cellular network planning and optimization part6

Upload: amanullahshohag

Post on 10-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    1/40

    Cellular NetworkPlanning andOptimization

    Part VI:WCDMABasicsJyriHmlinen,

    Communications andNetworking Department,TKK,24.1.2008

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    2/40

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    3/40

    3

    Networkelements

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    4/40

    4

    Networkelements

    Networkelementsina3GWCDMAbasedPLMN

    Ourmainfocusarea

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    5/40

    5

    Networkelements

    TypicallyPLMNisoperatedbyasingleoperator

    ConnectedtootherPLMNs andnetworkslikeInternet

    UserEquipment(UE)contains

    Mobileequipment(ME):RadiocommunicationoverUuinterface

    UMTSSubscriberIdentityModule(USIM):Subscriberidentityinformation,authenticationalgorithms,encryptionkeysetc

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    6/40

    6

    Networkelements

    UMTSTerrestrialRadioAccessNetwork(UTRAN)

    NodeB(BaseStation):Handles/managesthetrafficbetweenUu andIub interfaces.Basictaskslikecoding,interleaving,rateadaptation,modulation,spreadingetc.

    RadioNetworkController(RNC):Controlradioresourcesinitsoperationarea.ProvideservicesforCoreNetwork(CN).Loadandcongestioncontrol,

    admissionscontrol,codeallocation,radioresourcemanagementtasks.

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    7/40

    7

    Networkelements

    MobileServicesSwitchingCentre(MSC)/VisitorLocationCentre(VLR) HandlesswitchinginCircuitSwitched(CS)connectionsand

    holdvisitingusersserviceprofiles. ServingGPRSSupportNode(SGSN)

    SimilarfunctionalityasinMSC/VLRbutusedforPacketSwitched(PS)services

    OtherCNelements GatewayMSC(GMSC):HandlesincomingandoutgoingCS

    connections GatewayGPRSSupportNode(GGSN):LikeGMSCbutin

    PSdomain HomeLocationRegister(HLR):Mastercopyofusers

    serviceprofiles

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    8/40

    8

    Physicallayer

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    9/40

    9

    Uplinktransmissionpath

    Spreadingcodesareusedtoseparatedataandcontrolofauser.

    Scramblingcodesareusedtoseparatedifferentusers.

    DualchannelQPSKmodulation(dataandcontrolintodifferentI/Qbranches)

    Modulation Spreading

    Modulation Spreading

    Data

    ControlScrambling

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    10/40

    10

    Downlinktransmissionpath

    Userswithinacell(sector)areseparatedbyorthogonalspreadingcodes(sometimesalsocalledaschannelizationcodes)

    Cells(sectors)areseparatedbyscramblingcodes QPSKmodulation

    Modulation Spreading

    Modulation Spreading

    .

    .

    .

    .

    .

    .

    Stream1

    StreamN

    Scrambling

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    11/40

    11

    Spreading

    Spreadingisdoneusingorthogonalcodes

    Codesremainorthogonalonlyifsynchronizationis

    perfect Multi-pathfadingwillreducetheorthogonality

    [1]

    [1,-1]

    [1,1]

    [1,-1,1,-1]

    [1,-1,-1,1]

    [1,-1,-1,1,-1,1,1,-1]

    [1,-1,-1,1,1,-1,-1,1]

    [1,1,-1,-1]

    [1,1,1,1]

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    12/40

    12

    Spreading

    Data

    Spreadingcode

    Signalafterspreading

    frequency frequency

    SpreadingFactor(SF)defineshowmanychipsareusedtorepresentonedatasymbol

    Spreadingexpandsthesignaltowideband

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    13/40

    13

    Spreading

    Spreadingprovidesprocessinggain.Letusdenote

    W=systemchiprate

    R=userbitrateThenprocessinggainisdefinedby

    Whileuserdatarateincreases,theprocessinggaindecreasesaswellasthespreadingfactor.Hence,itisharderforthereceivertodetectthesignalcorrectly.

