ch 6 fatigue

45
Budynas−Nisbett: Shigley’s Mechanical Engineering Design, Eighth Edition II. Failure Prevention 6. Fatigue Failure Resulting from Variable Loading 260 © The McGraw−Hill Companies, 2008 6 Fatigue Failure Resulting from Variable Loading Chapter Outline 6–1 Introduction to Fatigue in Metals 258 6–2 Approach to Fatigue Failure in Analysis and Design 264 6–3 Fatigue-Life Methods 265 6–4 The Stress-Life Method 265 6–5 The Strain-Life Method 268 6–6 The Linear-Elastic Fracture Mechanics Method 270 6–7 The Endurance Limit 274 6–8 Fatigue Strength 275 6–9 Endurance Limit Modifying Factors 278 6–10 Stress Concentration and Notch Sensitivity 287 6–11 Characterizing Fluctuating Stresses 292 6–12 Fatigue Failure Criteria for Fluctuating Stress 295 6–13 Torsional Fatigue Strength under Fluctuating Stresses 309 6–14 Combinations of Loading Modes 309 6–15 Varying, Fluctuating Stresses; Cumulative Fatigue Damage 313 6–16 Surface Fatigue Strength 319 6–17 Stochastic Analysis 322 6–18 Road Maps and Important Design Equations for the Stress-Life Method 336 257 Budynas−Nisbett: Shigley’s Mechanical Engineering Design, Eighth Edition II. Failure Prevention 6. Fatigue Failure Resulting from Variable Loading 261 © The McGraw−Hill Companies, 2008 258 Mechanical Engineering Design In Chap. 5 we considered the analysis and design of parts subjected to static loading. The behavior of machine parts is entirely different when they are subjected to time- varying loading. In this chapter we shall examine how parts fail under variable loading and how to proportion them to successfully resist such conditions. 6–1 Introduction to Fatigue in Metals In most testing of those properties of materials that relate to the stress-strain diagram, the load is applied gradually, to give sufficient time for the strain to fully develop. Furthermore, the specimen is tested to destruction, and so the stresses are applied only once. Testing of this kind is applicable, to what are known as static conditions; such conditions closely approximate the actual conditions to which many structural and machine members are subjected. The condition frequently arises, however, in which the stresses vary with time or they fluctuate between different levels. For example, a particular fiber on the surface of a rotating shaft subjected to the action of bending loads undergoes both tension and com- pression for each revolution of the shaft. If the shaft is part of an electric motor rotating at 1725 rev/min, the fiber is stressed in tension and compression 1725 times each minute. If, in addition, the shaft is also axially loaded (as it would be, for example, by a helical or worm gear), an axial component of stress is superposed upon the bending component. In this case, some stress is always present in any one fiber, but now the level of stress is fluctuating. These and other kinds of loading occurring in machine members produce stresses that are called variable, repeated, alternating, or fluctuating stresses. Often, machine members are found to have failed under the action of repeated or fluctuating stresses; yet the most careful analysis reveals that the actual maximum stresses were well below the ultimate strength of the material, and quite frequently even below the yield strength. The most distinguishing characteristic of these failures is that the stresses have been repeated a very large number of times. Hence the failure is called a fatigue failure. When machine parts fail statically, they usually develop a very large deflection, because the stress has exceeded the yield strength, and the part is replaced before fracture actually occurs. Thus many static failures give visible warning in advance. But a fatigue failure gives no warning! It is sudden and total, and hence dangerous. It is relatively sim- ple to design against a static failure, because our knowledge is comprehensive. Fatigue is a much more complicated phenomenon, only partially understood, and the engineer seek- ing competence must acquire as much knowledge of the subject as possible. A fatigue failure has an appearance similar to a brittle fracture, as the fracture sur- faces are flat and perpendicular to the stress axis with the absence of necking. The frac- ture features of a fatigue failure, however, are quite different from a static brittle fracture arising from three stages of development. Stage I is the initiation of one or more micro- cracks due to cyclic plastic deformation followed by crystallographic propagation extending from two to five grains about the origin. Stage I cracks are not normally dis- cernible to the naked eye. Stage II progresses from microcracks to macrocracks forming parallel plateau-like fracture surfaces separated by longitudinal ridges. The plateaus are generally smooth and normal to the direction of maximum tensile stress. These surfaces can be wavy dark and light bands referred to as beach marks or clamshell marks, as seen in Fig. 6–1. During cyclic loading, these cracked surfaces open and close, rubbing together, and the beach mark appearance depends on the changes in the level or fre- quency of loading and the corrosive nature of the environment. Stage III occurs during the final stress cycle when the remaining material cannot support the loads, resulting in

Upload: neymar

Post on 30-Jan-2016

219 views

Category:

Documents


0 download

DESCRIPTION

Materi kuliah fatigue

TRANSCRIPT

Page 1: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

260

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

6Fa

tigue

Failu

re R

esultin

gfr

om

Vari

able

Loadin

g

Chapte

r O

utlin

e

6–1

Intro

duct

ion

to F

atig

ue in

Met

als

25

8

6–2

App

roac

h to

Fat

igue

Fai

lure

in A

naly

sis a

nd D

esig

n264

6–3

Fatig

ue-Li

fe M

etho

ds265

6–4

The

Stre

ss-Li

fe M

etho

d265

6–5

The

Stra

in-Li

fe M

etho

d268

6–6

The

Linea

r-Ela

stic

Frac

ture

Mec

hani

cs M

etho

d270

6–7

The

Endu

ranc

e Lim

it274

6–8

Fatig

ue S

treng

th275

6–9

Endu

ranc

e Lim

it M

odify

ing

Fact

ors

278

6–1

0St

ress

Con

cent

ratio

n an

d N

otch

Sen

sitiv

ity287

6–1

1C

hara

cter

izin

g Fl

uctu

atin

g St

ress

es292

6–1

2Fa

tigue

Fai

lure

Crit

eria

for F

luct

uatin

g St

ress

295

6–1

3To

rsio

nal F

atig

ue S

treng

th u

nder

Flu

ctua

ting

Stre

sses

309

6–1

4C

ombi

natio

ns o

f Loa

ding

Mod

es309

6–1

5Va

ryin

g, F

luct

uatin

g St

ress

es;

Cum

ulat

ive

Fatig

ue D

amag

e313

6–1

6Su

rface

Fat

igue

Stre

ngth

319

6–1

7St

ocha

stic

Ana

lysis

322

6–1

8Ro

ad M

aps

and

Impo

rtant

Des

ign

Equa

tions

for t

he S

tress

-Life

Met

hod

336

25

7

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

261

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

25

8M

echa

nica

l Eng

inee

ring

Des

ign

In C

hap.

5 w

e co

nsid

ered

the

ana

lysi

s an

d de

sign

of

part

s su

bjec

ted

to s

tatic

loa

ding

.T

he b

ehav

ior

of m

achi

ne p

arts

is

entir

ely

diff

eren

t w

hen

they

are

sub

ject

ed t

o tim

e-va

ryin

g lo

adin

g. I

n th

is c

hapt

er w

e sh

all e

xam

ine

how

par

ts f

ail u

nder

var

iabl

e lo

adin

gan

d ho

w to

pro

port

ion

them

to s

ucce

ssfu

lly r

esis

t suc

h co

nditi

ons.

6–1

Intr

oduct

ion t

o F

atigue

in M

etals

In m

ost

test

ing

of t

hose

pro

pert

ies

of m

ater

ials

tha

t re

late

to

the

stre

ss-s

trai

n di

agra

m,

the

load

is

appl

ied

grad

ually

, to

giv

e su

ffici

ent

time

for

the

stra

in t

o fu

lly d

evel

op.

Furt

herm

ore,

the

spec

imen

is te

sted

to d

estr

uctio

n, a

nd s

o th

e st

ress

es a

re a

pplie

d on

lyon

ce.

Test

ing

of t

his

kind

is

appl

icab

le,

to w

hat

are

know

n as

sta

tic

cond

itio

ns;

such

cond

ition

s cl

osel

y ap

prox

imat

e th

e ac

tual

con

ditio

ns t

o w

hich

man

y st

ruct

ural

and

mac

hine

mem

bers

are

sub

ject

ed.

The

cond

ition

freq

uent

lyar

ises

,ho

wev

er,

inw

hich

the

stre

sses

vary

with

tim

e or

they

fluct

uate

betw

een

diff

eren

t le

vels

.For

exam

ple,

apa

rtic

ular

fiber

onth

esu

rfac

eof

aro

tatin

gsh

afts

ubje

cted

toth

eac

tion

ofbe

ndin

glo

ads

unde

rgoe

sbo

thte

nsio

nan

dco

m-

pres

sion

for

each

revo

lutio

nof

the

shaf

t.If

the

shaf

tis

part

ofan

elec

tric

mot

orro

tatin

gat

1725

rev/

min

,the

fiber

isst

ress

edin

tens

ion

and

com

pres

sion

1725

times

each

min

ute.

If,i

nad

ditio

n,th

esh

afti

sal

soax

ially

load

ed(a

sit

wou

ldbe

,for

exam

ple,

bya

helic

alor

wor

mge

ar),

anax

ialc

ompo

nent

ofst

ress

issu

perp

osed

upon

the

bend

ing

com

pone

nt.

Inth

isca

se,s

ome

stre

ssis

alw

ays

pres

enti

nan

yon

efib

er,b

utno

wth

ele

velo

fst

ress

isflu

ctua

ting.

The

sean

dot

her

kind

sof

load

ing

occu

rrin

gin

mac

hine

mem

bers

prod

uce

stre

sses

that

are

calle

dva

riab

le,r

epea

ted,

alte

rnat

ing,

orflu

ctua

ting

stre

sses

.O

ften

, mac

hine

mem

bers

are

fou

nd t

o ha

ve f

aile

d un

der

the

actio

n of

rep

eate

d or

fluct

uatin

g st

ress

es;

yet

the

mos

t ca

refu

l an

alys

is r

evea

ls t

hat

the

actu

al m

axim

umst

ress

es w

ere

wel

l bel

ow th

e ul

timat

e st

reng

th o

f th

e m

ater

ial,

and

quite

fre

quen

tly e

ven

belo

w th

e yi

eld

stre

ngth

. The

mos

t dis

tingu

ishi

ng c

hara

cter

istic

of

thes

e fa

ilure

s is

that

the

stre

sses

hav

e be

en r

epea

ted

a ve

ry la

rge

num

ber

of ti

mes

. Hen

ce th

e fa

ilure

is c

alle

da

fati

gue

fail

ure.

