center for information services and high performance

64
Nöthnitzer Straße 46 Raum 1026 Tel. +49 351 - 463 - 35048 Holger Brunst ([email protected] ) Matthias S. Mueller ([email protected] ) Center for Information Services and High Performance Computing (ZIH) Performance Analysis of Computer Systems Dec. 14, 2011 – Energy Efficiency

Upload: others

Post on 15-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Nöthnitzer Straße 46

Raum 1026

Tel. +49 351 - 463 - 35048

Holger Brunst ([email protected])

Matthias S. Mueller ([email protected])

Center for Information Services and High Performance Computing (ZIH)

Performance Analysis of

Computer Systems

Dec. 14, 2011 – Energy Efficiency

Content

Motivation: Why is energy efficiency important?

Basics

Energy Efficiency Benchmarks and Activites

– Green500

– SPEC power_ssj2008

– Experiences with SPEC MPI

Matthias Müller

Nöthnitzer Straße 46

Raum 1026

Tel. +49 351 - 463 - 35048

Holger Brunst ([email protected])

Matthias S. Mueller ([email protected])

Center for Information Services and High Performance Computing (ZIH)

Motivation: Single CPU

Single Core Peak Performance and Processor TDP

Matthias Müller

0,01

0,1

1

10

100

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

Performance/Core [GFLOPS]

TDP [W]

Trends of CPU properties (single socket)

Kathy Yelick: „Ten Ways to Waste a Parallel Computer“

Keynote ISCA 2009. The 36th International Symposium on Computer Architecture

(mit Daten von Kunle Olukotun, Lance Hammond, Herb Sutter,Burton Smith, Chris

Batten und Krste Asanoviç)

Matthias S. Müller

Energieeffizienz im Hochleistungsrechnen

Ron Dreslinski: Near Threshold Computing: Reclaiming Moore's Law, Keynote EnA-HPC 2011

Matthias S. Müller

Zellescher Weg 12

Willers-Bau A113

Tel. +49 351 - 463 - 39835

Matthias Müller ([email protected])

Center for Information Services and High Performance Computing (ZIH)

Motivation: HPC Systems

Performance trend documented by TOP500

Matthias Mueller

1.167 TF/s

16.96 PF/s

59.7 GF/s

1.11 PF/s

0.4 GF/s

12.6 TF/s

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

Su

m

#1

#5

00

IBM

BladeCenter NECEarth Simulator

Intel ASCI

Red

IBM ASCI

White

Fujitsu

'NWT' NAL

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

10 Pflop/s

100 Pflop/s

TOP500 List June 2009: Nr. 1 and Nr. 2 Systems

Cray XT5 (Jaguar) at ORNL

Nr. 2 system

AMD Opteron QuadCore

6.95 MW

IBM Roadrunner at LANL

Nr. 1 system

IBM Cell (+ AMD Opteron)

2.35 MW

TOP500 Performance Trend

Matthias Müller

ExaFLOP in 2019

2 orders of magnitude in 7 years

ExaFLOP

PetaFLOP

TeraFLOP

GigaFLOP

Driving Forces behind the TOP500 performance trend

Moore s law

Parallelism (#Cores)

Processor performance

1.167 TF/s

16.96 PF/s

59.7 GF/s

1.11 PF/s

0.4 GF/s

12.6 TF/s

19

9

19

9

19

9

19

9

19

9

19

9

19

9

20

0

20

0

20

0

20

0

20

0

20

0

20

0

20

0

20

0

Su

m

#1

#5

00

IBM

BladeCenter NECEarth Simulator

Intel ASCI

Red

IBM ASCI

White

Fujitsu

'NWT' NAL

1 Gflop/s

1 Tflop/s

100 Mflop/s

100 Gflop/s

100 Tflop/s

10 Gflop/s

10 Tflop/s

1 Pflop/s

10 Pflop/s

100 Pflop/s

System Performance

Energy Efficiency of Intel CPUs (TDP/Peak Performance)

1E-09

1E-08

1E-07

1E-06

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

Joul

e/FL

OP

Matthias Müller

1 order of magnitude in 7 years

Estimated Energy Consumption of TOP500 systems

Matthias Müller

1 order of magnitude in 7 years

MegaWatt

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

Extrapolation of Energy Consumption

Investment and power costs during 5 years

Year Invest Energy

2006 150.000.000 21.000.000

2011 150.000.000 105.000.000

2019 150.000.000 1.383.000.000

Energy Consumption Scenario 2: Max Power 20 MW

Hitting the Energy Wall: What Is Next?

