center for music in the brain groove on the brain · center for music in the brain groove and the...

4
Groove on the brain rhythmic complexity and predictive coding Peter Vuust Director of Center for Music in the Brain (MIB) Professor at the Royal Academy of Mu s i c , Aa rhu s , De n ma rk Professor at Aarhus University PhD. in neuroscience,MSc. In math, French and music Bassist/composer DNC - Danish Neuroscience Center MR / fMRI PET MEG EEG RAMA Center for Music in the Brain Groove and the brain Humans move in time to music Humans move spontaneously to some kinds of music more than other (Madison et al 2006, Janata et al. 2012) Different body-parts embody different metrical levels in different spatial orientations (Toiviainen et al. 2010, Burger et al. 2012) Rhythmic complexity influences sensorimotor synchronisation(Repp 2005, 2013, Patel 2005, Keller et al. 2005, Konvali nka etal 2011, 2013, Hegg l iet al in prep) Rhythm perception involves auditory and motor areas of the brain Secondary motor areas, basal ganglia,cerebelum, superior temporal gyrus (Penhune et al. 1998, Vuust etal. 2005, Grahn et al 2007, 2011, Chen et al. 2008, Stupacher et al. 2012), inferior frontal gyrus, anterior cingulate, temporo-parietal junction (Vuust et a l. 2006, 2011) Potential for rehabilitation Parkinson’s disease (Thautet al. 1996, Benoit et al. 2014, Kotz et a l . 2 015) After stroke (Schneider et al. 2007, Altenmüller et al 2009) Relatively unique to human beings But see e.g. Patel et al. 2009 or Cook etal. 2013 Beat tracking is not simple Gra h n & Brett (2 0 0 7 ) Vuust et al (2011) Inferior frontal gyrus (BA47) Groove – The pleasurable desire to move What are the brain mechanisms related to groove? Which grooves engage us the most? Predictive coding of music ) ( ) ( ) | ( ) | ( input p model p model input p input model p = Vu u st & Witek 2 0 1 4 Geb a u er, Krin g elb a ch & Vu u st , 2 0 13 Vu u st et al., 2009 Vuust & Frith, 2008 1 3 2 4 Prediction and prediction error Prediction error 0 100 200 -50 0 50 100 fT/cm ms sΙ sΙΙ sΙΙΙ EEG Vuust et a l , Cortex ,2009

Upload: vandan

Post on 28-Apr-2018

222 views

Category:

Documents


2 download

TRANSCRIPT

Groove on the brainrhythmic complexity and predictive coding

Peter VuustDirector of Center for Music in the Brain (MIB)

Profes s or a t the Roy al Academy of Mus ic , Aarhus , DenmarkProfes s or a t Aarhus Univ ersi ty

PhD. in neuros c ienc e, MSc . In math, French and mus ic Bas s is t/c ompos er

DNC - Danish Neuroscience Center

MR / fMRI PET MEG EEG

RAMA

Center for Music in the Brain

Groove and the brain� Humans move in time to music

� Humans mov e s pontaneous ly to s ome k inds of mus ic more than other (Madis on et a l 2006, J anata et a l . 2012)

� Different body -parts embody d i fferent metric a l leve ls in d i fferent s patia l orientations (Toiv ia inen et a l . 2010, Burger e t a l . 2012)

� Rhy thmic c omplex i ty in fluenc es s ens orimotor s y nc hronisation(Repp 2005, 2013, Pate l 2005, Kel ler e t a l . 2005, Konv al ink a et a l 2011, 2013, Heggli et a l in prep)

� Rhythm perception involves auditory and motor areas of the brain� Sec ondary motor areas , bas al gangl ia , c erebellum, s uperior tempora l

gy rus (Penhune et a l . 1998, Vuus t e t a l . 2005, Grahn et a l 2007, 2011, Chen et a l . 2008, Stupac her et a l . 2012), in ferior fronta l gyrus , anterior c ingulate, temporo-parie ta l junc tion (Vuus t e t al . 2006, 2011)

� Potential for rehabilitation� Park ins on’s d is eas e (Thautet a l . 1996, Benoi t e t a l . 2014, Kotz et a l . 2015) � After s trok e (Sc hneider e t a l . 2007, Al tenmül ler et a l 2009)

� Relatively unique to human beings� But s ee e.g. Pate l e t a l . 2009 or Cook et a l . 2013 � Beat trac k ing is not s imple

Gra h n & Brett (2 0 0 7 )

Vu u st et a l (2 0 1 1 )

In ferior fronta l gy rus (BA47)

Groove – The pleasurable desire to move

What are the brain mechanisms related to groove?Which grooves engage us the most?