Whe

nm

achi

nepa

rts

fail

stat

ical

ly,

they

usua

llyde

velo

pa

very

larg

ede

flect

ion,

beca

use

the

stre

ssha

sex

ceed

edth

eyi

eld

stre

ngth

,and

the

part

isre

plac

edbe

fore

frac

ture

actu

ally

occu

rs.T

hus

man

yst

atic

failu

res

give

visi

ble

war

ning

inad

vanc

e.B

uta

fatig

uefa

ilure

give

sno

war

ning

!Iti

ssu

dden

and

tota

l,an

dhe

nce

dang

erou

s.It

isre

lativ

ely

sim

-pl

eto

desi

gnag

ains

tast

atic

failu

re,b

ecau

seou

rkno

wle

dge

isco

mpr

ehen

sive

.Fat

igue

isa

muc

hm

ore

com

plic

ated

phen

omen

on,o

nly

part

ially

unde

rsto

od,a

ndth

een

gine

erse

ek-

ing

com

pete

nce

mus

tacq

uire

asm

uch

know

ledg

eof

the

subj

ecta

spo

ssib

le.

A f

atig

ue f

ailu

re h

as a

n ap

pear

ance

sim

ilar

to a

bri

ttle

frac

ture

, as

the

frac

ture

sur

-fa

ces

are

flat a

nd p

erpe

ndic

ular

to th

e st

ress

axi

s w

ith th

e ab

senc

e of

nec

king

. The

fra

c-tu

re f

eatu

res

of a

fat

igue

fai

lure

, how

ever

, are

qui

te d

iffe

rent

fro

m a

sta

tic b

rittl

e fr

actu

rear

isin

g fr

om th

ree

stag

es o

f de

velo

pmen

t. St

age

Iis

the

initi

atio

n of

one

or

mor

e m

icro

-cr

acks

due

to

cycl

ic p

last

ic d

efor

mat

ion

follo

wed

by

crys

tallo

grap

hic

prop

agat

ion

exte

ndin

g fr

om t

wo

to fi

ve g

rain

s ab

out

the

orig

in. S

tage

I c

rack

s ar

e no

t no

rmal

ly d

is-

cern

ible

to th

e na

ked

eye.

Sta

ge I

Ipr

ogre

sses

fro

m m

icro

crac

ks to

mac

rocr

acks

for

min

gpa

ralle

l pla

teau

-lik

e fr

actu

re s

urfa

ces

sepa

rate

d by

long

itudi

nal r

idge

s. T

he p

late

aus

are

gene

rally

sm

ooth

and

nor

mal

to th

e di

rect

ion

of m

axim

um te

nsile

str

ess.

The

se s

urfa

ces

can

be w

avy

dark

and

ligh

t ban

ds r

efer

red

to a

s be

ach

mar

ksor

clam

shel

l mar

ks,a

s se

enin

Fig

. 6–

1. D

urin

g cy

clic

loa

ding

, th

ese

crac

ked

surf

aces

ope

n an

d cl

ose,

rub

bing

toge

ther

, an

d th

e be

ach

mar

k ap

pear

ance

dep

ends

on

the

chan

ges

in t

he l

evel

or

fre-

quen

cy o

f lo

adin

g an

d th

e co

rros

ive

natu

re o

f th

e en

viro

nmen

t. St

age

III

occu

rs d

urin

gth

e fin

al s

tres

s cy

cle

whe

n th

e re

mai

ning

mat

eria

l can

not s

uppo

rt th

e lo

ads,

res

ultin

g in

Page 2: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

262

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g25

9

Figure

6–1

Fatig

ue fa

ilure

of a

bol

t due

tore

peat

ed u

nidi

rect

iona

lbe

ndin

g. T

he fa

ilure

sta

rted

atth

e th

read

root

at A

,pr

opag

ated

acr

oss

mos

t of

the

cros

s se

ctio

n sh

own

byth

e be

ach

mar

ks a

t B,

befo

refin

al fa

st fra

ctur

e at

C.

(Fro

mA

SMH

andb

ook,

Vol

. 12

:Fr

acto

grap

hy,

ASM

Inte

r-na

tiona

l, M

ater

ials

Park

, OH

4407

3-00

02, fi

g 50

, p. 1

20.

Repr

inte

d by

perm

issi

on o

fA

SM In

tern

atio

nal ®

,w

ww

.asm

inte

rnat

iona

l.org

.)

1 See

the

ASM

Han

dboo

k, F

ract

ogra

phy,

ASM

Int

erna

tiona

l, M

etal

s Pa

rk, O

hio,

vol

. 12,

9th

ed.

, 198

7.

a su

dden

, fa

st f

ract

ure.

A s

tage

III

fra

ctur

e ca

n be

bri

ttle,

duc

tile,

or

a co

mbi

natio

n of

both

. Qui

te o

ften

the

beac

h m

arks

, if t

hey

exis

t, an

d po

ssib

le p

atte

rns

in th

e st

age

III f

rac-

ture

cal

led

chev

ron

lines

,poi

nt to

war

d th

e or

igin

s of

the

initi

al c

rack

s.T

here

is

a go

od d

eal

to b

e le

arne

d fr

om t

he f

ract

ure

patte

rns

of a

fat

igue

fai

lure

.1

Figu

re 6

–2 s

how

s re

pres

enta

tions

of

failu

re s

urfa

ces

of v

ario

us p

art

geom

etri

es u

nder

diff

erin

g lo

ad c

ondi

tions

and

lev

els

of s

tres

s co

ncen

trat

ion.

Not

e th

at,

in t

he c

ase

ofro

tatio

nal b

endi

ng, e

ven

the

dire

ctio

n of

rot

atio

n in

fluen

ces

the

failu

re p

atte

rn.

Fatig

ue f

ailu

re is

due

to c

rack

for

mat

ion

and

prop

agat

ion.

A f

atig

ue c

rack

will

typ-

ical

ly i

nitia

te a

t a

disc

ontin

uity

in

the

mat

eria

l w

here

the

cyc

lic s

tres

s is

a m

axim

um.

Dis

cont

inui

ties

can

aris

e be

caus

e of

:

•D

esig

n of

rap

id c

hang

es i

n cr

oss

sect

ion,

key

way

s, h

oles

, etc

. whe

re s

tres

s co

ncen

-tr

atio

ns o

ccur

as

disc

usse

d in

Sec

s. 3

–13

and

5–2.

•E

lem

ents

that

roll

and/

orsl

ide

agai

nst

each

othe

r(b

eari

ngs,

gear

s,ca

ms,

etc.

)un

der

high

cont

actp

ress

ure,

deve

lopi

ngco

ncen

trat

edsu

bsur

face

cont

acts

tres

ses

(Sec

.3–1

9)th

atca

nca

use

surf

ace

pitti

ngor

spal

ling

afte

rm

any

cycl

esof

the

load

.

•C

arel

essn

ess

in lo

catio

ns o

f st

amp

mar

ks, t

ool m

arks

, scr

atch

es, a

nd b

urrs

; poo

r jo

int

desi

gn; i

mpr

oper

ass

embl

y; a

nd o

ther

fab

rica

tion

faul

ts.

•C

ompo

sitio

n of

the

mat

eria

l its

elf a

s pr

oces

sed

by ro

lling

, for

ging

, cas

ting,

ext

rusi

on,

draw

ing,

hea

t tre

atm

ent,

etc.

Mic

rosc

opic

and

sub

mic

rosc

opic

sur

face

and

sub

surf

ace

disc

ontin

uitie

s ar

ise,

suc

h as

incl

usio

ns o

f fo

reig

n m

ater

ial,

allo

y se

greg

atio

n, v

oids

,ha

rd p

reci

pita

ted

part

icle

s, a

nd c

ryst

al d

isco

ntin

uitie

s.

Var

ious

cond

ition

sth

atca

nac

cele

rate

crac

kin

itiat

ion

incl

ude

resi

dual

tens

ilest

ress

es,

elev

ated

tem

pera

ture

s,te

mpe

ratu

recy

clin

g,a

corr

osiv

een

viro

nmen

t,an

dhi

gh-f

requ

ency

cycl

ing.

The

rate

and

dir

ectio

n of

fatig

ue c

rack

pro

paga

tion

is p

rim

arily

con

trol

led

by lo

cal-

ized

str

esse

s an

d by

the

str

uctu

re o

f th

e m

ater

ial

at t

he c

rack

. H

owev

er,

as w

ith c

rack

form

atio

n, o

ther

fac

tors

may

exe

rt a

sig

nific

ant

influ

ence

, su

ch a

s en

viro

nmen

t, te

m-

pera

ture

, and

fre

quen

cy. A

s st

ated

ear

lier,

crac

ks w

ill g

row

alo

ng p

lane

s no

rmal

to

the

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

263

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

260

Mec

hani

cal E

ngin

eerin

g D

esig

n

Figure

6–2

Sche

mat

ics

of fa

tigue

frac

ture

surfa

ces

prod

uced

in s

moo

than

d no

tche

d co

mpo

nent

s w

ithro

und

and

rect

angu

lar c

ross

sect

ions

und

er v

ario

us lo

adin

gco

nditi

ons

and

nom

inal

stre

ssle

vels.

(Fro

m A

SM H

andb

ook,

Vol.

11: F

ailu

re A

naly

sis a

ndPr

even

tion,

ASM

Inte

rnat

iona

l,M

ater

ials

Park

, OH

4407

3-00

02, fi

g 18

, p. 1

11.

Repr

inte

d by

per

miss

ion

ofA

SM In

tern

atio

nal®

,w

ww

.asm

inte

rnat

iona

l.org

.)

Page 3: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

264

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g261

Figure

6–3

Fatig

ue fr

actu

re o

f an

AIS

I43

20 d

rive

shaf

t. Th

e fa

tigue

failu

re in

itiat

ed a

t the

end

of

the

keyw

ay a

t poi

nts

Ban

dpr

ogre

ssed

to fi

nal r

uptu

re a

tC

. The

fina

l rup

ture

zon

e is

smal

l, in

dica

ting

that

load

sw

ere

low

. (Fr

omA

SMH

andb

ook,

Vol

.11:

Fai

lure

Ana

lysis

and

Pre

vent

ion,

ASM

Inte

rnat

iona

l, M

ater

ials

Park

,O

H 4

4073

-000

2, fi

g 18

, p.

