cell specialization in multicellular organisms results ... · d. cell specialization: regulation of...

16
D. Cell Specialization: Regulation of Transcription Cell specialization in multicellular organisms results from differential gene expression ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ D. CELL SPECIALIZATION: Regulation of Transcription 1. Chromosome, Gene and RNA Architecture 2. Cell-Specific Regulation of Chromosome Structure 3. Cell-Specific Regulation of Transcription Activation ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ 1. Review of Chromosome, Gene and RNA Architecture a. Review of Chromatin Structure b. Chromosomal Gene Arrangement c. Single Gene Components d. Nuclear RNA, mRNA and Protein e. Other RNA Molecules f. Fast review of Transcription ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________ ___________________________________

Upload: dinhnhi

Post on 16-Aug-2018

229 views

Category:

Documents


0 download

TRANSCRIPT

D. Cell Specialization: Regulation of Transcription

Cell specialization in multicellular organisms results from differential gene expression

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

D. CELL SPECIALIZATION: Regulation of Transcription

1. Chromosome, Gene and RNA Architecture

2. Cell-Specific Regulation of Chromosome Structure

3. Cell-Specific Regulation of Transcription Activation

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

1. Review of Chromosome, Gene and RNA Architecture

a. Review of Chromatin Structure

b. Chromosomal Gene Arrangement

c. Single Gene Components

d. Nuclear RNA, mRNA and Protein

e. Other RNA Molecules

f. Fast review of Transcription

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

a. Review of Chromatin Structure

• Chromatin is a complex of DNA and protein in the eukaryotic nucleus

• Loosely packed chromatin is called euchromatin

• Dense packing of the heterochromatin makes it difficult for the cell to express genetic information coded in these regions

• Histones are proteins that are responsible for the first level of DNA packing in chromatin

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

DNA double helix (2 nm in diameter)

Nucleosome(10 nm in diameter)

Histones Histone tailH1

DNA, the double helix Histones Nucleosomes, or “beads on a string” (10-nm fiber)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 4-65 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 4-11 Molecular Biology of the Cell (© Garland Science 2008)

b. Chromosomal Gene Arrangement

Humans:23 chromosome pairs3 billion bases~24,000 genes

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 4-15 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 6-14 Molecular Biology of the Cell (© Garland Science 2008)

Genes can reside on either strand

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

c. Single Gene Components

Anatomy of a gene

Exon means sequence that exits the nucleusIntron means sequence that stays inside the nucleus

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

d. Nuclear RNA, mRNA and Protein

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 6-21 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

e. Other RNA Molecules

1. The Translational Apparatus

2. Nuclear Effectors

3. Cytosolic Effectors

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Table 6-1 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

DNAmolecule Gene 1

Gene 2

Gene 3

DNAtemplatestrand

TRANSCRIPTION

TRANSLATION

mRNA

Protein

Codon

Amino acid

Transcription:“To transcribe”to copy in the same language

Translation:“To translate”to copy into a new language

Templated Polymerization

f. Fast review of transcription

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 6-8a Molecular Biology of the Cell (© Garland Science 2008)

RNA Polymerase II Complex Does it All

12 Protein Subunits in Human

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

• As RNA polymerase moves along the DNA, it untwists the double helix, 10 to 20 bases at a time

• Transcription progresses at a rate of 40 nucleotides per second in eukaryotes

• The large subunit of RNA Pol II caps and polyadenylates the nascent nRNA

• The same large subunit of RNA also links to the splicosome to facilitate subsequent processing

Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 6-9 Molecular Biology of the Cell (© Garland Science 2008)

Multiple RNA Pol II molecules can read DNA simultaneously

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

• So, how do individual cells regulate which of the genes in their genome they will express?

• Remember from Intro Bio that prokaryotes regulate expression through repressors/activators

• Eukaryotes have more complex regulatory mechanisms

• Histone modification regulates chromatin structure

• DNA modification regulates promoter accessibility

• Epigenetic modification can be copied and inherited

• Transcription factors regulate promoter activation

• Specialized transcriptional activities

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

2. Nucleosome and Histone Modification Regulates of Chromatin Structure

• Chromatin is a complex of DNA and protein in the eukaryotic nucleus

• Loosely packed chromatin is called euchromatin

• Dense packing of the heterochromatin makes it difficult for the cell to express genetic information coded in these regions

• Histones are proteins that are responsible for the first level of DNA packing in chromatin

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Cell-specific control of chromosome structure

Eukaryoticcells can systematicallycontrol whichgenes areavailable forexpression.