    Sometimeswealsousetermspreadinggain.Itreferstovalue

    =

    R

    WPG 10log10

    ( )SF10log10gainSpreading =

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    14/40

    14

    Spreading

    SomemeasuresthatareusedinWCDMAreceiverinvestigations

    CINR=Carriertointerferenceandnoiseratio,alsoSINRisused

    CIR=Carriertointerferenceratio,alsoSIRisused

    SNR=Signaltonoiseratio E=Energyperuserbitdividedbythenoisespectral

    density=processinggain*powerthatisneededto

    overcometheinterferencefromotherusers.

    NotationiscommonlyusedforE0/NEb

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    15/40

    15

    Spreading

    InWCDMAchiprateis3.84Mcps. Temporaldurationofthechipis1/3.84*10^6=

    260.4ns. Signaltravels78.125metersduringthechipduration

    Thisdistancedefinesthemaximumaccuracybywhichreceivercanresolvedifferentsignalpaths.

    Signalamplitude

    delaytime

    longechos,usuallyonlyinHillyterrainenvironment

    directpath

    nearbyscatterers

    RAKEoperations

    Chipduration

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    16/40

    16

    RAKE

    AbasicreceiverthatisusedinWCDMAiscalledasRAKE Themultipathchannelthroughwhicharadiowavepropagates

    canbeviewedasasumofmanydelayedcopiesoftheoriginaltransmittedwave,eachwithadifferentmagnitudeandtime-of-arrivalatthereceiver.Eachmultipathcomponentcontainstheoriginalinformation=>ifthemagnitudeandtime-of-arrivalofeachmultipathcomponentisknown(throughchannelestimation),thenallthemultipathcomponentscanbeaddedcoherently

    RAKEisdesignedtocountertheeffectsofmultipathfading.Itdoesthisbyusingseveralfingers,eachdelayed(byorderofsomechips)inordertocatchtheindividualmultipathcomponents.

    Componentsignalsfromfingersarecombinedcoherentlyforthesumsignalthatisusedindecoding.

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    17/40

    17

    Scrambling

    +1

    -1

    +1

    -1

    +1

    -1

    Signalafterspreading

    Scramblingcode

    Signalafterscrambling

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    18/40

    18

    Scrambling

    Scramblingcodesareusedtoseparateusersinuplinkandcellsindownlink

    Scramblingisusedontopofspreading

    Scramblingisnotchangingthesignalbandwidth

    Indownlinkscramblingcodesareallocatedtothecells(sectors)innetworkplanningphase

    Numberofscramblingcodesishigh=>codeplanningisatrivialtaskandcanbeautomated

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    19/40

    19

    Spreadingandscramblingsummary

    Noimpacttotransmissionbandwidth

    IncreasestransmissionbandwidthBandwidth

    UL:38400chips=10ms=framelength

    DL:38400chips=10ms=framelength

    UL:4-256chipsDL:4-512chips

    Codelengthdefinessymbolrate

    Length

    UL:Separationofusers

    DL:Separationofcells

    UL:Separationofcontrolanddatafromthesameuser

    DL:Separationofconnectionswithinacell

    Usage

    ScramblingcodesSpreadingcodes

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    20/40

    20

    Importantchannels/uplink

    Uplinkdedicatedchannel

    PhysicallayercontrolinformationinDedicatedPhysical

    ControlChannel(DPCCH),spreadingfactor=256 DataiscarriedinDedicatedPhysicalDataChannels

    (DPDCH).Variablespreadingfactor

    TherecanbemultipleDPDCHs butonlyoneDPCCH.

    Note:Thereis

    usuallyapowershiftbetweendataandcontrol

    channels

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    21/40

    21

    ControlinformationinDPCCH

    Pilotbitsforchannelestimation Alwayspresent

    TransmitPowerControl(TPC)bitsfordownlinkpowercontrol Alwayspresent

    TransportFormatCombinationIndicator(TFCI) Informreceiveraboutactivetransportchannels

    FeedbackBitInformation(FBI)

    Presentonlywhendownlinktwo-antennaclosedlooptransmitdiversityisapplied

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    22/40

    22

    UplinkDPDCHdatarates

    Dataratesinthetableachievedwith rate

    coding Parallelcodesnotused

    inpracticeduetoreducedpoweramplifier

    efficiency

    Maximumratebelow500kbps.