111

. Rep

rinte

d by

perm

issio

n of

ASM

Inte

rnat

iona

l ®,

ww

w.a

smin

tern

atio

nal.o

rg.)

Figure

6–4

Fatig

ue fr

actu

re s

urfa

ce o

f an

AIS

I 864

0 pi

n. S

harp

cor

ners

of th

e m

ism

atch

ed g

reas

eho

les

prov

ided

stre

ssco

ncen

tratio

ns th

at in

itiat

edtw

o fa

tigue

cra

cks

indi

cate

dby

the

arro

ws.

(Fro

mA

SMH

andb

ook,

Vol

.12:

Frac

togr

aphy

,ASM

Inte

rnat

iona

l, M

ater

ials

Park

,O

H 4

4073

-000

2, fi

g 52

0,p.

331

. Rep

rinte

d by

perm

issio

n of

ASM

Inte

rnat

iona

l ®,

ww

w.a

smin

tern

atio

nal.o

rg.)

max

imum

ten

sile

str

esse

s. T

he c

rack

gro

wth

pro

cess

can

be

expl

aine

d by

fra

ctur

em

echa

nics

(se

e Se

c. 6

–6).

A

maj

or

refe

renc

e so

urce

in

th

e st

udy

of

fatig

ue

failu

re

is

the

21-v

olum

e A

SMM

etal

s H

andb

ook.

Fig

ures

6–1

to

6–8,

rep

rodu

ced

with

per

mis

sion

fro

m A

SMIn

tern

atio

nal,

are

but

a m

inus

cule

sam

ple

of e

xam

ples

of

fatig

ue f

ailu

res

for

a gr

eat

vari

ety

of c

ondi

tions

incl

uded

in th

e ha

ndbo

ok. C

ompa

ring

Fig

. 6–3

with

Fig

. 6–2

, we

see

that

fai

lure

occ

urre

d by

rot

atin

g be

ndin

g st

ress

es,

with

the

dir

ectio

n of

rot

atio

nbe

ing

cloc

kwis

e w

ith r

espe

ct t

o th

e vi

ew a

nd w

ith a

mild

str

ess

conc

entr

atio

n an

d lo

wno

min

al s

tres

s.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

265

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

262

Mec

hani

cal E

ngin

eerin

g D

esig

n

Figure

6–5

Fatig

ue fr

actu

re s

urfa

ce o

f afo

rged

con

nect

ing

rod

of A

ISI

8640

ste

el. T

he fa

tigue

cra

ckor

igin

is a

t the

left

edge

, at t

hefla

sh li

ne o

f the

forg

ing,

but

no

unus

ual r

ough

ness

of t

he fl

ash

trim

was

indi

cate

d. T

hefa

tigue

cra

ck p

rogr

esse

dha

lfway

aro

und

the

oil h

ole

atth

e le

ft, in

dica

ted

by th

ebe

ach

mar

ks, b

efor

e fin

al fa

stfra

ctur

e oc

curre

d. N

ote

the

pron

ounc

ed s

hear

lip

in th

efin

al fr

actu

re a

t the

righ

t edg

e.(F

rom

ASM

Han

dboo

k,

Vol.

12: F

ract

ogra

phy,

ASM

Inte

rnat

iona

l, M

ater

ials

Park

,O

H 4

4073

-000

2, fi

g 52

3,

p. 3

32. R

eprin

ted

bype

rmiss

ion

of A

SMIn

tern

atio

nal ®

,w

ww

.asm

inte

rnat

iona

l.org

.)

Figure

6–6

Fatig

ue fr

actu

re s

urfa

ce o

f a 2

00-m

m (8

-in) d

iam

eter

pist

on ro

d of

an

allo

yste

el s

team

ham

mer

use

d fo

r for

ging

. Thi

s is

an e

xam

ple

of a

fatig

ue fr

actu

reca

used

by

pure

tens

ion

whe

re s

urfa

ce s

tress

con

cent

ratio

ns a

re a

bsen

t and

a cr

ack

may

initi

ate

anyw

here

in th

e cr

oss

sect

ion.

In th

is in

stanc

e, th

e in

itial

crac

k fo

rmed

at a

forg

ing

flake

slig

htly

bel

ow c

ente

r, gr

ew o

utw

ard

sym

met

rical

ly, a

nd u

ltim

atel

y pr

oduc

ed a

brit

tle fr

actu

re w

ithou

t war

ning

.(F

rom

ASM

Han

dboo

k, V

ol.1

2: F

ract

ogra

phy,

ASM

Inte

rnat

iona

l, M

ater

ials

Park

, OH

4407

3-00

02, fi

g 57

0, p

. 342

. Rep

rinte

d by

per

miss

ion

of A

SMIn

tern

atio

nal ®

, ww

w.a

smin

tern

atio

nal.o

rg.)

Page 4: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

266

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g263

Figure

6–7

Fatig

ue fa

ilure

of a

n A

STM

A18

6 ste

el d

oubl

e-fla

nge

traile

r whe

el c

ause

d by

sta

mp

mar

ks. (

a) C

oke-

oven

car

whe

el s

how

ing

posit

ion

ofsta

mp

mar

ks a

nd fr

actu

res

in th

e rib

and

web

. (b)

Sta

mp

mar

k sh

owin

g he

avy

impr

essio

n an

d fra

ctur

e ex

tend

ing

alon

g th

e ba

se o

f the

low

erro

w o

f num

bers

. (c)

Not

ches

, ind

icat

ed b

y ar

row

s, c

reat

ed fr

om th

e he

avily

inde

nted

sta

mp

mar

ks fr

om w

hich

cra

cks

initi

ated

alo

ng th

e to

pat

the

fract

ure

surfa

ce. (

From

ASM

Han

dboo

k, V

ol.1

1: F

ailu

re A

naly

sis a

nd P

reve

ntio

n,A

SM In

tern

atio

nal,

Mat

eria

ls Pa

rk, O

H 4

4073

-00

02, fi

g 51

, p. 1

30. R

eprin

ted

by p

erm

issio

n of

ASM

Inte

rnat

iona

l ®, w

ww

.asm

inte

rnat

iona

l.org

.)

Alu

min

um a

lloy

7075

-T73

Roc

kwel

l B 8

5.5

Ori

gina

l des

ign

10.2

00

A

Lug

(1 o

f 2)

25.5

4.94

Frac

ture

3.62

dia

Seco

ndar

yfr

actu

re

1.75

0-in

.-di

abu

shin

g,0.

090-

in. w

all

Prim

ary-

frac

ture

surf

ace

Lub

rica

tion

hole

1 in

Lub

rica

tion

hole

Impr

oved

des

ign

Det

ail A

(a)

Figure

6–8

Alu

min

um a

lloy

7075

-T73

land

ing-

gear

torq

ue-a

rmas

sem

bly

rede

sign

to e

limin

ate

fatig

ue fr

actu

re a

t a lu

bric

atio

nho

le. (

a) A

rm c

onfig

urat

ion,

orig

inal

and

impr

oved

des

ign

(dim

ensio

ns g

iven

in in

ches

).(b

) Fra

ctur

e su

rface

whe

rear

row

s in

dica

te m

ultip

le c

rack

orig

ins.

(Fro

mA

SMH

andb

ook,

Vol

. 11:

Fai

lure

Ana

lysis

and

Pre

vent

ion,

ASM

Inte

rnat

iona

l, M

ater

ials

Park

,O

H 4

4073

-000

2, fi

g 23

, p.

114

. Rep

rinte

dby

perm

issio

n of

ASM

Inte

rnat

iona

l ®,

ww

w.a

smin

tern

atio

nal.o

rg.)

Med

ium

-car

bon

stee

l(A

STM

A18

6)

(a)

Cok

e-ov

en-c

ar w

heel

Web

30 d

ia

Flan

ge(1

of

2)Fr

actu

re

Tre

adFr

actu

re

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

267

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

264

Mec

hani

cal E

ngin

eerin

g D

esig

n

6–2

Appro

ach

toFa

tigue

Failu

rein

Analy

sis

and

Des

ign

As

note

d in

the

pre

viou

s se

ctio

n, t

here

are

a g

reat

man

y fa

ctor

s to

be

cons

ider

ed, e

ven

for

very

sim

ple

load

cas

es. T

he m

etho

ds o

f fa

tigue

fai

lure

ana

lysi

s re

pres

ent

a co

mbi

-na

tion

of e

ngin

eeri

ng a

nd s

cien

ce. O

ften

sci

ence

fai

ls to

pro

vide

the

com

plet

e an

swer

sth

at a

re n

eede

d. B

ut th

e ai

rpla

ne m

ust s

till b

e m

ade

to fl

y—sa

fely

. And

the

auto

mob

ilem

ust b

e m

anuf

actu

red

with

a r

elia

bilit

y th

at w

ill e

nsur

e a

long

and

trou

blef

ree

life

and

at t

he s

ame

time

prod

uce

profi

ts f

or t

he s

tock

hold

ers

of t

he i

ndus

try.

Thu

s, w

hile

sci

-en

ce h

as n

ot y

et c

ompl

etel

y ex

plai

ned

the

com

plet

e m

echa

nism

of

fatig

ue, t

he e

ngin

eer

mus

t stil

l des

ign

thin

gs th

at w

ill n

ot f

ail.

In a

sen

se th

is is

a c

lass

ic e

xam

ple

of th

e tr

uem

eani

ng o

f en

gine

erin

g as

con

tras

ted

with

sci

ence

. Eng

inee

rs u

se s

cien

ce to

sol

ve th

eir

prob

lem

s if

the

sci

ence

is

avai

labl

e. B

ut a

vaila

ble

or n

ot, t

he p

robl

em m

ust

be s

olve

d,an

d w

hate

ver

form

the

solu

tion

take

s un

der

thes

e co

nditi

ons

is c

alle

d en

gine

erin

g.In

thi

s ch

apte

r, w

e w

ill t

ake

a st

ruct

ured

app

roac

h in

the

des

ign

agai

nst

fatig

uefa

ilure

. As

with

sta

tic f

ailu

re, w

e w

ill a

ttem

pt to

rel

ate

to te

st r

esul

ts p

erfo

rmed

on

sim

-pl

y lo

aded

spe

cim

ens.

How

ever

, be

caus

e of

the

com

plex

nat

ure

of f

atig

ue,

ther

e is

muc

h m

ore

to a

ccou

nt f

or. F

rom

this

poi

nt, w

e w

ill p

roce

ed m

etho

dica

lly, a

nd in

sta

ges.

