cee 312(4)(structural analysis)

19
CEE-312 Structural Analysis and Design Sessional-I (1.0 credit) Lecture: 4 Bijit Kumar Banik Assistant Professor, CEE, SUST Room No.: 115 (“C”building) [email protected] Department of Civil and Environmental Engineering

Upload: apudgr8

Post on 11-Aug-2015

51 views

Category:

Engineering


1 download

TRANSCRIPT

Page 1: Cee 312(4)(structural analysis)

CEE-312

Structural Analysis and Design Sessional-I

(1.0 credit)Lecture: 4

Bijit Kumar Banik

Assistant Professor, CEE, SUSTRoom No.: 115 (“C” building)

[email protected]

Department of Civil and Environmental Engineering

Page 2: Cee 312(4)(structural analysis)

Analysis and design of an Industrial roof truss sys tem

(4.41) (4.41) (3.53) (3.53) (4.41) (4.41)

(- 5.05)

(- 4.04)(- 3.03) (- 3.03)

(- 4.04)

(- 5.05)

6@6 ft = 36 ft

L0L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

2.94 k2.94 k

(.18

)

(0.6

7) (0.6

7)

(.18

)

(2.1

4)(- 1.32)(- 1.01) (-1.

32)

(- 1.01)

Page 3: Cee 312(4)(structural analysis)

Analysis and design of an Industrial roof truss sys tem

P = (0.07*29.05-2.1)*25.6 = -1.7 psf

For windward surface

For leeward surface

P = -0.7*25.6 = -17.92 psf

We already calculated in lecture-2

Once again what –ve sign means? Suction/Uplift

Wind load calculations

Page 4: Cee 312(4)(structural analysis)

Wind Load Analysis

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1R2

H

[email protected] ft

Wind blows from left to right

Windward side joint loads (U 1 & U2)= 1.7*20*6.86 = 0.23kEnd joint loads [ L 0 & (U3)left ] = 0.23/2 = 0.12kLeeward side joint loads (U 4 & U5)= 17.92*20*6.86 = 2.46kEnd joint loads [ L 6 & (U3)right ] = 2.46/2 = 1.23k

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k

1.23k

1.23k

Page 5: Cee 312(4)(structural analysis)

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1R2

H

[email protected] ft

–0.23*6.86 –0.23*2*6.86 –0.12*3*6.86 –1.23*(9/10.3)*18 +1.23*(5/10.3)*10–2.46*(9/10.3)*24 +2.46*(5/10.3)*2*(10/3) – 2.46*(9/10.3)*30 +2.46*(5/10.3)*(10/3) – 1.23*(9/10.3)*36 + R1*36 = 0

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k

1.23k

1.23k

∑ML0= 0 +ve

5

9

10.3

95

10.3

R1 = 4.54k

= 4.54k

Wind Load Analysis

Page 6: Cee 312(4)(structural analysis)

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1

R2

H

[email protected] ft

R2 = (9/10.3)*(2*0.12+2*0.23+2*1.23+2*2.46) – 4.54

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k

1.23k

1.23k

∑V= 0

5

9

10.3

95

10.3

R2 = 2.60k

H = (5/10.3)*(2*1.23+2*2.46) – (5/10.3)*(2*0.12+2*0.23)∑H= 0

H = 3.24k

= 3.24k= 2.60k

= 4.54k

Wind Load Analysis

Page 7: Cee 312(4)(structural analysis)

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1

R2

H

[email protected] ft

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k1.23k

1.23k

59

10.3

95

10.3

= 3.24k

= 4.54k= 2.60k

1

1

∑V = 0(5/10.3)*L0U1+(9/10.3)*0.12 – 2.6 = 0L0U1= 5.14 k (T) 5

9

10.3

∑H = 0

L0L1 +(9/10.3)*5.14 – (5/10.3)*0.12 – 3.24 =0L0L1= 1.19 k (C)

2.60 k

0.12k

L0L1

L0U1

1-1

3.24 k

95

10.3

Wind Load Analysis

Page 8: Cee 312(4)(structural analysis)

∑V= 0

L1U1 = 0

L1L2 = L0L1 = 1.19k (C)

∑H= 0

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1

R2

H

[email protected] ft

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k1.23k

1.23k

59

10.3

95

10.3

= 3.24k

= 4.54k= 2.60k

2 2

L1L2

2-2

L0L1=1.19k

L1U1

Wind Load Analysis

Page 9: Cee 312(4)(structural analysis)

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1

R2

H

[email protected] ft

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k1.23k

1.23k

59

10.3

95

10.3

= 3.24k

= 4.54k= 2.60k

3

3

9

510.3

95

10.3

95

10.3

∑ML0 = 0– 0.23*6.86 + (5/10.3)*U1L2*6 + (9/10.3)*U1L2*(10/3)= 0

U1L2= 0.27 k (T)∑V = 0

(9/10.3)*0.12+(9/10.3)*0.23 + (5/10.3)*U1U2– (5/10.3)*0.27 – 2.60= 0

U1U2= 5.0 k (T)

+ve 3-3

U1

L0 L1 L2

U20.23 k

0.12 k

2.60 k

(10/3)’

1.19k3.24k

Wind Load Analysis

Page 10: Cee 312(4)(structural analysis)

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1

R2

H

[email protected] ft

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k1.23k

1.23k

59

10.3

95

10.3

= 3.24k

= 4.54k= 2.60k

4 4

∑H = 0

L2L3= 0.95 k (C)

