ce(sat) series fifth generation · 4 igw30n65l5 low vce(sat) series fifth generation rev. 2.1,...

14
IGBT Low VCE(sat) IGBT in TRENCHSTOP TM 5 technology IGW30N65L5 650V IGBT Low VCE(sat) series fifth generation Data sheet Industrial Power Control

Upload: others

Post on 27-Jan-2021

0 views

Category:

Documents


0 download

TRANSCRIPT

  • IGBTLow�VCE(sat)�IGBT�in�TRENCHSTOPTM��5�technology

    IGW30N65L5650V�IGBT�Low�VCE(sat)�series�fifth�generation

    Data�sheet

    Industrial�Power�Control

  • 2

    IGW30N65L5Low�VCE(sat)�series�fifth�generation

    Rev.�2.1,��2014-12-10

    Low�VCE(sat)�IGBT�in�TRENCHSTOPTM��5�technology�Features�and�Benefits:

    Low�VCE(sat)�L5�technology�offering•�Very�low�collector-emitter�saturation�voltage�VCEsat•�Best-in-Class�tradeoff�between�conduction�and�switching�losses•�650V�breakdown�voltage•�Low�gate�charge�QG•�Maximum�junction�temperature�175°C•�Qualified�according�to�JEDEC�for�target�applications•�Pb-free�lead�plating•�RoHS�compliant•�Complete�product�spectrum�and�PSpice�models:http://www.infineon.com/igbt/

    Applications:

    •�Uninterruptible�power�supplies•�Solar�photovoltaic�inverters•�Welding�machines

    G

    C

    E

    GC

    E

    Key�Performance�and�Package�ParametersType VCE IC VCEsat,�Tvj=25°C Tvjmax Marking PackageIGW30N65L5 650V 30A 1.05V 175°C G30EL5 PG-TO247-3

  • 3

    IGW30N65L5Low�VCE(sat)�series�fifth�generation

    Rev.�2.1,��2014-12-10

    Table�of�Contents

    Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

    Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

    Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Thermal Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    Electrical Characteristics Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

    Package Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

    Testing Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12

    Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

    Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

  • 4

    IGW30N65L5Low�VCE(sat)�series�fifth�generation

    Rev.�2.1,��2014-12-10

    Maximum�RatingsFor�optimum�lifetime�and�reliability,�Infineon�recommends�operating�conditions�that�do�not�exceed�80%�of�the�maximum�ratings�stated�in�this�datasheet.

    Parameter Symbol Value UnitCollector-emitter�voltage,�Tvj�≥�25°C VCE 650 VDC�collector�current,�limited�by�TvjmaxTC�=�25°C�value�limited�by�bondwireTC�=�100°C

    IC 85.062.0

    A

    Pulsed�collector�current,�tp�limited�by�Tvjmax1) ICpuls 120.0 ATurn off safe operating areaVCE�≤�650V,�Tvj�≤�175°C,�tp�=�1µs1) - 120.0 A

    Gate-emitter voltageTransient�Gate-emitter�voltage�(tp�≤�10µs,�D�

  • 5

    IGW30N65L5Low�VCE(sat)�series�fifth�generation

    Rev.�2.1,��2014-12-10

    Electrical�Characteristic,�at�Tvj�=�25°C,�unless�otherwise�specified

    Valuemin. typ. max.

    Parameter Symbol Conditions Unit

    Dynamic�Characteristic

    Input capacitance Cies - 4900 -Output capacitance Coes - 42 -Reverse transfer capacitance Cres - 18 -

    VCE�=�25V,�VGE�=�0V,�f�=�1MHz pF

    Gate charge QG VCC�=�520V,�IC�=�30.0A,VGE�=�15V - 168.0 - nC

    Internal emitter inductancemeasured 5mm (0.197 in.) fromcase

    LE - 13.0 - nH

    Switching�Characteristic,�Inductive�Load

    Valuemin. typ. max.

    Parameter Symbol Conditions Unit

    IGBT�Characteristic,�at�Tvj�=�25°CTurn-on delay time td(on) - 33 - nsRise time tr - 11 - nsTurn-off delay time td(off) - 308 - nsFall time tf - 51 - nsTurn-on energy Eon - 0.47 - mJTurn-off energy Eoff - 1.35 - mJTotal switching energy Ets - 1.82 - mJ

    Tvj�=�25°C,VCC�=�400V,�IC�=�30.0A,VGE�=�0.0/15.0V,RG(on)�=�10.0Ω,�RG(off)�=�10.0Ω,Lσ�=�60nH,�Cσ�=�30pFLσ,�Cσ�from�Fig.�EEnergy losses include “tail” anddiode reverse recovery. Diode: IDW30E65D1.