Our DNA iscomplexed50:50 withproteins andis very highly regulated byenzymaticalterations ofwhat is openand closed.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 4-28 Molecular Biology of the Cell (© Garland Science 2008)

Spontaneousnucleosomeunwrapping

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 4-29 Molecular Biology of the Cell (© Garland Science 2008)

ATP-dependentnucleosomeunwrapping

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Histones are covalently modified to control gene accessibility

• The methylation and/or acetylation of either histones or the DNA itself determines what promoters are exposed.

• Different cell types have different enzymes and, thus, different areas of protein and DNA are targeted for alteration

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Cell-specific control of chromosome structure

3 Stages of Transcription1. Initiation2. Elongation3. Termination

Acetylation promotes Initiation Methylation can go either way

(lysine amino acid residues)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

3. The “Histone Code” Hypothesis

• Combinations of covalent modifications have specific information for the cell

– This DNA is newly replicated

– This DNA is damaged and needs repair

– Express this DNA

– Put this DNA into heterochromatin storage

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 4-43 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 4-45 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 4-46a Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

b. Direct covalent modifications of DNA can also control expression from genes in the euchromatin

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Methylation of globin genes in human embryonic blood cells

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

c. Heritability: Epigenetic Memory

OK. So a cell differentiates to become a blood vessel smooth muscle cell or fibroblast ......

• How come all of its mitotic descendents don’t have to go through differentiation?

– Trithorax proteins bind to open nucleosomes and keep them open.

– Polycomb proteins methylate uneeded nucleosomes and then bind to them to keep them tight.

– These effects can then be directly passed through mitotic cell division to the offspring.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Two DNA methyltransferases are important in modifying DNA

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

d. Transcription factors regulate promoter activation

– Core promoter made up of TATAbox and CpG islands

• Site of RNA Pol II recruitment and activation

• TF II family transcription factors bind RNA Pol II to core

– Tissue-specific TF are true transcriptional determinant for the cell type

• Bind to core promoter elements and distal enhancers

• Create binding sites for TF II family TF and stabilize Transcription Initiation Complex

• TS-TF also recruit histone acetyltransferases to expose DNA

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Tissue-Specific Transcription Factor Families

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Fig. 17-8

3�

Promoter

TATA box Start point

Template

TemplateDNA strand

5�3�5�

GeneralTranscriptionfactors

5�5�3�3�

RNA polymerase IICell-Specific Transcription factors

5�5� 5�3�

3�

RNA transcript

Transcription initiation complex

The TranscriptionInitiation Complexforms on every genethat gets expressed.Its presence there isreally determined bythe tissue specifictranscription factorsthat bind to enhancercis-elements.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

RNA polymerase is stabilized on the promoter site of the DNA by transcription factors recruited by promoters and enhancers

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Fig. 17-7b

Elongation

RNApolymerase

Nontemplatestrand of DNA

RNA nucleotides

3� end

Direction oftranscription(“downstream”) Template

strand of DNANewly madeRNA

3’

5’

5�

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 6-3 Molecular Biology of the Cell (© Garland Science 2008)

The stability of the initiation complexdetermines how many transcripts

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Tissue-specific transcription factors may bind different enhancers

The pax-6 gene hasfour enhancers and isexpressed exclusivelyin those four tissue types.

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

TS TFs can even control differentiation stability

A really important idea in cell differentiation is that there must be a molecular mechanism that keeps a cell differentiated.

– The pax-6 gene has a Pax-6 site in its enhancer

– When it is present the transcription rate is maximal

– This mechanism is repeated in several cell types

– A rare positive feedback loop

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

e. Specialized transcriptional activities

• Only about 3-5% of RNA in a cell is mRNA

• Up to 80% of RNA is ribosomal RNA

– As many as 10 million ribosomes per cell

– humans have 400 rRNA gene copies on 5 chromosome pairs (frogs have 1200)

– 4 eukaryotic subunits: 18S, 5.8S, 28S, 5S

– First 3 from one gene with RNA Pol I

– 5S is from a separate gene with RNA Pol III

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Figure 6-42 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

Table 6-1 Molecular Biology of the Cell (© Garland Science 2008)

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

RNA Molecules and their RNA Polymerases

• Most snRNA and miRNA: Pol II

• tRNA, shRNA, snRNA 6, miRNA: Pol III

• snoRNA often encoded in introns: Pol II

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________

___________________________________