centro de física de materiales

41
centro de física de materiales Non-adiabatic effects in the reactivity of molecules at metal surfaces CFM Ricardo Díez Muiño Centro de Física de Materiales Centro Mixto CSIC-UPV/EHU San Sebastián 1 st nanoICT Symposium Donostia – San Sebastian, February 26 2008

Upload: oceana

Post on 09-Feb-2016

44 views

Category:

Documents


6 download

DESCRIPTION

centro de física de materiales. CFM. Non-adiabatic effects in the reactivity of molecules at metal surfaces. Ricardo Díez Muiño Centro de Física de Materiales Centro Mixto CSIC-UPV/EHU San Sebastián. 1 st nanoICT Symposium Donostia – San Sebastian, February 26 2008. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: centro de física de materiales

centro de física de materiales

Non-adiabatic effects in the reactivity of molecules at metal surfaces

CFM

Ricardo Díez MuiñoCentro de Física de MaterialesCentro Mixto CSIC-UPV/EHU

San Sebastián

1st nanoICT SymposiumDonostia – San Sebastian, February 26 2008

Page 2: centro de física de materiales

centro de física de materiales

contributors to this work

CFM

H. Fabio BusnengoUniversidad de Rosario

Argentina

Maite AlducinCFM San Sebastián

Spain

Antoine SalinUniversité de Bordeaux

France

J. Iñaki JuaristiUPV San Sebastián

Spain

Gisela BocanDIPC San Sebastián

Spain

Fernando MingoCFM San Sebastián

Spain

Page 3: centro de física de materiales

centro de física de materiales

outline

- introduction

- surface face and reactivity

- non-adiabatic effects: electronic excitations

- conclusions

CFM

Page 4: centro de física de materiales

centro de física de materialesCFM

What is catalysis? The effect produced in facilitating a chemical reaction, by the presence of a substance, which itself undergoes no permanent change.

A+B P direct reactionA+B+C P+C catalyzed reaction

A and B are reactantsC is the catalyst

P is the reaction product

A+B

P

gas/solid interfaces and heterogeneous catalysis

Page 5: centro de física de materiales

centro de física de materialesCFM

What is catalysis? The effect produced in facilitating a chemical reaction, by the presence of a substance, which itself undergoes no permanent change.

A+B P direct reactionA+B+C P+C catalyzed reaction

A and B are reactantsC is the catalyst

P is the reaction product

A+B

P

gas/solid interfaces and heterogeneous catalysis

Heterogeneous catalysis: The catalyst is in a different phase solid surfaces.

Page 6: centro de física de materiales

centro de física de materialesCFM

What is catalysis? The effect produced in facilitating a chemical reaction, by the presence of a substance, which itself undergoes no permanent change.

A+B

P

gas/solid interfaces and heterogeneous catalysis

Heterogeneous catalysis: The catalyst is in a different phase solid surfaces.

The chinese symbol for catalyst

is the same as the one for marriage broker

(matchmaker)

Page 7: centro de física de materiales

centro de física de materialesCFM

ammonia synthesis: 3H2(g) + N2 (g) ↔ 2NH3(g) (catalyzed by Fe surface)

global context: chemical industry

world production: 130 million tons (year 2000),

~200US$/ton

Page 8: centro de física de materiales

centro de física de materialesCFM

Catalysis in car industry:

In car engines, CO, NO, and NO2 are formed.

Catalytic converters reduce such emissions by adsorbing CO and NO onto a catalytic surface, where the gases undergo a redox reaction.

CO2 and N2 are desorbed from the surface and emitted as relatively harmless gases:

2CO + 2NO → 2CO2 + N2

global context: car industry

Page 9: centro de física de materiales

centro de física de materiales

catalysis and nanoscale

CFM

- in the nanoscale, chemical properties can be changed - tunability of electronic properties (optimization of reactivity)

Page 10: centro de física de materiales

centro de física de materiales

catalysis and nanoscale

CFM

In general, Au is a noble metal, the most inert bulk metal.

The chemical properties of Au dramatically change in the nanoscale. For instance, Au can act as a catalyst and transform CO into CO2 when it comes in the form of nanoparticles.