In a

n at

tem

pt to

pro

vide

som

e in

sigh

t as

to w

hat f

ollo

ws

in th

is c

hapt

er, a

bri

ef d

escr

ip-

tion

of th

e re

mai

ning

sec

tions

will

be

give

n he

re.

Fatigue-

Life

Met

hods

(Sec

s. 6

–3 t

o 6

–6)

Thr

ee m

ajor

app

roac

hes

used

in d

esig

n an

d an

alys

is to

pre

dict

whe

n, if

eve

r, a

cycl

ical

lylo

aded

mac

hine

com

pone

nt w

ill f

ail

in f

atig

ue o

ver

a pe

riod

of

time

are

pres

ente

d. T

hepr

emis

es o

f ea

ch a

ppro

ach

are

quite

dif

fere

nt b

ut e

ach

adds

to o

ur u

nder

stan

ding

of

the

mec

hani

sms

asso

ciat

ed w

ith f

atig

ue. T

he a

pplic

atio

n, a

dvan

tage

s, a

nd d

isad

vant

ages

of

each

met

hod

are

indi

cate

d. B

eyon

d Se

c. 6

–6,

only

one

of

the

met

hods

, th

e st

ress

-lif

em

etho

d, w

ill b

e pu

rsue

d fo

r fu

rthe

r de

sign

app

licat

ions

.

Fatigue

Stre

ngth

and t

he

Endura

nce

Lim

it (

Secs

. 6–7

and 6

–8)

The

stre

ngth

-lif

e(S

-N)

diag

ram

prov

ides

the

fatig

uest

reng

thS

fve

rsus

cycl

elif

eN

ofa

mat

eria

l.T

here

sults

are

gene

rate

dfr

omte

sts

usin

ga

sim

ple

load

ing

ofst

anda

rdla

bora

tory

-co

ntro

lled

spec

imen

s.T

helo

adin

gof

ten

isth

atof

sinu

soid

ally

reve

rsin

gpu

rebe

ndin

g.T

hela

bora

tory

-con

trol

led

spec

imen

sar

epo

lishe

dw

ithou

tge

omet

ric

stre

ssco

ncen

tra-

tion

atth

ere

gion

ofm

inim

umar

ea.

For

stee

l and

iron

, the

S-N

diag

ram

bec

omes

hor

izon

tal a

t som

e po

int.

The

str

engt

hat

this

poi

nt is

cal

led

the

endu

ranc

e lim

itS′ e

and

occu

rs s

omew

here

bet

wee

n 10

6an

d 10

7

cycl

es. T

he p

rim

e m

ark

on S

′ ere

fers

to th

e en

dura

nce

limit

of th

eco

ntro

lled

labo

rato

rysp

ecim

en.

For

nonf

erro

us m

ater

ials

tha

t do

not

exh

ibit

an e

ndur

ance

lim

it, a

fat

igue

stre

ngth

at a

spe

cific

num

ber o

f cyc

les,

S′ f, m

ay b

e gi

ven,

whe

re a

gain

, the

pri

me

deno

tes

the

fatig

ue s

tren

gth

of th

e la

bora

tory

-con

trol

led

spec

imen

.T

he s

tren

gth

data

are

bas

ed o

n m

any

cont

rolle

d co

nditi

ons

that

will

not

be

the

sam

eas

tha

t fo

r an

act

ual

mac

hine

par

t. W

hat

follo

ws

are

prac

tices

use

d to

acc

ount

for

the

diff

eren

ces

betw

een

the

load

ing

and

phys

ical

con

ditio

ns o

f th

e sp

ecim

en a

nd th

e ac

tual

mac

hine

par

t.

Endura

nce

Lim

it M

odif

yin

g F

act

ors

(Se

c. 6

–9)

Mod

ifyi

ng f

acto

rs a

re d

efine

d an

d us

ed t

o ac

coun

t fo

r di

ffer

ence

s be

twee

n th

e sp

eci-

men

and

the

act

ual

mac

hine

par

t w

ith r

egar

d to

sur

face

con

ditio

ns, s

ize,

loa

ding

, tem

-pe

ratu

re, r

elia

bilit

y, a

nd m

isce

llane

ous

fact

ors.

Loa

ding

is s

till c

onsi

dere

d to

be

sim

ple

and

reve

rsin

g.

Page 5: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

268

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g265

Stre

ss C

once

ntr

ation a

nd N

otc

h S

ensi

tivi

ty (

Sec.

6–1

0)

The

actu

alpa

rtm

ayha

vea

geom

etri

cst

ress

conc

entr

atio

nby

whi

chth

efa

tigue

beha

v-io

rde

pend

son

the

stat

icst

ress

conc

entr

atio

nfa

ctor

and

the

com

pone

ntm

ater

ial’s

sens

i-tiv

ityto

fatig

ueda

mag

e.

Fluct

uating S

tres

ses

(Sec

s. 6

–11 t

o 6

–13)

The

se s

ectio

ns a

ccou

nt f

or s

impl

e st

ress

sta

tes

from

fluc

tuat

ing

load

con

ditio

ns th

at a

reno

t pur

ely

sinu

soid

ally

rev

ersi

ng a

xial

, ben

ding

, or

tors

iona

l str

esse

s.

Com

bin

ations

of

Loadin

g M

odes

(Se

c. 6

–14)

Her

e a

proc

edur

e ba

sed

on th

e di

stor

tion-

ener

gy th

eory

is p

rese

nted

for

ana

lyzi

ng c

om-

bine

d flu

ctua

ting

stre

ss s

tate

s, s

uch

as c

ombi

ned

bend

ing

and

tors

ion.

Her

e it

isas

sum

ed th

at th

e le

vels

of

the

fluct

uatin

g st

ress

es a

re in

pha

se a

nd n

ot ti

me

vary

ing.

Vary

ing, Fl

uct

uating S

tres

ses;

Cum

ula

tive

Fatigue

Dam

age

(Sec

.6–1

5)

The

fluc

tuat

ing

stre

ss l

evel

s on

a m

achi

ne p

art

may

be

time

vary

ing.

Met

hods

are

pro

-vi

ded

to a

sses

s th

e fa

tigue

dam

age

on a

cum

ulat

ive

basi

s.

Rem

ain

ing S

ections

The

rem

aini

ng t

hree

sec

tions

of

the

chap

ter

pert

ain

to t

he s

peci

al t

opic

s of

sur

face

fatig

ue s

tren

gth,

sto

chas

tic a

naly

sis,

and

roa

dmap

s w

ith im

port

ant e

quat

ions

.

6–3

Fatigue-

Life

Met

hods

The

thr

ee m

ajor

fat

igue

lif

e m

etho

ds u

sed

in d

esig

n an

d an

alys

is a

re t

he s

tres

s-li

fem

etho

d,th

est

rain

-lif

e m

etho

d,an

d th

e li

near

-ela

stic

frac

ture

mec

hani

cs m

etho

d. T

hese

met

hods

atte

mpt

to p

redi

ct th

e lif

e in

num

ber

of c

ycle

s to

fai

lure

, N, f

or a

spe

cific

leve

lof

loa

ding

. L

ife

of 1

≤N

≤10

3cy

cles

is

gene

rally

cla

ssifi

ed a

s lo

w-c

ycle

fat

igue

,w

here

ashi

gh-c

ycle

fati

gue

is c

onsi

dere

d to

be

N>

103

cycl

es. T

he s

tres

s-lif

e m

etho

d,ba

sed

on s

tres

s le

vels

onl

y, i

s th

e le

ast

accu

rate

app

roac

h, e

spec

ially

for

low

-cyc

leap

plic

atio

ns. H

owev

er, i

t is

the

mos

t tra

ditio

nal m

etho

d, s

ince

it is

the

easi

est t

o im

ple-

men

t for

a w

ide

rang

e of

des

ign

appl

icat

ions

, has

am

ple

supp

ortin

g da

ta, a

nd r

epre

sent

shi

gh-c

ycle

app

licat

ions

ade

quat

ely.

The

str

ain-

life

met

hod

invo

lves

mor

e de

taile

d an

alys

is o

f th

e pl

astic

def

orm

atio

n at

loca

lized

reg

ions

whe

re t

he s

tres

ses

and

stra

ins

are

cons

ider

ed f

or l

ife

estim

ates

. Thi

sm

etho

d is

esp

ecia

lly g

ood

for

low

-cyc

le f

atig

ue a

pplic

atio

ns. I

n ap

plyi

ng t

his

met

hod,

seve

ral

idea

lizat

ions

mus

t be

com

poun

ded,

and

so

som

e un

cert

aint

ies

will

exi

st i

n th

ere

sults

. Fo

r th

is r

easo

n, i

t w

ill b

e di

scus

sed

only

bec

ause

of

its v

alue

in

addi

ng t

o th

eun

ders

tand

ing

of th

e na

ture

of

fatig

ue.

The

fra

ctur

e m

echa

nics

met

hod

assu

mes

a c

rack

is a

lrea

dy p

rese

nt a

nd d

etec

ted.

It

is th

en e

mpl

oyed

to p

redi

ct c

rack

gro

wth

with

res

pect

to s

tres

s in

tens

ity. I

t is

mos

t pra

c-tic

al w

hen

appl

ied

to l

arge

str

uctu

res

in c

onju

nctio

n w

ith c

ompu

ter

code

s an

d a

peri

-od

ic in

spec

tion

prog

ram

.

6–4

The

Stre

ss-L

ife

Met

hod

Tode

term

ine

the

stre

ngth

ofm

ater

ials

unde

rth

eac

tion

offa

tigue

load

s,sp

ecim

ens

are

subj

ecte

dto

repe

ated

orva

ryin

gfo

rces

ofsp

ecifi

edm

agni

tude

sw

hile

the

cycl

esor

stre

ssre

vers

als

are

coun

ted

tode

stru

ctio

n.T

hem

ostw

idel

yus

edfa

tigue

-tes

ting

devi

ce

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

269

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

266

Mec

hani

cal E

ngin

eerin

g D

esig

n

7 163

0.30

in

in

9in

R.

7 8

Figure

6–9

Test-

spec

imen

geo

met

ry fo

r the

R. R

. Moo

re ro

tatin

g-be

am m

achi

ne. T

he b

endi

ng m

omen

t is

unifo

rm o

ver t

hecu

rved

at t

he h

ighe

st-str

esse

d po

rtion

, a v

alid

test

ofm

ater

ial,

whe

reas

a fr

actu

re e

lsew

here

(not

at t

he h

ighe

st-str

ess

leve

l) is

grou

nds

for s

uspi

cion

of m

ater

ial fl

aw.