Predictive coding of music

)()()|()|( inputp

modelpmodelinputpinputmodelp =Vu u st & Witek 2 0 1 4

Geb a u er, Krin g elb a ch & Vu u st , 2 0 13Vu u st et a l. , 2 0 0 9

Vu u st & Frith , 2 0 0 8

1 32 4

Prediction and prediction error

Prediction error

0 100 200

-50

0

50

100 fT/c m

ms

s Ιs ΙΙs ΙΙΙ

EEG

Vuus t e t al , Cortex , 2009

The optimal amount of syncopation

• “How much does this rhythm makeyou want to move?”(1-5)

• “How much pleasure do you experience with this rhythm?” (1-5)

� Stimuli� 50 funk drum-breaks, � 80% taken from real grooves (funk/rock repertoire) 20% composed

by authors� Synthezised drum kit (BD, SD, HH)� 2-bar phrase, 4 repetitions, 120 bpm, 16 sec.

low medium high

Witek , Clark e, Wal lentin , Kringelbach, & Vuus t, PLoS One, 2014

Syncopation and groove

Wan

ting

to M

ove

Exp

erie

nce

of P

leas

ure

β=-.568 β=-.667

Simple Complex Simple Complex

MOVEMENT PLEASURE

There is a rhythmic sweet spot for pleasure and desire to move.

Syncopation Syncopation

low med high

Syncopation (𝑆 - g(µ))(amount of stimulusdeviation from the meter)

Meter experience (π )(precision of the prediction)

x

Explainable prederror(Musical appreciation?)

=

Relationship between syncopation and meter

26 Partic ipants

15 drum-break s:5 low5 medium5 h igh

Evidence for a broken predictive model(Motion Capture)

Meas ures :� Mov ement forc e (ac c eleration)� Sy nc hronis ation acc urac y (cros s-c orre la tion at main puls e)� Period ic i ty prominenc e (auto-corre la tion)Witek et a l, Exp Bra in Res. 2 0 1 7 , in Press,

Sync

hron

izat

ion

inde

x

SPM analysis (mean bold)

Low Medium High

Right*

Low Medium High

*

Low Medium High

**

Auditory Cortex Pallidum/Putamen Anterior Inferior Insula

0

2

4

6

Audition MotionEmotion

Challenging rhythms employ auditorymotor and sensory integration networks

Connectivity analysesHigher meta-stabilit y when the music grooves

EstimatedEffective connectiv ity

low medium high

Groove ratings

Deco & K ri ngel bach (2014) Neuron

???rhythmic complexity

rhythmic complexity

subj

ectiv

e g

roov

e

Low Medium High

ordered metastable random

L H

M

neural dynamics

Wi tek, Gi l son, Cl arke, Wal l ent i n, ,Deco, K ri ngel bach & V uust , 2017, submi t ted

The networks of groove

The connections lis ted in order of s ignificance (p<0.001, uncorrected)

L Hippocampus L PrecentralL Thalamus L PrecentralR Thalamus L Sup Motor AreaL Inf Occipital L Mid OrbitofrontalL Inf Occipital L ParahippocampalL Pallidum L Sup OccipitalL Supramarginal L PallidumL Thalamus L Mid TemporalR Amygdala R Mid TemporalL Post Cingulum R AmygdalaR Thalamus R Sup Motor AreaR Thalamus R Sup Frontal