    Note:Inuplinkeachuserhaveallspreadingcodesinitsuse

    2.8Mbps4,6parallelcodes

    480kbps4

    240kbps8

    120kbps16

    60kbps32

    30kbps64

    15kbps128

    7.5kbps256

    UserdatarateSpreadingfactor

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    23/40

    23

    Importantchannels/downlink

    Downlinkdedicatedchannel

    DownlinkcontrolinformationiscarriedinDedicated

    PhysicalControlChannel(DPCCH) DownlinkdataiscarriedinDedicatedPhysicalData

    Channel(DPDCH)

    Spreadingfactordependsontheservice

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    24/40

    24

    Importantchannels/downlink

    CommonPilotChannel(CPICH)

    CPICHaidchannelestimationattheterminal

    Spreadingfactor=256 Terminalmakeshandoverandcellselectionmeasurements

    fromCPICH=>CPICH shouldbeheardeverywhereinthecell

    CellcoverageandloadcanbeadjustedthroughCPICH IfCPICHpowerisreducedpartoftheterminalswillhand

    overtoadjacentcells

    Synchronizationchannel(SCH)

    Synchronizationchannelisneededforcellsearch

    Spreadingfactor=256

    (*)Importantpropertyfromnetworkplanningperspective

    (*)

    (*)

    (*)

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    25/40

    25

    Importantchannels/downlink

    PrimaryCommonControlPhysicalChannel(PrimaryCCPCH)

    Carrybroadcastchannelandallterminalsinthesystemshouldbeabletoreceiveit.

    IfCCPCHdecodingfailsthenterminalcannotaccesstothesystem=>CCPCHtransmissionpowerhigh.

    Nopilotbits,channelestimationdonefromCPICH

    whichistransmittedwithsameantennaradiationpattern

    Spreadingfactor=256, ratecoding

    (*)Importantpropertyfromnetworkplanningperspective

    (*)

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    26/40

    26

    DownlinkDPDCHdatarates

    Dataratesinthetableachievedwith rate

    coding Indownlinkallusers

    sharethespreadingcodes=>numberof

    orthogonalcodesdefinesahardlimitforcellcapacity

    Partofthespreadingcodesarereservedforcontrolchannels

    1-3kbps512

    2.8Mbps4,3parallelcodes

    936kbps4

    456kbps8

    215kbps16

    105kbps32

    45kbps64

    20-24kbps128

    6-12kbps256

    UserdatarateSpreadingfactor

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    27/40

    27

    Downlinkcontrol

    Fromnetworkplanningperspectiveitisimportanttokeepinmindthatcontrolchannels

    takepartoftheDLpower

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    28/40

    28

    Radioresourcemanagement

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    29/40

    29

    General

    RadioResourceManagement(RRM)iselementarypartofWCDMA.

    RRMisresponsibleforefficientutilizationoftheairinterfaceresourcesitisneededto

    GuaranteeQualityofService(QoS)

    Maintaintheplannedcoveragearea Optimizethecellcapacity

    TheimportanceofRRMismostlyduetothe

    featuresoftheUMTSsystem;interferencelimitednatureandadaptiveservices

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    30/40

    30

    RRMalgorithms

    FamilyofRRMalgorithms:

    Powercontrol

    Fastpowercontrol(NodeB,UE) Outerlooppowercontrol(RNC)

    Handovercontrol(RNC)

    Admissioncontrol(RNC) Loadcontrol(RNC)

    Fastloadcontrol(NodeB)

    Packetscheduling(RNC)

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    31/40

    31

    Powercontrol

    Objectives Maintainthelinkqualityinuplinkandindownlinkbycontrolling

    thetransmissionpowers

    Preventsnear-fareffect Minimiseeffectsoffastandslowfading Minimisesinterferenceinnetwork