    Switching�Characteristic,�Inductive�Load

    Valuemin. typ. max.

    Parameter Symbol Conditions Unit

    IGBT�Characteristic,�at�Tvj�=�150°CTurn-on delay time td(on) - 31 - nsRise time tr - 13 - nsTurn-off delay time td(off) - 370 - nsFall time tf - 150 - nsTurn-on energy Eon - 0.68 - mJTurn-off energy Eoff - 2.18 - mJTotal switching energy Ets - 2.86 - mJ

    Tvj�=�150°C,VCC�=�400V,�IC�=�30.0A,VGE�=�0.0/15.0V,RG(on)�=�10.0Ω,�RG(off)�=�10.0Ω,Lσ�=�60nH,�Cσ�=�30pFLσ,�Cσ�from�Fig.�EEnergy losses include “tail” anddiode reverse recovery. Diode: IDW30E65D1.

  • 6

    IGW30N65L5Low�VCE(sat)�series�fifth�generation

    Rev.�2.1,��2014-12-10

    Figure 1. Forward�bias�safe�operating�area(D=0,�TC=25°C,�Tvj≤175°C,�VGE=15V,�tp=1µs,ICmax�defined�by�design�-�not�subject�toproduction test)

    VCE,�COLLECTOR-EMITTER�VOLTAGE�[V]

    IC,�C

    OLLECTO

    R�CURRENT�[A]

    1 10 100 10000.1

    1

    10

    100

    not for linear use

    Figure 2. Power�dissipation�as�a�function�of�casetemperature(Tvj≤175°C)

    TC,�CASE�TEMPERATURE�[°C]

    Ptot ,�POWER�DISSIPATION�[W

    ]

    25 50 75 100 125 150 1750

    25

    50

    75

    100

    125

    150

    175

    200

    225

    250

    Figure 3. Collector�current�as�a�function�of�casetemperature(VGE≥15V,�Tvj≤175°C)

    TC,�CASE�TEMPERATURE�[°C]

    IC,�C

    OLLECTO

    R�CURRENT�[A]

    25 50 75 100 125 150 1750

    10

    20

    30

    40

    50

    60

    70

    80

    90

    Figure 4. Typical�output�characteristic(Tvj=25°C)

    VCE,�COLLECTOR-EMITTER�VOLTAGE�[V]

    IC,�C

    OLLECTO

    R�CURRENT�[A]

    0.0 0.5 1.0 1.5 2.0 2.5 3.00

    10

    20

    30

    40

    50

    60

    70

    80

    90VGE = 20V

    18V

    15V

    12V

    10V

    8V

    7V

    6V

  • 7

    IGW30N65L5Low�VCE(sat)�series�fifth�generation

    Rev.�2.1,��2014-12-10

    Figure 5. Typical�output�characteristic(Tvj=175°C)

    VCE,�COLLECTOR-EMITTER�VOLTAGE�[V]

    IC,�C

    OLLECTO

    R�CURRENT�[A]

    0.0 0.5 1.0 1.5 2.0 2.5 3.00

    10

    20

    30

    40

    50

    60

    70

    80

    90VGE = 20V

    18V

    15V

    12V

    10V

    8V

    7V

    6V

    5V

    Figure 6. Typical�transfer�characteristic(VCE=20V)

    VGE,�GATE-EMITTER�VOLTAGE�[V]

    IC,�C

    OLLECTO

    R�CURRENT�[A]

    2 3 4 5 6 7 8 90

    10

    20

    30

    40

    50

    60

    70

    80

    90Tvj�=�25°CTvj�=�150°C

    Figure 7. Typical�collector-emitter�saturation�voltage�asa�function�of�junction�temperature(VGE=15V)

    Tvj,�JUNCTION�TEMPERATURE�[°C]

    VCEsat ,�COLLECTO

    R-EMITTE

    R�SATU

    RATION�[V

    ]

    25 50 75 100 125 150 1750.500

    0.625

    0.750

    0.875

    1.000

    1.125

    1.250IC�=�7.5AIC�=�15AIC�=�30A

    Figure 8. Typical�switching�times�as�a�function�ofcollector�current(inductive�load,�Tvj=150°C,�VCE=400V,VGE=0/15V,�RG(on)=10Ω,�RG(off)=10Ω,�dynamictest circuit in Figure E)