Energy efficiency hit us hard

– It is hard to translate transistors into performance

Multicore (curse)

When and how will it hit again?

– OoO execution and hardware prefetchers are inefficient

– Can we drop cache coherency? Message passing is more efficient than shared memory parallelism. PGAS on-chip is an option.

– How about trading hardware managed caches for software managed local store?

– NTC may really hurt (Who wants to write error resilient applications?)

Matthias Müller

Nöthnitzer Straße 46

Raum 1026

Tel. +49 351 - 463 - 35048

Holger Brunst ([email protected])

Matthias S. Mueller ([email protected])

Center for Information Services and High Performance Computing (ZIH)

Basics

Vocabulary

Energy: ability a physical system has to do work W

Power: the rate at which work is performed or energy is converted P=W/T

Voltage (U), Current (I) P=U*I

Power:

– Active power (Wirkleistung)

– Apparent power (Scheinleistung)

– Reactive power (Blindleistung)

Matthias Müller

Zellescher Weg 12

Willers-Bau A104

+49 351 - 463 - 32055

Daniel Hackenberg ([email protected])

Center for Information Services and High Performance Computing (ZIH)

Power Measurement

Power Measurement Methodology (SPEC)

VampirTrace Plugin Counter Interface

Daniel Hackenberg, Robert Schöne

Testsystem

Messumgebung

Programm

Event-

Server

Tracepoint-

Plugin

Sensors-

Plugin

Dataheap-

Plugin

libsensors

Dataheap Server

Monitoring Server

Netzteil

Leistungmessgerät

Integration of Power Measurement

Temperatur (libsensors)

Leistungsaufnahme (dataheap)

Speicherverhalten (perf events)

Taktfrequenz (Kernel Tracepoints)

C states (Kernel Tracepoints)

Temperature Effect on Power Consumption

15 minutes of a constant workload

– AMD system: 15 watt increase

– Intel system: 10 watt increase

Daniel Molka

260

270

280

290

300

310

320

330

340

350

0 100 200 300 400 500 600 700 800 900

pow

er [w

att]

time [s]

power increase over time

Opteron 2435 Xeon X5670

Improved Power Measurement Setup

Power separately or remove:

– Chassis Fan(s), CPU Fan

– PSU Fan

– HDDs

– PCIe cards, DVD drive etc.

Measure 12V DC at P8 connector (1,6 W idle, >80 W peak)

Measure remaining voltage rails behind power supply (DC side)

Increase time resolution of power measurement

Include new CPU counters (package power consumption on Intel Sandy Bridge)

Use specifically modified mainboards with high precision resistors for current measurement (AMD Brazos/Llano)

Daniel Hackenberg

Zellescher Weg 12

Willers-Bau A104

+49 351 - 463 - 32055

Daniel Hackenberg ([email protected])

Center for Information Services and High Performance Computing (ZIH)

Power Consumption

Energy Consumption of Components

Machine Type Watt

IBM Power7 8-core 3000 MHz (750-8233-E8B) 183

4 GB DIMM 12

8 GB DIMM 12

16 GB DIMM 16

Disk 10k rpm 7

Disk 15k rpm 9

SSD disk 8

PCI card 12

Numbers from IBM Systems Power Estimator (http://www-912.ibm.com/see/EnergyEstimator)

Dynamic Voltage and Frequency Scaling (DVFS)

P~V²*f

Reduced power consumption, reduced performance

P-State (Performance-State) consists of frequency/voltage setting

Higher P-State lower frequency/voltage

More techniques:

– C-States (Microprocessor and package idle state - processor sleep, power gating)

– T-States (Microprocessor throttle-state - skipping cycles)

– S-States (system sleep states)