    Accuracyofthepowercontrolisimportant Notime-frequencyseparationofusers,allusethesame

    bandwidth Inaccuracyinpowercontrolimmediatelyliftsthenetworks

    interferencelevel,whichcorrespondinglylowersthecapacity Duetousersmobilitythespeedofpowercontrolisalsoa

    criticalissue

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    32/40

    32

    Near-farprobleminuplink

    TherecanlargepathlossdifferencebetweenUE1(cell

    centre)andUE2(celledge)

    IfbothUEsaretransmittingwiththesamepowerthenUE1willblockUE2(andothercelledgeuserstoo)

    PowercontrolwilldrivetransmissionpowersofUE1andUE2totheminimumlevelthatisrequiredtomeetQoS

    InNodeBreceivedpowersfromUE1andUE2willbethesameforsameservices

    UE1

    UE2

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    33/40

    33

    Powercontrol

    PowerControlonthecommonchannels ensuresthattheircoverageissufficient bothtosetupUE-originatingandUE-terminatingcalls.

    PowerControlonthededicatedchannels ensuresanagreedqualityof connectionintermsofBlockErrorRate(BLER),whileminimizingtheimpact onotherUEs.

    UplinkPowerControl increasesthemaximumnumberofconnectionsthatcan beservedwiththerequiredQualityofService

    (QoS),whilereducingboththe interferenceandthetotalamountofradiatedpowerinthenetwork.

    DownlinkPowerControl minimizesthetransmissionpoweroftheNodeB and compensatesforchannelfading.Minimizingtransmittedpowermaximizesthedownlinkcapacity.

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    34/40

    34

    Powercontrol

    Mainpowercontrolapproaches

    Fastpowercontrol:

    Aimistocompensatetheeffectoffastfading Gainfromfastpowercontrolislargestforslowly

    movingUEs andwhenfadingisflat,i.e.thereismulti-pathdiversity

    Fastpowercontroldrivesthereceivedpowertoa

    targetSIR.Thisvalueisdiscussedmorecloselyinconnectionwithdimensioning.

    Outerlooppowercontrol AdjustthetargetSIRaccordingtoserviceQoS.

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    35/40

    35

    PCmechanism

    OuterloopPC:RNCadjustthetargetSIRinorder

    tomeettargetBLER

    FastPC:NodeBcommandterminaltochangetransmitpowerinordertomeettargetSIR ReceivedSIR

    Outerlooppowercontrol

    Fastpowercontrol

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    36/40

    36

    UplinkouterloopPC

    ThegoalistocontrolthetargetSIR inordertoremainthewantedQoS withminimumtransmitpower

    ThetargetBLERisdefinedwiththeadmissioncontrolalgorithm

    TheuplinkalgorithmiscontrolledinRNCanddownlinkalgorithminUE

    Updatefrequencyfrom10Hzupto100Hz Outerlooppowercontrolwillraiseorlowerthetarget

    SIRaccordingtostepsize,whichisdefinedbyradionetworkplanning.

    Theequipments performancedefinestheminimumvaluefortargetSIR

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    37/40

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    38/40

    38

    Fastpowercontrol

    Idealfastpowercontrolinvertthechannel

    Inpracticepowercontrolaccuracyisreducedby

    feedbackerrors, Betterfigure,PCheadroometc

    Fastfadingchannel

    Transmittedpower

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    39/40

    39

    UplinkfastPC

    Update rate 1.5kHz=>fastenough totrack andcompensate fastfading up toxkm/hmobilespeed

    If receivedSIR>targetSIRinNodeB=>UEiscommanded todecrease its transmitpower.Similarly UEiscommanded toincrease its transmissionpowerifreceivedSIR

  • 8/8/2019 Cellular Network Planning and Optimization Part6

    40/40

    40

    DownlinkfastPC

    Similar asDLfastPC:

    UEmeasures SIRonDLDPCCHduring thepilot

    period UEmaintainstheQoS bysendingfastpowercontrol

    commands(TPCbits)requestingpower adjustment

    Poweroffsets can be used inDLinordertoimprovecontrolreliability.Offsets are network parameters thatcan be setinplanning phase