".l

    in.7"d

    ksi%.Df

    1.

    1.

    1.

    ksi?f

    codeACIby*roidedDf'"

    f

    d

    l

    d

    b

    c

    y

    c

    y

    b

    d

    =

    =

    =

    =

    =

    =

    =

    =

    =

  • 8/12/2019 CE491C Report

    31/35

    Cost $sti#ateT4e cost esti#ation of t4is cable-stayed brid!e is based on ra2 #aterials only.

    T4e total cost of ra2 #aterials is a**ro+i#ately X'0. T4is is a reasonable *rice for a

    s4ort s*anned cable-stayed brid!e. T4ese *rices 2ere found by callin! arious su**ly

    co#*anies and usin! ot4er resources suc4 as t4e Internet. T4e *rice of constructin! t4is

    brid!e 2ill increase 2it4 t4e labor and eEui*#ent fees. )o2eer0 t4is cable-stayed

    *edestrian brid!e 2ould still be econo#ical to construct. T4e breakdo2n of t4e a#ount

    of #aterials and unit *rices are s4o2n on t4e follo2in! *a!e in Table 1-G.

  • 8/12/2019 CE491C Report

    32/35

    (u##ary

    ost cable-stayed brid!es t4at are built are used for e4icular traffic and 4aelon! s*ans. T4e #ain ob6ectie of t4e senior desi!n researc4 *ro6ect 2as to ealuate t4e

    feasibility of usin! a cable-stayed brid!e for a s4ort s*an. After careful ealuation of t4e

    *edestrian cable-stayed brid!e0 t4e desi!n 4as *roen to be bot4 econo#ically feasible

    and aest4etically *leasin!. T4e cost of t4e #aterials 2as deter#ined to be a**ro+i#ately

    t4irty t4ousand dollars. T4ese esti#ates 2ere based on t4e aera!e *rices fro# a ariety

    of #anufacturers. (ince a *ri#ary concern 2as ease of construction for #unici*al or

    county 2ork cre2s0 t4e construction costs s4ould be reduced. T4e structural be4aior of

    t4e brid!e 2as ealuated usin! linear-elastic analysis. T4e Load and !esistance Factor

    Desi#n Manual5&D *ublis4ed by t4e A#erican Institute of (teel Construction 2as

    used to deter#ine t4e di#ensions and *ro*erties of t4e structural s4a*es and ot4er

    releant infor#ation. T4e brid!e 2as ealuated and deter#ined to be in co#*liance 2it4

    s*ecifications and codes set fort4 by AI(C.

  • 8/12/2019 CE491C Report

    33/35

  • 8/12/2019 CE491C Report

    34/35

    APP'DI A

    FI9. A-1 9I,D', F,!' DIA9,AM4

    FI9. A-2 GI4T F,!' DIA9,AM4

  • 8/12/2019 CE491C Report

    35/35

    APP'DI B

    lan (et

    (4eet Descri*tion1 (ide and &ront $leations

    ' lan Pie23 Bea# &abrication Details% Deck Details" Colu#ns and Base*lates? &oundation Details7 Cables and Connections Details )andrail Details8 3D 2it4 Deck 1 3D 2it4out Deck