100

50100

101

102

103

104

105

106

107

108

Num

ber

of s

tres

s cy

cles

, N

S e

S ut

Fatigue strength Sf, kpsi

Low

cyc

leH

igh

cycl

e

Fini

te li

feIn

fini

te

life

Figure

6–1

0

An

S-N

diag

ram

plo

tted

from

the

resu

lts o

f com

plet

ely

reve

rsed

axi

al fa

tigue

tests

.M

ater

ial:

UN

S G

4130

0ste

el, n

orm

aliz

ed;

S ut=

116

kpsi;

max

imum

S ut=

125

kpsi.

(Dat

a fro

mN

AC

ATe

ch. N

ote

3866

,D

ecem

ber 1

966.

)

isth

eR

.R.M

oore

high

-spe

edro

tatin

g-be

amm

achi

ne.T

his

mac

hine

subj

ects

the

spec

imen

topu

rebe

ndin

g(n

otr

ansv

erse

shea

r)by

mea

nsof

wei

ghts

.T

hesp

ecim

en,

show

nin

Fig.

6–9,

isve

ryca

refu

llym

achi

ned

and

polis

hed,

with

afin

alpo

lishi

ngin

anax

ial

dire

ctio

nto

avoi

dci

rcum

fere

ntia

lsc

ratc

hes.

Oth

erfa

tigue

-tes

ting

mac

hine

sar

eav

ail-

able

for

appl

ying

fluct

uatin

gor

reve

rsed

axia

lst

ress

es,t

orsi

onal

stre

sses

,or

com

bine

dst

ress

esto

the

test

spec

imen

s.To

est

ablis

h th

e fa

tigue

str

engt

h of

a m

ater

ial,

quite

a n

umbe

r of

test

s ar

e ne

cess

ary

beca

use

of th

e st

atis

tical

nat

ure

of f

atig

ue. F

or th

e ro

tatin

g-be

am te

st, a

con

stan

t ben

d-in

g lo

ad is

app

lied,

and

the

num

ber o

f rev

olut

ions

(str

ess

reve

rsal

s) o

f the

bea

m re

quir

edfo

r fa

ilure

is r

ecor

ded.

The

firs

t tes

t is

mad

e at

a s

tres

s th

at is

som

ewha

t und

er th

e ul

ti-m

ate

stre

ngth

of

the

mat

eria

l. T

he s

econ

d te

st i

s m

ade

at a

str

ess

that

is

less

tha

n th

atus

ed in

the

first

. Thi

s pr

oces

s is

con

tinue

d, a

nd th

e re

sults

are

plo

tted

as a

n S-

Ndi

agra

m(F

ig. 6

–10)

. Thi

s ch

art m

ay b

e pl

otte

d on

sem

ilog

pape

r or

on

log-

log

pape

r. In

the

case

of f

erro

us m

etal

s an

d al

loys

, the

gra

ph b

ecom

es h

oriz

onta

l af

ter

the

mat

eria

l ha

s be

enst

ress

ed f

or a

cer

tain

num

ber

of c

ycle

s. P

lotti

ng o

n lo

g pa

per

emph

asiz

es t

he b

end

inth

ecu

rve,

whi

ch m

ight

not

be

appa

rent

if

the

resu

lts w

ere

plot

ted

by u

sing

Car

tesi

anco

ordi

nate

s.

Page 6: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

270

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g267

80 70 60 50 40 35 30 25 20 18 16 14 12 10 8 7 6 5 103

104

105

106

107

108

109

Lif

eN

, cyc

les

(log

)

Peak alternating bending stress S, kpsi (log)

Sand

cas

tPerm

anen

t mol

d ca

st

Wro

ught

Figure

6–1

1

S-N

band

s fo

r rep

rese

ntat

ive

alum

inum

allo

ys, e

xclu

ding

wro

ught

allo

ys w

ithS u

t<

38kp

si.(F

rom

R. C

.Ju

vina

ll,En

gine

erin

gC

onsid

erat

ions

of S

tress

,St

rain

and

Stre

ngth

.Cop

yrig

ht©

196

7 by

The

McG

raw

-Hill

Com

pani

es, I

nc. R

eprin

ted

bype

rmiss

ion.

)

The

ord

inat

e of

the

S-N

diag

ram

is

calle

d th

e fa

tigu

e st

reng

thS

f;

a st

atem

ent

ofth

is s

tren

gth

valu

e m

ust a

lway

s be

acc

ompa

nied

by

a st

atem

ent o

f th

e nu

mbe

r of

cyc

les

Nto

whi

ch it

cor

resp

onds

.So

on w

e sh

all l

earn

that

S-N

diag

ram

s ca

n be

det

erm

ined

eith

er f

or a

test

spe

cim

enor

for

an

actu

al m

echa

nica

l el

emen

t. E

ven

whe

n th

e m

ater

ial

of t

he t

est

spec

imen

and

that

of

the

mec

hani

cal

elem

ent

are

iden

tical

, th

ere

will

be

sign

ifica

nt d

iffe

renc

esbe

twee

n th

e di

agra

ms

for

the

two.

In t

he c

ase

of t

he s

teel

s, a

kne

e oc

curs

in

the

grap

h, a

nd b

eyon

d th

is k

nee

failu

rew

ill n

ot o

ccur

, no

mat

ter

how

gre

at t

he n

umbe

r of

cyc

les.

The

str

engt

h co

rres

pond

ing

to th

e kn

ee is

cal

led

the

endu

ranc

e li

mit

S e, o

r th

e fa

tigue

lim

it. T

he g

raph

of

Fig.

6–1

0ne

ver

does

bec

ome

hori

zont

al f

or n

onfe

rrou

s m

etal

s an

d al

loys

, and

hen

ce th

ese

mat

e-ri

als

do n

ot h

ave

an e

ndur

ance

lim

it. F

igur

e 6–

11 s

how

s sc

atte

r ban

ds in

dica

ting

the

S-N

curv

es f

or m

ost

com

mon

alu

min

um a

lloys

exc

ludi

ng w

roug

ht a

lloys

hav

ing

a te

nsile

stre

ngth

bel

ow 3

8 kp

si. S

ince

alu

min

um d

oes

not h

ave

an e

ndur

ance

lim

it, n

orm

ally

the

fatig

ue s

tren

gth

Sf

is r

epor

ted

at a

spe

cific

num

ber

of c

ycle

s, n

orm

ally

N=

5(10

8)

cycl

es o

f re

vers

ed s

tres

s (s

ee T

able

A–2

4).

We

note

that

a s

tres

s cy

cle

(N=

1)co

nstit

utes

a s

ingl

e ap

plic

atio

n an

d re

mov

al o

fa

load

and

the

n an

othe

r ap

plic

atio

n an

d re

mov

al o

f th

e lo

ad i

n th

e op

posi

te d

irec

tion.

Thu

sN

=1 2

mea

ns t

he l

oad

is a

pplie

d on

ce a

nd t

hen

rem

oved

, whi

ch i

s th

e ca

se w

ithth

e si

mpl

e te

nsio

n te

st.

The

bod

y of

kno

wle

dge

avai

labl

e on

fat

igue

fai

lure

fro

m N

=1

toN

=10

00cy

cles

is g

ener

ally

cla

ssifi

ed a

s lo

w-c

ycle

fati

gue,

as in

dica

ted

in F

ig. 6

–10.

Hig

h-cy

cle

fati

gue,

then

, is

conc

erne

d w

ith f

ailu

re c

orre

spon

ding

to

stre

ss c

ycle

s gr

eate

r th

an 1

03

cycl

es.

We

also

dis

tingu

ish

a fin

ite-

life

reg

ion

and

an i

nfini

te-l

ife

regi

onin

Fig

. 6–1

0. T

hebo

unda

ry b

etw

een

thes

e re

gion

s ca

nnot

be

clea

rly

defin

ed e

xcep

t for

a s

peci

fic m

ater

ial;

but i

tlie

s so

mew

here

bet

wee

n 10

6an

d10

7cy

cles

for

ste

els,

as

show

n in

Fig

. 6–1

0.A

s no

ted

prev

ious

ly,

it is

alw

ays

good

eng

inee

ring

pra

ctic

e to

con

duct

a t

estin

gpr

ogra

m o

n th

e m

ater

ials

to b

e em

ploy

ed in

des

ign

and

man

ufac

ture

. Thi

s, in

fac

t, is

are

quir

emen

t, no

t an

opt

ion,

in

guar

ding

aga

inst

the

pos

sibi

lity

of a

fat

igue

fai

lure

.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

271

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

268

Mec

hani

cal E

ngin

eerin

g D

esig

n

Bec

ause

of

this

nec

essi

ty f

or t

esti

ng,

it w

ould

rea

lly

be u

nnec

essa

ry f

or u

s to

pro

ceed

any

furt

her

in th

e st

udy

of fa

tigu

e fa

ilur

e ex

cept

for

one

impo

rtan

t rea

son:

the

desi

re to

know

why

fat

igue

fai

lure

s oc

cur

so t

hat

the

mos

t ef

fect

ive

met

hod

or m

etho

ds c

an b

eus

ed t

o im

prov

e fa

tigu

e st

reng

th.

Thu

s ou

r pr

imar

y pu

rpos

e in

stu

dyin

g fa

tigue

is

toun

ders

tand

why

fai

lure

s oc

cur

so t

hat

we

can

guar

d ag

ains

t th

em i

n an

opt

imum

man

-ne

r. Fo

r th

is r

easo

n, t

he a

naly

tical

des

ign

appr

oach

es p

rese

nted

in

this

boo

k, o

r in

any

othe

r bo

ok, f

or th

at m

atte

r, do

not

yie

ld a

bsol

utel

y pr

ecis

e re

sults

. The

res

ults

sho

uld

beta

ken

as a

gui

de, a

s so

met

hing

tha

t in

dica

tes

wha

t is

im

port

ant

and

wha

t is

not

im

por-

tant

in d

esig

ning

aga

inst

fat

igue

fai

lure

.A

s st

ated

ear

lier

, the

str

ess-

life

met

hod

is t

he l

east

acc

urat

e ap

proa

ch e

spec

iall

yfo

r lo

w-c

ycle

app

lica

tion

s. H

owev

er,

it i

s th

e m

ost

trad

itio

nal

met

hod,

wit

h m

uch

publ

ishe

d da

ta a

vail

able

. It

is

the

easi

est

to i

mpl

emen

t fo

r a

wid

e ra

nge

of d

esig

nap

plic

atio

ns a

nd r

epre

sent

s hi

gh-c

ycle

app

lica

tion

s ad

equa

tely

. For

the

se r

easo

ns t

hest

ress

-lif

e m

etho

d w

ill

be

emph

asiz

ed

in

subs

eque

nt

sect

ions

of

th

is

chap

ter.

