center for advanced molecular photovoltaics · pedot:pss (50-100 nm) al (100 nm) ca (7 nm)...

43
Director: Mike McGehee Executive Director: Alan Sellinger Deputy Director: Peter Peumans $5 million/year for five years from Saudi Arabia (KAUST) Center for Advanced Molecular Photovoltaics C A M P Center for Advanced Molecular Photovoltaics

Upload: others

Post on 04-Oct-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Director: Mike McGeheeExecutive Director: Alan SellingerDeputy Director: Peter Peumans

$5 million/year for five years from Saudi Arabia (KAUST)

Center for Advanced Molecular Photovoltaics

CA M

P

Center for Advanced Molecular Photovoltaics

Page 2: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Background on KAUST

• King Abdullah University of Science & Technology (KAUST) http://www.kaust.edu.sa/

– Endowment of $20 B

– Women and men educated together.

– Research thrusts in:

• Resources, Energy and Environment• Biosciences and Bioengineering• Materials Science and Engineering• Applied Mathematics and Computational Science

Page 3: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

KAUST in May 2008

Page 4: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

KAUST one month later

Page 5: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

KAUST future (opening Sep. 2009)

Page 6: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Covering less than 1 % of the land with solar cells could meet our electricity needs

6 Boxes at 3.3 TW Each

Page 7: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Large Scale Printing of Semiconductors!

Page 8: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Attractive properties:

•Abundant: ~100,000 tons/year

•Mature industry/markets

•Low materials cost: ~1$/g  17¢/m2

•Low‐cost manufacturing

•Non‐toxic

CuPcCopper Phthalocyanine

Molecular Semiconductors

8

N

N

N

N

Cu

Page 9: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2
Page 10: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

CAMP Goals

• 15 % Efficiency

• 10-20 year lifetime

• $30/ m2

Molecular PV Silicon PV

Training of top quality students for solar industry!

• 12 % Efficiency

• >20 year lifetime

• $350/ m2

Page 11: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Power Conversion Efficiency (PCE)

FF*Isc*

Incident Power

VOCη =

Isc

Voc

FF

Mutolo, K., et al JACS (2007)

Page 12: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Forrest, MRS Bulletin 2005

Physics of Organic Solar Cells

Page 13: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Device Fabrication and Characterization

Mike McGehee

Peter Peumans 

Michael Graetzel (EPFL)

13

Page 14: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Polymer-fullerene bulk heterojunction cells

PEDOT

Ca/Al~2

00 n

m th

ick

Page 15: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

X-ray Diffraction pBTTT:PC[71]BM Blends

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

SS

~21.

+

1:41:11:0

(100)p

(200)p

(300)p

(400)p

(003)p

(010)p

(100)i

(200)i

(300)i

(400)i

(500)i (402)i

Page 16: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

SS

SS

SS

SS

Consequences of Intercalation

Dense Side-Chains Less Dense Side-Chains

Optimal blend ratio ~ 1:3Optimal blend ratio ~ 1:1

e.g. P3HT e.g. pBTTT

Better for avoiding back electron transfer

Better for splitting excitons

Page 17: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

acceptordonor

EF

3

4 521

anode cathode

21

3

cathodeanodeEF

acceptordonor

Calculated Band Diagrams

donor and acceptorare highly doped

donor is highly doped,acceptor ~ intrinsic

p doped n doped

Effect of Electrical Doping

Liu, Zhao, Rim and Peumans, Adv. Mater., 1065-1070 (2008).

Presenter
Presentation Notes
Say clearly what is n,p doped Doping, fermi level, eliminate band term CuPc p doped by oxygen
Page 18: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Dye sensitized solar cells

Dye: Z907 HTM: Spiro-OMeTAD(Spiro)

H.J. Snaith, Adv. Mater. 19, 3187 (2007)

World Record: ~5% Efficiency

Page 19: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Increasing absorption in dye sensitized cells with energy relay dyes

TiO2

Sensitizer Dye

CathodeSpiro-OMeTAD

Fluorescing Dye

FRET

Brian Hardin, Eric Hoke, McGehee, Gratzel

Interface characterization and modification: Stacey Bent

Page 20: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Advanced Optics

Peter Peumans, Mark Brongersma and Shanhui Fan

20

Page 21: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Transparent Electrodes

ITO

glass•Performance•Cost (~$10/m2)•Brittle•Compatibility with plastic substrates

What’s wrong with ITO?

Page 22: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Carbon Nanotube Electrodes

Cur

rent

(mA

/cm

2 ) 0

2

-2

-4

-6

-80 0.2 0.4 0.6-0.2

CNT

ITO

Vout

Nanotube Film PEDOT:PSS Transparent Electrode

Back Electrode

P3HT:PCBMLight Absorber

SunlightSunlight

Solar cell I-V

Efficiency jsc Voc Fill Factor CNT cell 2.5% 7.8 mA/cm2 605 mV 0.52 ITO cell 3.0% 8.0 mA/cm2 610 mV 0.61

Voltage (V)

DARK

M.W.Rowell, et al, APL 2006

plastic (PET) superstrate

Page 23: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Ag Nanowires

Yi Cui, Peter Peumans, Nanoletters, 8, 2008, p. 689. 23

10μm

Page 24: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Radius= 8.36 mm12.5 ohm/sq