Simple Model with constant voltage design

High frequency: T=c4 W=c1*c4+c2*c4*V²*f W~f

Holger Brunst, Matthias Müller: Leistungsanalyse

P=c1+c2*V²*f , W=P*T

Low frequency: T=c3/f W=c1*c2/f+c3*V² W~1/f

W

f

W~f

W~1/f

P-States Example

P-State Multiplier Voltage Frequency f V^2*f

P-State 0: 13.00000 1225 mV 2600 MHz 3.25 12.32 P-State 1: 10.50000 1175 mV 2100 MHz 2.63 7.71 P-State 2: 8.50000 1150 mV 1700 MHz 2.13 4.94 P-State 3: 7.00000 1125 mV 1400 MHz 1.75 3.28 P-State 4: 4.00000 1050 mV 800 MHz 1.00 1.00

Holger Brunst, Matthias Müller: Leistungsanalyse

AMD Istanbul CPU

Combining Benchmarking and Power Measurements

Relevant metric: Energy consumption per workload [Joule]

Find optimal working points for different workloads

0

10

20

30

40

50

60

70

80

wupwise swim mgrid applu galgel equake apsi gafort fma3d art

SPECompM on Intel Xeon X5570 Energy Consumption per Benchmark Run

1600 MHz 2000 MHz 2800 MHz 2933 MHz turbo

Daniel Hackenberg

Nöthnitzer Straße 46

Raum 1026

Tel. +49 351 - 463 - 35048

Holger Brunst ([email protected])

Matthias S. Mueller ([email protected])

Center for Information Services and High Performance Computing (ZIH)

Benchmarks

Nöthnitzer Straße 46

Raum 1026

Tel. +49 351 - 463 - 35048

Holger Brunst ([email protected])

Matthias S. Mueller ([email protected])

Center for Information Services and High Performance Computing (ZIH)

Green500

http://www.green500.org

Green 500 List (November 2011)

Holger Brunst, Matthias Müller: Leistungsanalyse

Trends in Energy Efficiency in Green500

Green500 List MFLOPS/W Site* Computer*

Nov 2007 357.23 Science and Technology Facilities Council - Daresbury Laboratory "Blue Gene/P Solution

June 2008 488.14 Fraunhofer ITWM

"BladeCenter QS22 Cluster, PowerXCell 8i 3.2 Ghz, Infiniband

Nov. 2008 536.24

Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw

"BladeCenter QS22 Cluster, PowerXCell 8i 4.0 Ghz, Infiniband

June 2009 536.24

Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw

"BladeCenter QS22 Cluster, PowerXCell 8i 4.0 Ghz, Infiniband

Nov. 2009 722.98 Forschungszentrum Juelich (FZJ)

QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus

June 2010 773.38 Forschungszentrum Juelich (FZJ)

QPACE SFB TR Cluster, PowerXCell 8i, 3.2 GHz, 3D-Torus

Nov. 2010 1684.20 IBM Thomas J. Watson Research Center NNSA/SC Blue Gene/Q Prototype

June 2011 2097.19 IBM Thomas J. Watson Research Center NNSA/SC Blue Gene/Q Prototype 2

Nov. 2011 2026.48 IBM - Rochester

BlueGene/Q, Power BQC 16C 1.60 GHz, Custom

Holger Brunst, Matthias Müller: Leistungsanalyse

Run rules for Green500

Holger Brunst, Matthias Müller: Leistungsanalyse

New run rules (5 pages) since Oct. 19, 2010

Assuming that

– (1) the computational workload during the Linpack benchmark is well-balanced across all units, and

– (2) all units are identical and consume the same amount of power for the same workload.