How

ever

, car

e sh

ould

be

exer

cise

d w

hen

appl

ying

the

met

hod

for l

ow-c

ycle

app

licat

ions

,as

the

met

hod

does

not

acc

ount

for

the

tru

e st

ress

-str

ain

beha

vior

whe

n lo

cali

zed

yiel

ding

occ

urs.

6–5

The

Stra

in-L

ife

Met

hod

The

bes

t app

roac

h ye

t adv

ance

d to

exp

lain

the

natu

re o

f fat

igue

failu

re is

cal

led

by s

ome

the

stra

in-l

ife

met

hod.

The

app

roac

h ca

n be

use

d to

est

imat

e fa

tigue

str

engt

hs, b

ut w

hen

it is

so

used

it

is n

eces

sary

to

com

poun

d se

vera

l id

ealiz

atio

ns, a

nd s

o so

me

unce

rtai

n-tie

s w

ill e

xist

in th

e re

sults

. For

this

rea

son,

the

met

hod

is p

rese

nted

her

e on

ly b

ecau

seof

its

valu

e in

exp

lain

ing

the

natu

re o

f fa

tigue

.A

fat

igue

fai

lure

alm

ost

alw

ays

begi

ns a

t a

loca

l di

scon

tinui

ty s

uch

as a

not

ch,

crac

k, o

r ot

her

area

of

stre

ss c

once

ntra

tion.

Whe

n th

e st

ress

at t

he d

isco

ntin

uity

exc

eeds

the

elas

tic l

imit,

pla

stic

str

ain

occu

rs. I

f a

fatig

ue f

ract

ure

is t

o oc

cur,

ther

e m

ust

exis

tcy

clic

pla

stic

str

ains

. Thu

s w

e sh

all

need

to

inve

stig

ate

the

beha

vior

of

mat

eria

ls s

ub-

ject

to c

yclic

def

orm

atio

n.In

1910

,Bai

rsto

wve

rifie

dby

expe

rim

entB

ausc

hing

er’s

theo

ryth

atth

eel

astic

lim-

itsof

iron

and

stee

lcan

bech

ange

d,ei

ther

upor

dow

n,by

the

cycl

icva

riat

ions

ofst

ress

.2

Inge

nera

l,th

eel

astic

limits

ofan

neal

edst

eels

are

likel

yto

incr

ease

whe

nsu

bjec

ted

tocy

cles

ofst

ress

reve

rsal

s,w

hile

cold

-dra

wn

stee

lsex

hibi

tade

crea

sing

elas

ticlim

it.R

. W. L

andg

raf

has

inve

stig

ated

the

low

-cyc

le f

atig

ue b

ehav

ior

of a

lar

ge n

umbe

rof

ver

y hi

gh-s

tren

gth

stee

ls, a

nd d

urin

g hi

s re

sear

ch h

e m

ade

man

y cy

clic

str

ess-

stra

inpl

ots.

3Fi

gure

6–1

2 ha

s be

en c

onst

ruct

ed to

sho

w th

e ge

nera

l app

eara

nce

of th

ese

plot

sfo

r th

e fir

st f

ew c

ycle

s of

con

trol

led

cycl

ic s

trai

n. I

n th

is c

ase

the

stre

ngth

dec

reas

esw

ith s

tres

s re

petit

ions

, as

evid

ence

d by

the

fac

t th

at t

he r

ever

sals

occ

ur a

t ev

er-s

mal

ler

stre

ss l

evel

s. A

s pr

evio

usly

not

ed,

othe

r m

ater

ials

may

be

stre

ngth

ened

, in

stea

d, b

ycy

clic

str

ess

reve

rsal

s.T

he S

AE

Fat

igue

Des

ign

and

Eva

luat

ion

Stee

ring

Com

mitt

ee r

elea

sed

a re

port

in

1975

in

whi

ch t

he l

ife

in r

ever

sals

to

failu

re i

s re

late

d to

the

str

ain

ampl

itude

�ε/2 .

4

2 L. B

airs

tow

, “T

he E

last

ic L

imits

of

Iron

and

Ste

el u

nder

Cyc

lic V

aria

tions

of

Stre

ss,”

Phi

loso

phic

alTr

ansa

ctio

ns,S

erie

s A

, vol

. 210

, Roy

al S

ocie

ty o

f L

ondo

n, 1

910,

pp.

35–

55.

3 R. W

. Lan

dgra

f, C

ycli

c D

efor

mat

ion

and

Fati

gue

Beh

avio

r of

Har

dene

d St

eels

,Rep

ort n

o. 3

20, D

epar

tmen

tof

The

oret

ical

and

App

lied

Mec

hani

cs, U

nive

rsity

of

Illin

ois,

Urb

ana,

196

8, p

p. 8

4–90

.4 Te

chni

cal R

epor

t on

Fati

gue

Pro

pert

ies,

SAE

J10

99, 1

975.

Page 7: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

272

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g269

4th 2d

1st r

ever

sal

3d 5th

A

B

Δ�

Δ�p

Δ�e

Δ�

Figure

6–1

2

True

stre

ss–t

rue

strai

n hy

stere

sislo

ops

show

ing

the

first

five

stres

s re

vers

als

of a

cyc

lic-

softe

ning

mat

eria

l. Th

e gr

aph

is sli

ghtly

exa

gger

ated

for

clar

ity. N

ote

that

the

slope

of

the

line

AB

is th

e m

odul

us o

fel

astic

ityE.

The

stre

ss ra

nge

is�

σ,�

εp

is th

e pl

astic

-stra

inra

nge,

and

�εe

is th

eel

astic

strai

n ra

nge.

The

tota

l-stra

in ra

nge

is�

ε=

�ε

p+

�εe.

The

rep

ort c

onta

ins

a pl

ot o

f th

is r

elat

ions

hip

for

SAE

102

0 ho

t-ro

lled

stee

l; th

e gr

aph

has

been

rep

rodu

ced

as F

ig.

6–13

. To

expl

ain

the

grap

h, w

e fir

st d

efine

the

fol

low

ing

term

s:

•Fa

tigu

e du

ctil

ity

coef

ficie

nt ε

′ Fis

the

tru

e st

rain

cor

resp

ondi

ng t

o fr

actu

re i

n on

e re

-ve

rsal

(po

int A

in F

ig. 6

–12)

. The

pla

stic

-str

ain

line

begi

ns a

t thi

s po

int i

n Fi

g. 6

–13.

•Fa

tigu

e st

reng

th c

oeffi

cien

t σ

′ Fis

the

tru

e st

ress

cor

resp

ondi

ng t

o fr

actu

re i

n on

ere

vers

al (

poin

t Ain

Fig

. 6–1

2). N

ote

in F

ig. 6

–13

that

the

elas

tic-s

trai

n lin

e be

gins

at

σ′ F/

E.

•Fa

tigu

e du

ctil

ity

expo

nent

cis

the

slo

pe o

f th

e pl

astic

-str

ain

line

in F

ig. 6

–13

and

isth

e po

wer

to

whi

ch t

he l

ife

2Nm

ust

be r

aise

d to

be

prop

ortio

nal

to t

he t

rue

plas

tic-

stra

in a

mpl

itude

. If

the

num

ber

of s

tres

s re

vers

als

is 2

N,

then

Nis

the

num

ber

ofcy

cles

.

100

10–

4

10–3

10–2

10–1

100

101

102

103

104

105

106

Rev

ersa

ls to

fai

lure

, 2N

Strain amplitude, Δ�/2

�' F

c

1.0

b1.

0

�' F E

Tota

l str

ain

Plas

tic s

trai

n

Ela

stic

str

ain

Figure

6–1

3

A lo

g-lo

g pl

ot s

how

ing

how

the

fatig

ue li

fe is

rela

ted

toth

etru

e-str

ain

ampl

itude

for

hot-r

olle

d SA

E 10

20 s

teel

.(R

eprin

ted

with

per

miss

ion

from

SA

E J1

099_

2002

08

© 2

002

SAE

Inte

rnat

iona

l.)

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

273

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

270

Mec

hani

cal E

ngin

eerin

g D

esig

n

•Fa

tigu

e st

reng

th e

xpon

entb

is th

e sl

ope

of th

e el

astic

-str

ain

line,

and

is th

e po

wer

tow

hich

the

life

2Nm

ust b

e ra

ised

to b

e pr

opor

tiona

l to

the

true

-str

ess

ampl

itude

.

Now

, fro

m F

ig. 6

–12,

we

see

that

the

tota

l str

ain

is th

e su

m o

f the

ela

stic

and

pla

stic

com

pone

nts.

The

refo

re th

e to

tal s

trai

n am

plitu

de is

hal

f th

e to

tal s

trai

n ra

nge

�ε 2

=�

εe

2+

�ε

p

2(a

)

The

equ

atio

n of

the

plas

tic-s

trai

n lin

e in

Fig

. 6–1

3 is

�ε

p

2=

ε′ F(2

N)c

(6–1

)

The

equ

atio

n of

the

elas

tic s

trai

n lin

e is

�ε

e

2=

σ′ F E(2

N)b

(6–2

)

The

refo

re, f

rom

Eq.

(a)

, we

have

for

the

tota

l-st

rain

am

plitu

de

�ε 2

′ F E(2

N)b

′ F(2

N)c

(6–3

)

whi

ch i

s th

e M

anso

n-C

offin

rel

atio

nshi

p be

twee

n fa

tigue

lif

e an

d to

tal

stra

in.5

Som

eva

lues

of

the

coef

ficie

nts

and

expo

nent

s ar

e lis

ted

in T

able

A–2

3. M

any

mor

e ar

ein

clud

ed in

the

SAE

J10

99 r

epor

t.6

Tho

ugh

Eq.