Radius= 13.74 mm12.5 ohm/sq

Radius= 4 mm12.6 ohm/sq

Flat12.7 ohm/sq

~20% of transmitted light is scattered

Ag Nanowires

Page 25: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

ZnO Nanowires

milky diffusing films

Film cast from nw solution

Alberto Salleo

Page 26: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Molecular Design and Synthesis

Page 27: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

27

Quantum-Chemical Calculations

Donor-Acceptor Copolymers

Vertical Transition Energies

Jean-Luc Bredas (Georgia Tech)

Page 28: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Quantum-Chemical Calculations

28

Jean-Luc Bredas (Georgia Tech)

Page 29: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Synthesis

Zhenan Bao

Mark Thompson (USC)

Jean Fréchet (UC Berkeley)

Alan Sellinger

29N

NN

NNNB Cl

Page 30: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Types of Materials for Organic Solar Cells

• p-type (electron donating materials)– Aromatic amines, thiophenes– ≈90% of journal publications related to p-type materials

• n-type materials (electron accepting materials)– Primarily fullerene derivatives– Cyano aromatics, perylene diimides, benzothiadiazole– Area relatively unexplored due to not-so-straightforward

chemistry

Page 31: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Sellinger Group

N

N

CN

CN

N

N

NC

NC

NS

N

N

N

CN

CN

N

N

NC

NC

NS

N

V-BT H

V-BT EH

Better solubility•Can be thermally sublimed as well

Page 32: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

PQT:VBT EH

80ºC device: Voc = 0.97 V, FF = 0.41, PCE = 1.09%

VBT EH

80 ºC device: Voc = 1.36 V, FF = 0.49, PCE = 0.75%Ooi, Z; Tam, TL; Shin, RYC; Chen ZK; Kietzke, T; Baumgarten, M; Mullen, K; deMello, JC; Sellinger, A, Journal of Materials Chemistry, 2008, 18, 4619–4622.

Page 33: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Work from Mark Thompson’s group at USC

Page 34: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Work from Mark Thompson’s group at USC

N

N

N

N

Cu

CuPc

C60

Page 35: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Work from Mark Thompson’s group at USC

Page 36: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Work from Zhenan Bao’s group at Stanford

Bao, Z et al, manuscript in preparation

Page 37: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Work from Zhenan Bao’s group at Stanford

Okamoto, T.; Jiang, Y.; Qu, F.; Mayer, A. C.; Parmer, J. E.; McGehee, M. D.; Bao, Z. Macromolecules, 2008; 41(19); 6977-6980.

Page 38: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Work from Jean Fréchet’s group at UC Berkeley

Thompson, BC et al, Macromolecules 2007, 40, 7425-7428

Page 39: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Reliability

Reiner Dauskardt

39

Page 40: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Degradation and Reliability of Photovoltaic Devices

Severe operating environments.Exposure to moisture, chemically active environmental species, thermal cycling and UV radiation. Lifetimes are dictated by the loss of adhesion and defect evolution.

Characterize and model mechanisms of defect initiation and evolution accelerated by environment, thermo-mechanical cycling and UV exposure.

Page 41: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Adhesion/Cohesion Sample Preparation

Fabricated 4-point bend adhesion and DCB cohesion test structures using standard epoxy bonding techniques.Similar transparent glass substrates on each side.

Gunes, et. Al. Chem. Rev. 2007.

Glass Substrate

ITO (150 nm )PEDOT:PSS (50-100 nm)

Al (100 nm)Ca (7 nm)

P3HT/PCBM (200 nm)

Epoxy Bond (2 μm)

Glass Substrate

Thin films sandwiched between elastic substrates

FPB adhesion

DCB cohesion

Presenter
Presentation Notes
Original Wording: Absorption of a photon leading to the formation of an excited state, that is, the bound electron-hole (exciton) creation. Exciton diffusion to a region where exciton dissociation, that is, charge separation occurs. Charge transport within the organic semiconductor to the respective electrodes.
Page 42: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

Adhesion/Cohesion Sample Preparation

Gunes, et. Al. Chem. Rev. 2007.

Glass Substrate

ITO (150 nm )PEDOT:PSS (50-100 nm)

Al (100 nm)Ca (7 nm)

P3HT/PCBM (200 nm)

0

2

4

6

8

10

12

Frac

ture

Ene

rgy,

G (J

/m2 )

Solar Cell 1

Solar Cell 2

Solar Cell 3

4-point bend DCB

• XPS reveals similar debond path for DCB and 4-pt bend samples• C ~ 92%, S ~ 6%, O ~ 2%• Suggests cohesive failure in PCBM:P3HT layer and not at the interfaces!

cohesive

failure

Page 43: Center for Advanced Molecular Photovoltaics · PEDOT:PSS (50-100 nm) Al (100 nm) Ca (7 nm) P3HT/PCBM (200 nm) 0 2 4 6 8 10 12 Fracture Energy, G (J/m. 2) Solar Cell 1 Solar Cell 2

• Exciting new research activities in CAMP at Stanford University + partner universities– Very interdisciplinary!

• Working closely with KAUST from Saudi Arabia

• More information: Alan Sellinger ([email protected])

Conclusions