- in the nanoscale, chemical properties can be changed - tunability of electronic properties (optimization of reactivity)

Au as a catalyst

Page 11: centro de física de materiales

centro de física de materiales

outline

- introduction

- surface face and reactivity- non-adiabatic effects: electronic excitations

- conclusions

CFM

Page 12: centro de física de materiales

centro de física de materialesCFM

Fe (111)

Fe (100)Fe (110)

rates of ammonia synthesis over five iron single-crystal surfaces

surface face and reactivityN2 + 3H2 2NH3

Page 13: centro de física de materiales

centro de física de materialesCFM

stic

king

coe

ffici

ent S

0

0.25 0.50 0.75 1.000.00

0.25

0.50

0.75

1.00

W(100)

T=800K

T=300K

T=100K

impact energy Ei (eV)

no threshold threshold

normal incidence

Rettner et al. (1988)Beutl et al. (1997)

surface face and reactivity: measurements of N2 dissociation on W surfaces

0.25 0.50 0.75 1.000.00

0.25

0.50

0.75

1.00

W(110)

T=800K

Pfnür et al. (1986)Rettner et al. (1990)

Page 14: centro de física de materiales

unidad de física de materialesUFM

theoretical method

In our particular case:

- DFT - GGA (PW91) calculation with VASP

- Plane-wave basis set and US pseudopotentials

- periodic supercell: 5-layer slab and 2x2 surface cell

- 30 configurations = 5610 ab-initio values

- interpolation through the corrugation reducing procedure [Busnengo et al., JCP 112, 7641 (2000)]

- adiabatic calculation of the molecule / surface interaction through a multidimensional potential energy surface (PES)

- classical dynamics in the adiabatic PES

Page 15: centro de física de materiales

centro de física de materialesCFM

0.0 0.5 1.0 1.5 2.0 2.50.0

0.1

0.2

0.3

0.4

0.5 N2/W(110)i=0

0.5 1.0 1.5 2.0 2.5

N2/W(110)i=60

impact energy Ei (eV)

stic

king

coe

ffici

ent S

0

Pfnür et al. (1986)Rettner et al. (1990)

classical dynamics in the 6D-PES

Page 16: centro de física de materiales

centro de física de materialesCFM

0.0 0.5 1.0 1.5 2.0 2.50.0

0.1

0.2

0.3

0.4

0.5 N2/W(110)i=0

0.5 1.0 1.5 2.0 2.5

N2/W(110)i=60

impact energy Ei (eV)

stic

king

coe

ffici

ent S

0

Alducin et al., PRL 97, 056102 (2006); JCP 125, 144705 (2006)

classical dynamics in the 6D-PES

Pfnür et al. (1986)Rettner et al. (1990)

theory

Page 17: centro de física de materiales

unidad de física de materiales

for thermal energies, long distances matter

UFM

0 25 50 75 1000.00

0.25

0.50

0.75

1.00

final

Z=2.0

Z=3.25

W(110)

final

Z=2.0

Z=3.25

W(100)

impact energy Ei (meV)

prob

abili

ity o

f rea

chin

g Z

Z=2Å

Z=3.5Å

1 1 .2 1 .4 1 .6 1 .8 2 2 .2

1 .5

2

2 .5

3

3 .5

4

=0o

r(Å)

Z(Å

)

potential wellW(110)

potential well

Alducin et al., PRL 97, 056102 (2006)

Page 18: centro de física de materiales

centro de física de materialesCFM

Difficult access to the precursor well

Once in the precursor well, molecules easily dissociate

in summary, dynamics matters

Page 19: centro de física de materiales

centro de física de materiales

outline

- introduction

- surface face and reactivity

- non-adiabatic effects: electronic excitations- conclusions

CFM

Page 20: centro de física de materiales

centro de física de materialesCFM

non-adiabatic effects: electron-hole pair excitationschemicurrents

Exposure (ML)

Gergen et al., Science 294, 2521 (2001).

vibrational promotion of electron transfer

Huang et al., Science 290, 111 (2000) White et al., Nature 433, 503 (2005)

NO on Cs/Au(111)electron emission asa function of initial

vibrational state

Page 21: centro de física de materiales

centro de física de materialesCFM

non-adiabatic effects: electron-hole pair excitations

friction of a single chemisorbed CO molecule

Takaoka et al., PRL 100, 046104 (2008).