Power extrapolation: P = N · Punit : „Calculate total FLOPS/watt of the supercomputer by multiplying subcomponent’s FLOPS/watt by the number of “subcomponent” as defined in Section 1.O. „

Nöthnitzer Straße 46

Raum 1026

Tel. +49 351 - 463 - 35048

Holger Brunst ([email protected])

Matthias S. Mueller ([email protected])

Center for Information Services and High Performance Computing (ZIH)

SPEC power_ssj2008

SPEC Power and Performance Methodology

An introduction on power and performance metrics for computer systems

Guidance for Power and Performance benchmark development (existing and new

designs)

Methodology – captures the experience/conclusions of the SPECpower committee

since January 2006

http://www.spec.org/power_ssj2008/docs/SPECpower-Methodology.pdf

SPECpower_ssj2008 First industry standard benchmark that measures the power and performance

characteristics of server-class compute-equipment. A leap forward in power and

performance analysis of Enterprise Computer Servers

Released end of 2007

http://www.spec.org/power_ssj2008/

October 21, 2010 38

History of Power Metrics at SPEC

SPECpower_ssj2008 – First industry standard benchmark that measures the power and performance

characteristics of server-class compute-equipment. A leap forward in power and performance analysis of Enterprise Computer Servers

– Released end of 2007

– 190+ published results at SPEC

– Submission from 20 companies world-wide

– Over 4.5x energy efficiency gain since SPECpower_ssj2008 released • 698 - 3210 overall ssj_ops/watt

(best result from first submission cycle to the best current result)

– http://www.spec.org/power_ssj2008/

SPECweb2009 and SPECvirt_sc2010 – First industry standard benchmarks that measure the power and performance

characteristics of web serving compute-equipment and datacenter servers used in virtualized server consolidation.

39

SPEC power overview

Variable System Utilization

Holger Brunst, Matthias Müller: Leistungsanalyse

Metric of SPECpower_ssj2008

SPECpower_ssj2008 V1.10 - FDR

October 21, 2010 42

Trends in Energy Proportionality and Efficiency

System of 2007:

•Supermicro 6025B-TR+ (Intel Xeon processor L5335)

•799 ssj_ops/watt at 100% load

System of 2011:

•HP ProLiant DL165 G7 (AMD Opteron 6276 processor)

•3827 ssj_ops/watt at 100% load

Trend in Power Consumption (Peak vs. Idle)

Holger Brunst, Matthias Müller: Leistungsanalyse

Daniel Hackenberg

Summary SPECpower_ssj2008

Industry-standard benchmark that

– Evaluates the power and performance characteristics of

– Volume server class and multi-node class computers

Very mature benchmark methodology

– Dedicated power daemon for accepted power meters only

– Records current, voltage, power factor, temperature

– Very strict run rules

BUT

– Java Workload

– Strongly VM dependent

– Servers typically run Windows

Nöthnitzer Straße 46

Raum 1026

Tel. +49 351 - 463 - 35048

Holger Brunst ([email protected])

Matthias S. Mueller ([email protected])

Center for Information Services and High Performance Computing (ZIH)

Experiences with SPEC MPI

Daniel Hackenberg

What We Need

An HPC benchmark with a sophisticated power measurement methodology

SPEC MPI2007

– Industry-standard HPC benchmark

– Averages the results of 12 MPI applications that are common in HPC

– Medium data set scales up to 128 MPI ranks, runs up to 512 ranks

– Large data set scales up to 2048 ranks, tested up to 4096 ranks

Challenge:

– Companies probably do not want to measure each node

– We need run rules that ensure that hardware vendors do not cheat (too much)

Daniel Hackenberg

Test Equipment Overview

Test System: IBM iDataPlex

– 32 nodes, each with 12x 4 GB DDR3, 250 GB HDD, QDR IB

– 64x Intel Xeon E5530, 2.4 GHz, 80W TDP

– Turbo Boost up to 2.66 GHz, HyperThreading off

Power Meter

– 1x ZES LMG 450 (4 channel)

– 1x ZES LMG 95 (1 channel)