123456789101112

A B

C D

Groove: The interaction between rhythmand harmony

HARMONY

RHYTHM

LOW

Major triads

MED

7th chords with tensions

HIGH

including b9-intervals

LOW(Clav e minus s y nc opation)

MEDClave

HIGHWrong Clave

Witek, Ma th ews, Heg g li, Lu n d , Pen h u ne & Vu u st, in p rep a ratio n

6 versions of each of the 9 categories (54 stimuli in total)

The influence of complexity on ”move” and ”pleasure”

Wanting to move

low med high

Pleasure

low med high

Online Survey201 respondents from five continents Task: to rate (1-5)

� wanting to move

� pleasure

Additionally, information on musical training, enjoyment of groove music and dancing was collected Ma th ews, Witek, Heg g li, Pen h u n e & Vu u st, in prep a ra tio n

Rhythmic complexity Rhythmic complexity

Data analysesLinear mixed effects (maximal random structure):

Interaction between group and complexity

Wanting to move

low med highRhythmic complexity P < .05

� Stimuli� 2 x 2 design (rhythmic and harmonic complexity (MM, MH, HM, HH)� Repeated piano chord patterns + hihat

� Participants� Musicians: N = 26� Non-music ians: N = 29

� Task: to rate (1-5)� wanting to move � pleasure� perceived beat strength

� fMRI � Multi-echo (2 echoes) BOLD fMRI� TR=2

� (DTI and facial EMG)

Brain processing of rhythmic and harmonic complexity

Ma th ews, Witek, Lu n d , Pen h u n e & Vu ust, in prep a ra tion

HARM O NY

RHYTHM

LO W

M ajor t r iads

M ED

7t h chor ds wit h t ensions

HI G H

including b9-int er vals

LO W( Clave m inus syncopat ion)

M EDClave

HI G HWr ong Clave

Ratings (1-5)

β

Wanting to Move

Rhy thm 0.6***

Harmony 0.1***

Group*Rhy thm*Harmony 0.03*

Pleasure

Rhy thm 0.6***

Harmony 0.2***

Group 0.01*

Group*Rhy thm*Harmony 0.02^

med highRhythmic complexity

med high med highRhythmic complexity

med high

*p < .05, **p < .01, ***p < .001, p̂ < .06

Data analysesLinear mixed effects (maximal random structure):

Extracted Betas

L Caudate

p < .05 (FDR)

R Putamen

Musician Non−Musician

Med High Med High−1.0−0.5

0.00.51.0

Rhythmic Complexity

L ve

ntra

l BG

Bet

as

Harmonic ComplexityMedHigh

Extracted Betas

med highRhythmic complexity

med high

Rhythmic complexitymed high

Basal ganglia activation

L SMAL PMC R PMC

L mOFC

L

Extracted Betas

med highRhythmic complexity

med high

−1

0

1

2

Med HighRhythmic Complexity

SMA Group

MusNon−Mus

Extracted Betas

med highRhythmic complexity

med high

OFC, PMC & SMA

Statistics

βR PutamenRhythm 0.13**L CaudateRhythmGroupGroup*Rhythm*Harm

0.13***0.05*0.03*

R CaudateRhythm 0.13***L SMARhythmGroup

0.09**0.06*

R PMCGroup 0.04*L mOFCRhythmGroup*Rhythm*Harm

0.08**0.03*

*p < .05, **p < .01, ***p < .001

Conclusions� The predictive coding model provides an elegant framework for interpreting brain

processing of music and informs our understanding of � The relationship between rhythm and meter� Motor behavior in relation to rhythm

� There is an inverted U-shaped relation between degree of syncopation and ”wanting to move”/”pleasure”. This U-shape is reflected in activ ity in measures of connectiv ity and meta-stability in the brain.

� The motor system seems to be driven by emotional and sensory systems a process that implicates reward areas of the brain.

� The clavé stimulus combining harmony and rhythm produces a strong sensation of groove in relation to medium syncopated rhythms compared to high and low complexity and involves motor and reward related brain activ ity.

� Musicians have more groove-related (pre)-motor activ ity than non-musicians

� Syncopation is not everything!

Thanks for listening . . .