CO on Pt(997)migration to step edges

electron excitationduring H2 dissociation

Nieto et al., Science 312, 86 (2006).

H2 on Pt(111)sticking coefficient

Page 22: centro de física de materiales

centro de física de materialesCFM

description of electronic excitations by a friction coefficient

classical equations of motion

mi(d2ri/dt2)=-dV(ri,rj)/d(ri) – (ri)(dri/dt)

for each atom “i” in the molecule

friction coefficient

adiabaticforce:

6D DFT PES

- damping of adsorbate vibrations: Persson and Hellsing, PRL49, 662 (1982)

- dynamics of atomic adsorption Trail, Bird, et al., JCP119, 4539 (2003)

previously used for:friction coefficient:

effective medium approximation

n(z)

z

n0

bulk metal

n0

=n0kFtr(kF)

effective medium: FEG with electronic density n0

Page 23: centro de física de materiales

centro de física de materialesCFM

probability of dissociative adsorption: N2 on W(110)

non-adiabatic

adiabatic

stic

king

coe

ffici

ent

initial kinetic energy (eV)

polar angle of incidence

i=0

i=45

i=60

0.2

0.4

0.2

0.4

0.5 1.0 1.5 2.0 2.50.0

0.1

0.2

0.3

but for this system, dissociation is

roughly decided atZ=2.5A

Juaristi et al., PRL 2008 (in press)

Page 24: centro de física de materiales

centro de física de materialesCFM

probability of dissociative adsorption: H2 on Cu(110)

[Salin, JCP 124, 104704 (2006)]

non-adiabatic

adiabatic

0.25

0.50

0.75

1.00

0.25

0.50

0.75

stic

king

coe

ffici

ent

initial kinetic energy (eV)0.5 1.0 1.5 2.0

0.00

0.02

0.04

0.06

polar angle of incidence

i=0

i=45

i=60

Juaristi et al., PRL 2008 (in press)

Page 25: centro de física de materiales

centro de física de materialesCFM

classical equations of motion

mi(d2ri/dt2)=-dV(ri,rj)/d(ri) – (ri)(dri/dt)

for each atom “i” in the molecule

friction coefficient velocity

n(z)

z

n0

bulk metal

Page 26: centro de física de materiales

centro de física de materialesCFM

Juaristi et al., PRL 2008 (in press)

energy loss of reflected molecules: N2 on W(110)

i=0i=45i=60

energy losses in the reflected molecules due to electronic excitations are < 100 meV

Ei=1.5 eV

Page 27: centro de física de materiales

centro de física de materiales

some conclusions

CFM

the reactivity of diatomic molecules on surfaces

can be very dependent on the particular surface face

a local description of the friction coefficient shows that

electronic excitations play a minor role

in the dissociation of diatomic molecules on metal surfaces

in the particular case of N2/W, we have shown

that the differences in reactivity arise from the

dynamics at long distances (>3 Å) from the surface

Page 28: centro de física de materiales

centro de física de materialesCFM

thank you for your attention1st nanoICT Symposium

Donostia – San Sebastian, February 26 2008

Page 29: centro de física de materiales

centro de física de materiales

gas/surface dynamics

CFM

dissociative adsorption

molecularadsorptiondesorption

some elementary reactive processes at surfaces

from the fundamental point of view, the goal is to understand how solid surfaces and nanostructures can be used to promote gas-phase chemical reactions

Page 30: centro de física de materiales

centro de física de materialesCFM

surface face and reactivity

- surface roughness (work function)- unique active sites at the surface

two possible reasons for the difference in reactivityover different faces:

the rate-limiting step in ammonia formation is the dissociative adsorption of N2 on the surface

Page 31: centro de física de materiales

centro de física de materialesCFM

surface face and reactivity

- surface roughness (work functions)- unique active sites at the surface

two possible reasons for the difference in reactivityover different faces:

the rate-limiting step in ammonia formation is the dissociative adsorption of N2 on the surface

most reactive surfaces have C7 sites

(seven nearest neighbors)