– Measuring compute nodes only, no switches, no I/O

Benchmark: SPEC MPI2007 V2.0

– medium data set

– Intel Compiler Suite 11.1, Open MPI 1.4.1

Test System & Power Measurements

Daniel Hackenberg

Test System & Power Measurements

Daniel Hackenberg

Daniel Hackenberg

Old vs. New

Comparing the power consumption of

– a 2005 LNXI dual core Opteron Cluster

– a 2010 IBM iDataPlex quad core Nehalem Cluster

Linpack 107.leslie3

d

104.milc Idle

Cluster 2005 100 % 92 % 87 % 65 %

Cluster 2010 100 % 83 % 71 % 26 %

Per-Node Power Consumption Variation: Idle

Daniel Hackenberg

11 W

7%

Idle variations become bigger as soon as you swap broken parts

We have seen >12% in our Opteron Cluster

Per-Node Power Consumption Variation: Linpack

Daniel Hackenberg

27 W

5%

Relative per-node power variation of idle and Linpack similar

Power Consumption Variation of 256 Intel Nehalem Cores

Daniel Hackenberg

100 %

70 %

26 %

83 %

Power Consumption Variation of an IB Switch

Daniel Hackenberg

0.2%

IB switch power consumption independent of the IB network traffic

Power Consumption Variation over Runtime

0

2000

4000

6000

8000

10000

50 100 150 200 250 300 350 400

Pow

er [W

atts

]

Time [s]

122.tachyon128.GAPgeofem

130.socorro

Daniel Hackenberg

130.socorro has a nice repetitive pattern (variation of ~1 KW)

128.GAPgeofem (Geophysical FEM) runs serial code for ~2/3 of the runtime

122.tachyon (ray tracing) has three groups of MPI ranks that differ in runtime due to the IB network setup

Power Measurement Software Infrastructure

IBM x iDataPlex

16

17

18

19

30

31

Switch

IBM x iDataPlex

0

1

2

3

14

15

Switch

Power Client

PTDaemon

LMG 95

PTDaemon

LMG 450

Node

Double Nodewith shared power supply

Voltage

RS 232

QDR Infiniband

Node 0-29 (240 cores) measured by one power meter

Node 30+31 (16 cores) measured by a second power meter

IB switch is powered separately

Daniel Hackenberg

Test Series

Daniel Hackenberg

Node0

Power

supply

Rank 0-7 Rank 8-15

Node1 Node28

Power

supply

Node29

Rank 224-231 Rank 232-239

Node30 Node31

Rank 240-247 Rank 248-255

Rank Group 0 Rank Group 14 Rank Group 15

LMG 95LMG 450

Rank 240-247 Rank 248-255 Rank 208-215 Rank 216-223 Rank 224-231 Rank 232-239

Rank Group 14

Setup 0

Setup 1

Rank Group 13Rank Group 15

Power

supply

Node2

Rank 16-23 Rank 24-31

Node3

Rank Group 1

Rank 0-7 Rank 8-15

Rank Group 0

Power

supply

16 MPI rank groups, each group has 16 MPI ranks

MPI rank groups cycle through the 16 double-nodes

rank group 15 measured separately

rank group 14 measured separately

Power Consumption of MPI Rank Groups

Daniel Hackenberg

84 W

17%

8 SPEC MPI2007 benchmarks show very small power variations

Power Consumption of MPI Rank Groups

Daniel Hackenberg

344 W

69%

4-5 SPEC MPI2007 benchmarks show significant power variations

Power Consumption Extrapolation Correctness

Daniel Hackenberg

There is no single MPI rank group that can be used for a good extrapolation

For SPEC MPI2007, using the first rank group(s) usually works (you do not underestimate, except for tachyon)

Daniel Hackenberg

Conclusions

Power consumption variations are growing, therefore

Power consumption extrapolation is difficult

We need industry standard HPC benchmarks that

– Include a power metric

– Have well-defined run rules

– Hopefully do not require companies to buy one power meter per node

SPEC OMP/MPI2007 aims to fill that gap

SPEC OMP currently in an early stage of defining run rules

SPEC MPI2007 will take a bit longer

Daniel Hackenberg

Conclusions

Power consumption variations are growing, therefore

Power consumption extrapolation is difficult

We need industry standard HPC benchmarks that

– Include a power metric

– Have well-defined run rules

– Hopefully do not require companies to buy one power meter per node

SPEC OMP/MPI2007 aims to fill that gap

SPEC OMP currently in an early stage of defining run rules

SPEC MPI2007 will take a bit longer

Daniel Hackenberg

Full Paper Available

http://www.springerlink.com/content/bg6j875q82161605/