    IC,�COLLECTOR�CURRENT�[A]

    t,�SWITCHING�TIMES�[ns]

    0 10 20 30 40 50 60 70 80 901

    10

    100

    1000

    td(off)tftd(on)tr

  • 8

    IGW30N65L5Low�VCE(sat)�series�fifth�generation

    Rev.�2.1,��2014-12-10

    Figure 9. Typical�switching�times�as�a�function�of�gateresistance(inductive�load,�Tvj=150°C,�VCE=400V,VGE=0/15V,�IC=30A,�dynamic�test�circuit�inFigure E)

    RG,�GATE�RESISTANCE�[Ω]

    t,�SWITCHING�TIMES�[ns]

    0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.01

    10

    100

    1000

    td(off)tftd(on)tr

    Figure 10. Typical�switching�times�as�a�function�ofjunction�temperature(inductive�load,�VCE=400V,�VGE=0/15V,IC=30A,�RG(on)=10Ω,�RG(off)=10Ω,�dynamictest circuit in Figure E)

    Tvj,�JUNCTION�TEMPERATURE�[°C]

    t,�SWITCHING�TIMES�[ns]

    25 50 75 100 125 150 1751

    10

    100

    1000td(off)tftd(on)tr

    Figure 11. Gate-emitter�threshold�voltage�as�a�functionof�junction�temperature(IC=0.4mA)

    Tvj,�JUNCTION�TEMPERATURE�[°C]

    VGE(th

    ) ,�GATE

    -EMITTE

    R�THRESHOLD

    �VOLT

    AGE�[V

    ]

    25 50 75 100 125 150 1751

    2

    3

    4

    5

    6

    7typ.min.max.

    Figure 12. Typical�switching�energy�losses�as�afunction�of�collector�current(inductive�load,�Tvj=150°C,�VCE=400V,VGE=0/15V,�RG(on)=10Ω,�RG(off)=10Ω,dynamic test circuit in Figure E)

    IC,�COLLECTOR�CURRENT�[A]

    E,�S

    WITCHING�ENERGY�LOSSES�[m

    J]

    0 10 20 30 40 50 60 70 80 900

    1

    2

    3

    4

    5

    6

    7EoffEonEts

  • 9

    IGW30N65L5Low�VCE(sat)�series�fifth�generation

    Rev.�2.1,��2014-12-10

    Figure 13. Typical�switching�energy�losses�as�afunction�of�gate�resistance(inductive�load,�Tvj=150°C,�VCE=400V,VGE=0/15V,�IC=30A,�dynamic�test�circuit�inFigure E)

    RG,�GATE�RESISTANCE�[Ω]

    E,�S

    WITCHING�ENERGY�LOSSES�[m

    J]

    0 10 20 30 40 50 60 700.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5EoffEonEts

    Figure 14. Typical�switching�energy�losses�as�afunction�of�junction�temperature(inductive�load,�VCE=400V,�VGE=0/15V,IC=30A,�RG(on)=10Ω,�RG(off)=10Ω,�dynamictest circuit in Figure E)

    Tvj,�JUNCTION�TEMPERATURE�[°C]

    E,�S

    WITCHING�ENERGY�LOSSES�[m

    J]

    25 50 75 100 125 150 1750.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5EoffEonEts

    Figure 15. Typical�switching�energy�losses�as�afunction�of�collector�emitter�voltage(inductive�load,�Tvj=150°C,�VGE=0/15V,IC=30A,�RG(on)=10Ω,�RG(off)=10Ω,�dynamictest circuit in Figure E)

    VCE,�COLLECTOR-EMITTER�VOLTAGE�[V]

    E,�S

    WITCHING�ENERGY�LOSSES�[m

    J]

    200 250 300 350 400 450 5000.0

    0.4

    0.8

    1.2

    1.6

    2.0

    2.4

    2.8

    3.2

    3.6EoffEonEts

    Figure 16. Typical�gate�charge(IC=30A)

    QG,�GATE�CHARGE�[nC]

    VGE,�G

    ATE

    -EMITTE

    R�VOLT

    AGE�[V

    ]

    0 20 40 60 80 100 120 140 160 1800

    2

    4

    6

    8

    10

    12

    14

    16VCC�=�130VVCC�=�520V

  • 10

    IGW30N65L5Low�VCE(sat)�series�fifth�generation

    Rev.�2.1,��2014-12-10

    Figure 17. Typical�capacitance�as�a�function�ofcollector-emitter�voltage(VGE=0V,�f=1MHz)