59

10.3

L2L3

4-4

1.19k

L2U20.27k

∑V = 0L2U2 = (5/10.3)*0.27

L2U2= 0.13 k (C)

L2L3 +1.19 – (9/10.3)*0.27 = 0

Wind Load Analysis

Page 11: Cee 312(4)(structural analysis)

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1

R2

H

[email protected] ft

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k1.23k

1.23k

59

10.3

95

10.3

= 3.24k

= 4.54k= 2.60k

5

5

109

13.45

59

10.3

∑ML0 = 0

(9/13.45)*U2L3*(20/3)+ (10/13.45)*U2L3*12 – 0.23*6.86 – 0.23*2*6.86 = 0

U2L3= 0.35 k (T)∑V = 0(5/10.3)*U2U3+ (9/10.3)*(0.12+0.23+0.23)– (10/13.45)*0.35 – 2.60 = 0

U2U3= 4.85 k (T)

+ve

95

10.3

5-5

L0 L1 L2 L3

U1

U2

U3

0.12 k

2.60 k

0.23 k

0.95 k

2*(10/3)

0.23 k

3.24 k

Wind Load Analysis

Page 12: Cee 312(4)(structural analysis)

(5/10.3)*U5L6+(9/10.3)*1.23 – 4.54 = 0∑V= 0

U5L6 = 7.14k (T)

∑H= 0

L5L6 = 5.64k (C)

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1

R2

H

[email protected] ft

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k1.23k

1.23k

59

10.3

95

10.3

= 3.24k

= 4.54k= 2.60k

6

6

59

10.35

910.3

4.54 k

U5L6 1.23k6-6

L5L6(5/10.3)*1.23 – (9/10.3)*7.14 – L5L6= 0

Wind Load Analysis

Page 13: Cee 312(4)(structural analysis)

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1

R2

H

[email protected] ft

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k1.23k

1.23k

59

10.3

95

10.3

= 3.24k

= 4.54k= 2.60k

7 7

∑H = 05.64k

7 – 7

L4L5

L5U5

∑V = 0

L5U5= 0

L4L5 = 1.19k (C)

Wind Load Analysis

Page 14: Cee 312(4)(structural analysis)

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1

R2

H

[email protected] ft

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k1.23k

1.23k

59

10.3

95

10.3

= 3.24k

= 4.54k= 2.60k

8

8

59

10.3

9510.3

95

10.3

L6

U5

L5L4

U4

2.46k

1.23k

4.54k

8-8∑ML6 = 02.46*6.86 – (5/10.3)*U5L4*6 – (9/10.3)*U5L4*(10/3)= 0

U5L4= 2.90 k (T)∑V = 0

(9/10.3)*2.46+(9/10.3)*1.23 + (5/10.3)*U4U5– (5/10.3)*2.90 – 4.54= 0

U4U5= 5.61 k (T)

+ve

Wind Load Analysis

Page 15: Cee 312(4)(structural analysis)

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1

R2

H

[email protected] ft

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k1.23k

1.23k

59

10.3

95

10.3

= 3.24k

= 4.54k= 2.60k

9 9

∑H = 0

L3L4= 3.11 k (C)

∑V = 0L4U4 = (5/10.3)*2.90

L4U4= 1.41 k (C)

L3L4+ (9/10.3)*2.90 – 5.64 = 0

9510.3

5.64k

9-9L4U4

2.90k

L3U4

Wind Load Analysis

Page 16: Cee 312(4)(structural analysis)

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1

R2

H

[email protected] ft

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k1.23k

1.23k

59

10.3

95

10.3

= 3.24k

= 4.54k= 2.60k

10

10

95

10.3

910

13.459

5

10.3

2.46k

2.46k

1.23k

4.54k

L6L5L4L3

U3

U5

U4

3.11k

10 -10 ∑ML6 = 0

–(9/13.45)*U4L3*(20/3) – (10/13.45)*U4L3*12 + 2.46*6.86 +2.46*2*6.86 = 0

U4L3= 3.78 k (T)∑V = 0(5/10.3)*U3U4 + (9/10.3)*(1.23+2*2.46)– (10/13.45)*3.78 – 4.54 = 0

U3U4= 4.07 k (T)

+ve

Wind Load Analysis

Page 17: Cee 312(4)(structural analysis)

6@6 ft = 36 ft

10 ft

L0 L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

R1

R2

H

[email protected] ft

0.23k

0.23k

0.12k

0.12k

2.46k

2.46k1.23k

1.23k

59

10.3

95

10.3

= 3.24k

= 4.54k= 2.60k

11 11

∑V = 0

91013

.45

910

13.45

3.11k

11 – 11

0.95k

L3U3

L3

0.35k 3.78k(10/13.45)*3.78 + (10/13.45)*0.35 – L3U3= 0

L3U3= 3.07 k (C)

Wind Load Analysis

Page 18: Cee 312(4)(structural analysis)

(- 1.19) (-1.19) (-0.95) (-3.11) (-5.64) (-5.64)

(5.14)

(5.00)

(4.85) (4.07)

(5.61)

(7.14)

6@6 ft = 36 ft

L0L1 L2 L3 L4 L5

L6

U1

U2

U3

U4

U5

4.54 k2.60 k

(0)

(-0.

13)

(-1.

41)

(0)

(-3.

07)

(0.35)(0.27) (3.7

8)

(2.90)

3.24k

L R

Wind Load Analysis

Page 19: Cee 312(4)(structural analysis)