ch 4.4: variation of parameters

8
Ch 4.4: Variation of Parameters The variation of parameters method can be used to find a particular solution of the nonhomogeneous nth order linear differential equation provided g is continuous. As with 2 nd order equations, begin by assuming y 1 , y 2 …, y n are fundamental solutions to homogeneous equation. Next, assume the particular solution Y has the form where u 1 , u 2 ,… u n are functions to be solved for. In order to find these n functions, we need n equations. ), ( ) ( ) ( ) ( 1 ) 1 ( 1 ) ( t g y t p y t p y t p y y L n n n n ) ( ) ( ) ( ) ( ) ( ) ( ) ( 2 2 1 1 t y t u t y t u t y t u t Y n n

Upload: nomlanga-fitzgerald

Post on 01-Jan-2016

51 views

Category:

Documents


0 download

DESCRIPTION

Ch 4.4: Variation of Parameters. The variation of parameters method can be used to find a particular solution of the nonhomogeneous n th order linear differential equation provided g is continuous. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Ch 4.4: Variation of Parameters

Ch 4.4: Variation of Parameters

The variation of parameters method can be used to find a particular solution of the nonhomogeneous nth order linear differential equation

provided g is continuous.

As with 2nd order equations, begin by assuming y1, y2 …, yn are fundamental solutions to homogeneous equation.

Next, assume the particular solution Y has the form

where u1, u2,… un are functions to be solved for.

In order to find these n functions, we need n equations.

),()()()( 1)1(

1)( tgytpytpytpyyL nn

nn

)()()()()()()( 2211 tytutytutytutY nn

Page 2: Ch 4.4: Variation of Parameters

Variation of Parameters Derivation (2 of 5)

First, consider the derivatives of Y:

If we require

then

Thus we next require

Continuing in this way, we require

and hence

nnnn yuyuyuyuyuyuY 22112211

02211 nn yuyuyu

nnnn yuyuyuyuyuyuY 22112211

02211 nn yuyuyu

1,,1,0)1()1(2

)1(11 2

nkyuyuyu kn

kk

n

1,,1,0,)()(11

)( nkyuyuY knn

kk

Page 3: Ch 4.4: Variation of Parameters

Variation of Parameters Derivation (3 of 5)

From the previous slide,

Finally,

Next, substitute these derivatives into our equation

Recalling that y1, y2 …, yn are solutions to homogeneous equation, and after rearranging terms, we obtain

)()(11

)1()1(11

)( nnn

nnnn

nn yuyuyuyuY

1,,1,0,)()(11

)( nkyuyuY knn

kk

gyuyu nnn

n )1()1(11

)()()()( 1)1(

1)( tgytpytpytpy nn

nn

Page 4: Ch 4.4: Variation of Parameters

Variation of Parameters Derivation (4 of 5)

The n equations needed in order to find the n functions u1, u2,… un are

Using Cramer’s Rule, for each k = 1, …, n,

and Wk is determinant obtained by replacing k th column of W with (0, 0, …, 1).

gyuyu

yuyu

yuyu

nnn

n

nn

n

)1()1(11

11

111

0

0

))(,,()( where,)(

)()()( 1 tyyWtW

tW

tWtgtu n

kk

Page 5: Ch 4.4: Variation of Parameters

Variation of Parameters Derivation (5 of 5)

From the previous slide,

Integrate to obtain u1, u2,… un:

Thus, a particular solution Y is given by

where t0 is arbitrary.

nktW

tWtgtu k

k ,,1,)(

)()()(

nkdssW

sWsgtu

t

t

kk ,,1,

)(

)()()(

0

n

kk

t

t

k tydssW

sWsgtY

1

)()(

)()()(

0

Page 6: Ch 4.4: Variation of Parameters

Example (1 of 3)

Consider the equation below, along with the given solutions of corresponding homogeneous solutions y1, y2, y3:

Then a particular solution of this ODE is given by

It can be shown that

tttt etytetyetyeyyyy )(,)(,)(, 3212

3

1

2

)()(

)()(

0kk

t

t

ks

tydssW

sWetY

t

ttt

ttt

ttt

e

eete

eete

etee

tW 4

2

1)(

Page 7: Ch 4.4: Variation of Parameters

Example (2 of 3)

Also,

t

tt

tt

tt

tt

tt

tt

tt

tt

tt

e

ete

ete

tee

tW

ee

ee

ee

tW

t

eet

eet

ete

tW

12

01

0

)(

2

1

0

0

)(

12

21

10

0

)(

3

2

1

Page 8: Ch 4.4: Variation of Parameters

Example (3 of 3)

Thus a particular solution is

Choosing t0 = 0, we obtain

More simply,

t

t

st

t

t

st

t

t

st

t

t s

sstt

t s

stt

t s

st

kk

t

t

ks

dsee

dsete

dssee

dse

eeeds

e

eteds

e

see

tydssW

sWetY

000

000

0

4

2222

3

1

2

4212

4

44

2

4

12

)()(

)()(

tttt eeteetY 2

3

1

12

1

2

1

4

1)(

tetY 2

3

1)(