    VCE,�COLLECTOR-EMITTER�VOLTAGE�[V]

    C,�C

    APACITANCE�[pF]

    0 5 10 15 20 25 3010

    100

    1000

    1E+4CiesCoesCres

    Figure 18. IGBT�transient�thermal�impedance(D=tp/T)

    tp,�PULSE�WIDTH�[s]

    Zth(j -c

    ) ,�TR

    ANSIENT�TH

    ERMAL�IMPEDANCE�[K

    /W]

    1E-6 1E-5 1E-4 0.001 0.01 0.10.01

    0.1

    1

    D = 0.5

    0.2

    0.1

    0.05

    0.02

    0.01

    single pulse

    i:ri[K/W]:τi[s]:

    10.0107022.0E-5

    20.1550562.2E-4

    30.1729372.0E-3

    40.2901730.011473

    50.0271360.092564

    62.2E-31.827121

  • 11

    IGW30N65L5Low�VCE(sat)�series�fifth�generation

    Rev.�2.1,��2014-12-10

    PG-TO247-3

  • 12

    IGW30N65L5Low�VCE(sat)�series�fifth�generation

    Rev.�2.1,��2014-12-10

    t

    a b

    td(off)

    tf trtd(on)

    90% IC

    10% IC

    90% IC

    10% VGE

    10% IC

    t

    90% VGE

    t

    t

    90% VGE

    VGE

    (t)

    t

    t

    tt1 t4

    2% IC

    10% VGE

    2% VCE

    t2 t3

    E

    t

    t

    V I toff

    = x x d

    1

    2

    CE C E

    t

    t

    V I ton

    = x x d

    3

    4

    CE C

    CC

    dI /dtF

    dI

    I,V

    Figure A.

    Figure B.

    Figure C. Definition of diode switchingcharacteristics

    Figure E. Dynamic test circuit

    Figure D.

    I (t)C

    Parasitic inductance L ,

    parasitic capacitor C ,

    relief capacitor C ,

    (only for ZVT switching)

    s

    s

    r

    t t t

    Q Q Qrr a b

    rr a b

    = +

    = +

    Qa Qb

    V (t)CE

    VGE

    (t)

    I (t)C

    V (t)CE

  • 13

    IGW30N65L5

    Low VCE(sat) series fifth generation

    Rev. 2.1, 2014-12-10

    Revision History

    IGW30N65L5

    Revision: 2014-12-10, Rev. 2.1

    Previous Revision

    Revision Date Subjects (major changes since last revision)

    2.1 2014-12-10 Final data sheet

    We Listen to Your CommentsAny information within this document that you feel is wrong, unclear or missing at all?Your feedback will help us to continuously improve the quality of this document.Please send your proposal (including a reference to this document) to: [email protected]

    Published byInfineon Technologies AG81726 Munich, Germany81726 München, Germany© 2014 Infineon Technologies AGAll Rights Reserved.

    Legal DisclaimerThe information given in this document shall in no event be regarded as a guarantee of conditions or characteristics.With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding theapplication of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind,including without limitation, warranties of non-infringement of intellectual property rights of any third party.

    InformationFor further information on technology, delivery terms and conditions and prices, please contact the nearest InfineonTechnologies Office (www.infineon.com).

    WarningsDue to technical requirements, components may contain dangerous substances. For information on the types inquestion, please contact the nearest Infineon Technologies Office.The Infineon Technologies component described in this Data Sheet may be used in life-support devices or systemsand/or automotive, aviation and aerospace applications or systems only with the express written approval of InfineonTechnologies, if a failure of such components can reasonably be expected to cause the failure of that life-support,automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Lifesupport devices or systems are intended to be implanted in the human body or to support and/or maintain and sustainand/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may beendangered.

  • Mouser Electronics

    Authorized Distributor

    Click to View Pricing, Inventory, Delivery & Lifecycle Information: Infineon: IGW30N65L5XKSA1

    https://www.mouser.com/infineonhttps://www.mouser.com/access/?pn=IGW30N65L5XKSA1

    Table of ContentsMaximum RatingsThermal ResistanceElectrical Characteristics (Static)Electrical Characteristics (Dynamic)Switching Characteristic, Inductive Load, at Tj lowDiode Characteristic, at Tj lowSwitching Characteristic, Inductive Load, at Tj highDiode Characteristic, at Tj highChartsChartsChartsChartsChartsPackage DrawingTesting ConditionsRevision HistoryDisclaimer