(6–

3) is

a p

erfe

ctly

legi

timat

e eq

uatio

n fo

r ob

tain

ing

the

fatig

ue li

fe o

fa

part

whe

n th

e st

rain

and

oth

er c

yclic

cha

ract

eris

tics

are

give

n, i

t ap

pear

s to

be

of l

it-tle

use

to

the

desi

gner

. The

que

stio

n of

how

to

dete

rmin

e th

e to

tal

stra

in a

t th

e bo

ttom

of a

not

ch o

r dis

cont

inui

ty h

as n

ot b

een

answ

ered

. The

re a

re n

o ta

bles

or c

hart

s of

str

ain

conc

entr

atio

n fa

ctor

s in

the

liter

atur

e. I

t is

poss

ible

that

str

ain

conc

entr

atio

n fa

ctor

s w

illbe

com

e av

aila

ble

in r

esea

rch

liter

atur

e ve

ry s

oon

beca

use

of t

he i

ncre

ase

in t

he u

se o

ffin

ite-e

lem

ent a

naly

sis.

Mor

eove

r, fin

ite e

lem

ent a

naly

sis

can

of it

self

app

roxi

mat

e th

est

rain

s th

at w

ill o

ccur

at a

ll po

ints

in th

e su

bjec

t str

uctu

re.7

6–6

The

Linea

r-El

ast

ic F

ract

ure

Mec

hanic

s M

ethod

The

first

phas

eof

fatig

uecr

acki

ngis

desi

gnat

edas

stag

eI

fatig

ue.

Cry

stal

slip

that

exte

nds

thro

ugh

seve

ralc

ontig

uous

grai

ns,i

nclu

sion

s,an

dsu

rfac

eim

perf

ectio

nsis

pre-

sum

edto

play

aro

le.S

ince

mos

toft

his

isin

visi

ble

toth

eob

serv

er,w

eju

stsa

yth

atst

age

Iin

volv

esse

vera

lgr

ains

.The

seco

ndph

ase,

that

ofcr

ack

exte

nsio

n,is

calle

dst

age

IIfa

tigue

.The

adva

nce

ofth

ecr

ack

(tha

tis,

new

crac

kar

eais

crea

ted)

does

prod

uce

evi-

denc

eth

atca

nbe

obse

rved

onm

icro

grap

hsfr

oman

elec

tron

mic

rosc

ope.

The

grow

thof

5 J. F

. Tav

erne

lli a

nd L

. F. C

offin

, Jr.,

“E

xper

imen

tal S

uppo

rt f

or G

ener

aliz

ed E

quat

ion

Pred

ictin

g L

ow C

ycle

Fatig

ue,’’

and

S. S

. Man

son,

dis

cuss

ion,

Tra

ns. A

SME

, J. B

asic

Eng

.,vo

l. 84

, no.

4, p

p. 5

33–5

37.

6 See

also

, Lan

dgra

f, I

bid.

7 For

furt

her

disc

ussi

on o

f th

e st

rain

-lif

e m

etho

d se

e N

. E. D

owlin

g, M

echa

nica

l Beh

avio

r of

Mat

eria

ls,

2nd

ed.,

Pren

tice-

Hal

l, E

ngle

woo

d C

liffs

, N.J

., 19

99, C

hap.

14.

Page 8: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

274

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g271

the

crac

kis

orde

rly.

Fina

lfra

ctur

eoc

curs

duri

ngst

age

IIIf

atig

ue,a

lthou

ghfa

tigue

isno

tin

volv

ed.

Whe

nth

ecr

ack

issu

ffici

ently

long

that

KI=

KIc

for

the

stre

ssam

plitu

dein

volv

ed,t

hen

KIc

isth

ecr

itica

lst

ress

inte

nsity

for

the

unda

mag

edm

etal

,and

ther

eis

sudd

en,

cata

stro

phic

failu

reof

the

rem

aini

ngcr

oss

sect

ion

inte

nsile

over

load

(see

Sec.

5–12

).St

age

III

fatig

ueis

asso

ciat

edw

ithra

pid

acce

lera

tion

ofcr

ack

grow

thth

enfr

actu

re.

Cra

ck G

row

thFa

tigu

e cr

acks

nuc

leat

e an

d gr

ow w

hen

stre

sses

var

y an

d th

ere

is s

ome

tens

ion

inea

ch s

tres

s cy

cle.

Con

side

r th

e st

ress

to

be fl

uctu

atin

g be

twee

n th

e li

mit

s of

σm

inan

max

, w

here

the

str

ess

rang

e is

defi

ned

as �

σ=

σm

ax−

σm

in.

Fro

m E

q. (

5–37

) th

est

ress

inte

nsit

y is

giv

en b

y K

I=

βσ√ π

a.T

hus,

for

�σ,

the

stre

ss in

tens

ity

rang

e pe

rcy

cle

is

�K

I=

β(σ

max

−σ

min)√ π

a=

β�

σ√ π

a(6

–4)

To d

evel

op f

atig

ue s

tren

gth

data

, a n

umbe

r of

spe

cim

ens

of th

e sa

me

mat

eria

l are

test

edat

var

ious

lev

els

of �

σ.

Cra

cks

nucl

eate

at

or v

ery

near

a f

ree

surf

ace

or l

arge

dis

con-

tinui

ty. A

ssum

ing

an i

nitia

l cr

ack

leng

th o

f a i

,cr

ack

grow

th a

s a

func

tion

of t

he n

um-

ber

of s

tres

s cy

cles

Nw

ill d

epen

d on

�σ,

that

is, �

KI.

For �

KI

belo

w s

ome

thre

shol

dva

lue

(�K

I)th

a cr

ack

will

not

gro

w.

Figu

re 6

–14

repr

esen

ts t

he c

rack

len

gth

aas

afu

nctio

n of

N

for

thre

e st

ress

le

vels

(�

σ) 3

>(�

σ) 2

>(�

σ) 1

, w

here

(�

KI)

3>

(�K

I)2

>(�

KI)

1. N

otic

e th

e ef

fect

of

the

high

er s

tres

s ra

nge

in F

ig. 6

–14

in t

he p

ro-

duct

ion

of lo

nger

cra

cks

at a

par

ticul

ar c

ycle

cou

nt.

Whe

n th

e ra

te o

f cr

ack

grow

th p

er c

ycle

, da/

dN

in F

ig. 6

–14,

is p

lotte

d as

sho

wn

in F

ig.

6–15

, th

e da

ta f

rom

all

thre

e st

ress

ran

ge l

evel

s su

perp

ose

to g

ive

a si

gmoi

dal

curv

e. T

he t

hree

sta

ges

of c

rack

dev

elop

men

t ar

e ob

serv

able

, and

the

sta

ge I

I da

ta a

relin

ear

on l

og-l

og c

oord

inat

es,

with

in t

he d

omai

n of

lin

ear

elas

tic f

ract

ure

mec

hani

cs(L

EFM

) va

lidity

. A g

roup

of

sim

ilar

curv

es c

an b

e ge

nera

ted

by c

hang

ing

the

stre

ssra

tioR

min/σ

max

of th

e ex

peri

men

t.H

ere

we

pres

ent

a si

mpl

ified

pro

cedu

re f

or e

stim

atin

g th

e re

mai

ning

lif

e of

a c

ycli-

cally

str

esse

d pa

rt a

fter

dis

cove

ry o

f a c

rack

. Thi

s re

quir

es th

e as

sum

ptio

n th

at p

lane

str

ain

Log

N

Stre

ss c

ycle

s N

Crack length a

a a i

(ΔK

I)3

(ΔK

I)2

(ΔK

I)1

da

dN

Figure

6–1

4

The

incr

ease

in c

rack

leng

th a

from

an

initi

al le

ngth

of a

ias

a fu

nctio

n of

cyc

le c

ount

for

thre

e str

ess

rang

es, (

�σ

) 3>

(�σ

) 2>

(�σ

) 1.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

275

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

272

Mec

hani

cal E

ngin

eerin

g D

esig

n

cond

ition

s pr

evai

l.8A

ssum

ing

a cr

ack

is d

isco

vere

d ea

rly

in s

tage

II,

the

crac

k gr

owth

inre

gion

II

of F

ig. 6

–15

can

be a

ppro

xim

ated

by

the

Pari

s eq

uatio

n,w

hich

is o

f th

e fo

rm

da

dN

=C

(�K

I)m

(6–5

)

whe

reC

and

mar

e em

piri

cal

mat

eria

l co

nsta

nts

and

�K

Iis

giv

en b

y E

q. (

6–4)

.R

epre

sent

ativ

e, b

ut c

onse

rvat

ive,

val

ues

of C

and

mfo

r va

riou

s cl

asse

s of

ste

els

are

liste

d in

Tab

le 6

–1. S

ubst

itutin

g E

q. (

6–4)

and

inte

grat

ing

give

s

∫ Nf

0d

N=

Nf

=1 C

∫ a f a i

da

(β�

σ√ π

a)m

(6–6

)

Her

ea i

is t

he i

nitia

l cr

ack

leng

th, a

fis

the

fina

l cr

ack

leng

th c

orre

spon

ding

to

failu

re,

and

Nf

is t

he e

stim

ated

num

ber

of c

ycle

s to

pro

duce

a f

ailu

re a

fter

the

initi

al c

rack

is

form

ed. N

ote

that

βm

ay v

ary

in th

e in

tegr

atio

n va

riab

le (

e.g.

, see

Fig

s. 5

–25

to 5

–30)

.

Log

ΔK

Log

da dN

Incr

easi

ngst

ress

rat

ioR

Cra

ckpr

opag

atio

n

Reg

ion

II

Cra

ckin

itiat

ion

Reg

ion

I

Cra

ckun

stab

le

Reg

ion

III

(ΔK

) th

Kc

Figure

6–1

5

Whe

nda

/d

Nis

mea

sure

d in

Fig.

6–1

4 an

d pl

otte

d on

logl

og c

oord

inat

es, t

he d

ata

for d

iffer

ent s

tress

rang

essu

perp

ose,

givi

ng ri

se to

asig

moi

d cu

rve

as s

how

n.(�

KI) t

his

the

thre

shol

d va

lue

of�

KI,

belo

w w

hich

a c

rack

does

not

gro

w. F

rom

thre

shol

dto

rupt

ure

an a

lum

inum

allo

yw

ill sp

end

85--9

0 pe

rcen

t of

life

in re

gion

I, 5

--8 p

erce

nt in

regi

on II

, and

1--2

per

cent

inre

gion

III.

Table

6–1

Con

serv

ativ

e Va

lues

of

Fact

orC

and

Expo

nent

min

Eq.