Page 32: centro de física de materiales

unidad de física de materiales

for thermal energies, long distances matter

UFM

0 25 50 75 1000.00

0.25

0.50

0.75

1.00

final

Z=2.0

Z=3.25

W(110)

final

Z=2.0

Z=3.25

W(100)

The amount of N2 molecules thatare able to reach

Z=3.25 Å is much smaller

in the W(110) face

Z=2Å

Z=3.25Å

impact energy Ei (meV)

prob

abili

ity o

f rea

chin

g Z

Page 33: centro de física de materiales

unidad de física de materialesUFM

W(100) W(110)

adsorption energyDFT = 7.4 eV

Exp. = 6.6-7 eVadsorption distance

DFT = 0.63 Å

adsorption energyDFT = 6.8 eVExp. = 6.6 eV

adsorption distanceDFT = 1.15 Å

final state features: N adsorption on W

Page 34: centro de física de materiales

unidad de física de materiales

approach to surface: vertical over a surface atom

2.62Z(Å): 2.5

1091 meV

223 meV

868 meV

2.651.9Z(Å):

705 meV

395 meV

310 meV

W(100) W(110)

dynamic trapping in a well in both faces

Page 35: centro de física de materiales

unidad de física de materiales

for thermal energies, long distances matter

UFM

0 25 50 75 1000.00

0.25

0.50

0.75

1.00

final

Z=2.0

Z=3.25

W(100)

Z=2Å

Z=3.25Å

impact energy Ei (meV)

prob

abili

ity o

f rea

chin

g Z

Page 36: centro de física de materiales

unidad de física de materialesUFM

1 1 .2 1 .4 1 .6 1 .8 2 2 .2

1 .5

2

2 .5

3

3 .5

4

1 1 .2 1 .4 1 .6 1 .8 2 2 .2

1 .5

2

2 .5

3

3 .5

4

1 1 .2 1 .4 1 .6 1 .8 2 2 .2

1 .5

2

2 .5

3

3 .5

4

1 1 .2 1 .4 1 .6 1 .8 2 2 .2

1 .5

2

2 .5

3

3 .5

4

=45o

=270o

=90o

125o=90o

54o

=0o

r(Å) r(Å)

r(Å)r(Å)

Z(Å

)Z(

Å)

Z(Å)

Z(Å

)

some elbow plots

for the N2/W(110)

system

distance between contour lines = 0.2eV

E<0

E>0E=0

Page 37: centro de física de materiales

Today's key factors in the development of chemical processes are the concepts of "zero-waste" and "100

% selectivity".

In the field of catalysis, the chemistry at interphases, referred to as heterogeneous catalysis,

is promising to achieve both goals.

Page 38: centro de física de materiales
Page 39: centro de física de materiales

centro de física de materialesCFM

accuracy of adiabatic DFT calculations

Kohn-Sham equations solved self-consistently

exchange-correlation term

is not exact

Hammer et al., PRB 59, 7413 (1999)

RPBE functionalprovides better

atomic chemisorptionenergies

Page 40: centro de física de materiales

centro de física de materialesCFM

influence of the exchange correlation functional in the sticking coefficient: N2/W(110)

Pfnür et al., JCP 85 7452 (1986)

0,5 1,0 1,5 2,0 2,50,0

0,1

0,2

0,3

0,4

0,5

0,0 0,5 1,0 1,5 2,0 2,50,0

0,1

0,2

0,3

0,4

0,5

polar angle of incidence

i=0

polar angle of incidence

i=60

stic

king

coe

ffici

ent

initial kinetic energy (eV)

PW91

the RPBE XC functional:

- fits better the experimental chemisorption energies- describes better the interaction very near the metallic surface

- but better dynamics??

not in this case!0,5 1,0 1,5 2,0 2,5

0,0

0,1

0,2

0,3

0,4

0,5

0,0 0,5 1,0 1,5 2,0 2,50,0

0,1

0,2

0,3

0,4

0,5

RPBE

Bocan et al., JCP 2008 (in press)

Page 41: centro de física de materiales

centro de física de materialesCFM