(6–5

) for

Vario

us F

orm

s of

Ste

el(R

. =0)

Mate

rial

C,

m/c

ycl

e( M

Pa

√ m) m

C,

in/c

ycl

e( k

psi

√ in) m

m

Ferri

tic-p

earli

tic s

teel

s6.

89(1

0−12

)3.

60(1

0−10

)3.

00M

arte

nsiti

c ste

els

1.36

(10−

10)

6.60

(10−

9)

2.25

Aus

teni

tic s

tain

less

ste

els

5.61

(10−

12)

3.00

(10−

10)

3.25

From

J.M. B

arsom

and S

.T. Ro

lfe,F

atigu

e and

Frac

ture C

ontro

l in St

ructur

es, 2

nd ed

.,Pre

ntice

Hall,

Uppe

r Sad

dle Ri

ver, N

J, 19

87,

pp. 2

88–2

91, C

opyri

ght A

STM

Intern

ation

al. Re

printe

d with

perm

ission

.

8 Rec

omm

ende

d re

fere

nces

are

: Dow

ling,

op.

cit.

; J. A

. Col

lins,

Fai

lure

of M

ater

ials

in M

echa

nica

l Des

ign,

John

Wile

y &

Son

s, N

ew Y

ork,

198

1; H

. O. F

uchs

and

R. I

. Ste

phen

s, M

etal

Fat

igue

in E

ngin

eeri

ng,J

ohn

Wile

y &

Son

s, N

ew Y

ork,

198

0; a

nd H

arol

d S.

Ree

msn

yder

, “C

onst

ant A

mpl

itude

Fat

igue

Lif

e A

sses

smen

tM

odel

s,”

SAE

Tra

ns. 8

2068

8,vo

l. 91

, Nov

. 198

3.

Page 9: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

276

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g273

If t

his

shou

ld h

appe

n, t

hen

Ree

msn

yder

9su

gges

ts t

he u

se o

f nu

mer

ical

int

egra

tion

empl

oyin

g th

e al

gori

thm

δa j

=C

(�K

I)m j(δ

N) j

a j+1

=a j

+δa j

Nj+

1=

Nj+

δN

j(6

–7)

Nf=∑

δN

j

Her

eδa j

and

δN

jar

e in

crem

ents

of

the

crac

k le

ngth

and

the

num

ber

of c

ycle

s. T

he p

ro-

cedu

re i

s to

sel

ect

a va

lue

of δ

Nj,

usi

ng a

ide

term

ine

βan

d co

mpu

te �

KI,

dete

rmin

eδa j

, and

then

find

the

next

val

ue o

f a.

Rep

eat t

he p

roce

dure

unt

il a

=a

f.

The

fol

low

ing

exam

ple

is h

ighl

y si

mpl

ified

with

βco

nsta

nt i

n or

der

to g

ive

som

eun

ders

tand

ing

of th

e pr

oced

ure.

Nor

mal

ly, o

ne u

ses

fatig

ue c

rack

gro

wth

com

pute

r pro

-gr

ams

such

as

NA

SA/F

LA

GR

O 2

.0 w

ith m

ore

com

preh

ensi

ve t

heor

etic

al m

odel

s to

solv

e th

ese

prob

lem

s.

EXA

MPLE

6–1

The

bar

sho

wn

in F

ig. 6

–16

is s

ubje

cted

to

a re

peat

ed m

omen

t 0

≤M

≤12

00 l

bf·in

.T

he b

ar i

s A

ISI

4430

ste

el w

ith S

ut=

185

kpsi

, Sy=

170

kpsi

, and

KIc

=73

kpsi√ in

.M

ater

ial

test

s on

var

ious

spe

cim

ens

of t

his

mat

eria

l w

ith i

dent

ical

hea

t tr

eatm

ent

indi

cate

wor

st-c

ase

cons

tant

s of

C=

3.8(

10−1

1) (

in/c

ycle

)�(k

psi√ in

)man

dm

=3.

0. A

ssh

own,

a n

ick

of s

ize

0.00

4 in

has

bee

n di

scov

ered

on

the

botto

m o

f th

e ba

r. E

stim

ate

the

num

ber

of c

ycle

s of

life

rem

aini

ng.

Solu

tion

The

str

ess

rang

e �

σis

alw

ays

com

pute

d by

usi

ng th

e no

min

al (

uncr

acke

d) a

rea.

Thu

s

I c=

bh2

6=

0.25

(0.5

)2

6=

0.01

042

in3

The

refo

re, b

efor

e th

e cr

ack

initi

ates

, the

str

ess

rang

e is

�σ

=�

M

I/c

=12

00

0.01

042

=11

5.2(

103)

psi

=11

5.2

kpsi

whi

ch i

s be

low

the

yie

ld s

tren

gth.

As

the

crac

k gr

ows,

it

will

eve

ntua

lly b

ecom

e lo

ngen

ough

suc

h th

at th

e ba

r will

com

plet

ely

yiel

d or

und

ergo

a b

rittl

e fr

actu

re. F

or th

era

tioof

S y/

S ut

it is

hig

hly

unlik

ely

that

the

bar

will

rea

ch c

ompl

ete

yiel

d. F

or b

rittl

e fr

actu

re,

desi

gnat

e th

e cr

ack

leng

th a

s a

f.

If β

=1,

then

fro

m E

q. (

5–37

) w

ith K

I=

KIc

, w

eap

prox

imat

ea

fas

af

=1 π

( KIc

βσ

max

) 2. =

1 π

( 73

115.

2

) 2 =0.

1278

in

Figure

6–1

6

MM

Nic

k

in1 2

in1 4

9 Op.

cit.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

277

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

274

Mec

hani

cal E

ngin

eerin

g D

esig

n

From

Fig

. 5–2

7, w

e co

mpu

te th

e ra

tio a

f/

has

af h

=0.

1278

0.5

=0.

256

Thu

sa

f/

hva

ries

from

nea

r zer

o to

app

roxi

mat

ely

0.25

6. F

rom

Fig

. 5–2

7, fo

r thi

s ra

nge

βis

nea

rly

cons

tant

at a

ppro

xim

atel

y 1.

07. W

e w

ill a

ssum

e it

to b

e so

, and

re-

eval

uate

af

as

af

=1 π

(73

1.07

(115

.2)

) 2 =0.

112

in

Thu

s, f

rom

Eq.

(6–

6), t

he e

stim

ated

rem

aini

ng li

fe is

Nf=

1 C

∫ a f a i

da

(β�

σ√ π

a)m

=1

3.8(

10−1

1)

∫ 0.11

2

0.00

4

da

[1.0

7(11

5.2)

√ πa]

3

=−

5.04

7(10

3)

√ a

∣ ∣ ∣ ∣0.11

2

0.00

4

=64

.7(1

03)

cycl

es

6–7

The

Endura

nce

Lim

itT

hede

term

inat

ion

ofen

dura

nce

limits

byfa

tigue

test

ing

isno

wro

utin

e,th

ough

ale

ngth

ypr

oced

ure.

Gen

eral

ly,s

tres

ste

stin

gis

pref

erre

dto

stra

inte

stin

gfo

ren

dura

nce

limits

.Fo

r pr

elim

inar

y an

d pr

otot

ype

desi

gn a

nd f

or s

ome

failu

re a

naly

sis

as w

ell,

a qu

ick

met

hod

of e

stim

atin

g en

dura

nce

limits

is

need

ed. T

here

are

gre

at q

uant

ities

of

data

in

the

liter

atur

e on

the

resu

lts o

f ro

tatin

g-be

am te

sts

and

sim

ple

tens

ion

test

s of

spe

cim

ens

take

n fr

om th

e sa

me

bar

or in

got.

By

plot

ting

thes

e as

in F

ig. 6

–17,

it is

pos

sibl

e to

see

whe

ther

the

re i

s an

y co

rrel

atio

n be

twee

n th

e tw

o se

ts o

f re

sults

. The

gra

ph a

ppea

rs t

osu

gges

t th

at t

he e

ndur

ance

lim

it ra

nges

fro

m a

bout

40

to 6

0 pe

rcen

t of

the

ten

sile

stre

ngth

for

ste

els

up to

abo

ut 2

10 k

psi (

1450

MPa

). B

egin

ning

at a

bout

Su

t=

210

kpsi

(145

0 M

Pa),

the

sca

tter

appe

ars

to i

ncre

ase,

but

the

tre

nd s

eem

s to

lev

el o

ff,

as s

ug-

gest

ed b

y th

e da

shed

hor

izon

tal l

ine

at S

′ e=

105

kpsi

.W

ew

ish

now

topr

esen

ta

met

hod

for

estim

atin

gen

dura

nce

limits

.Not

eth

ates

ti-m

ates

obta

ined

from

quan

titie

sof

data

obta

ined

from

man

yso

urce

spr

obab

lyha

vea

larg

esp

read

and

mig

htde

viat

esi

gnifi

cant

lyfr

omth

ere

sults

ofac

tual

labo

rato

ryte

sts

ofth

em

echa

nica

lpr

oper

ties

ofsp

ecim

ens

obta

ined

thro

ugh

stri

ctpu

rcha

se-o

rder

spec

ifi-

catio

ns.S

ince

the

area

ofun

cert

aint

yis

grea

ter,

com

pens

atio

nm

ustb

em

ade

byem

ploy

-in

gla

rger

desi

gnfa

ctor

sth

anw

ould

beus

edfo

rst

atic

desi

gn.

For

stee

ls, s

impl

ifyi

ng o

ur o

bser

vatio

n of

Fig

. 6–1

7, w

e w

ill e

stim

ate

the

endu

ranc

elim

it as

S′ e=⎧ ⎨ ⎩0.

5Su

tS u

t≤

200

kpsi

(140

0M

Pa)

100

kpsi

S ut>

200

kpsi

700

MPa

S ut>

1400

MPa

(6–8

)

whe

reS u

tis

the

min

imum

tens

ile s

tren

gth.

The

pri

me

mar

k on

S′ e

in th

is e

quat

ion

refe

rsto

the

rota

ting

-bea

m s

peci

men

itsel

f. W

e w

ish

to re

serv

e th

e un

prim

ed s

ymbo

l Se

for t

heen

dura

nce

limit

of a

ny p

artic

ular

mac

hine

ele

men

t su

bjec

ted

to a

ny k

ind

of l

oadi

ng.

Soon

we

shal

l lea

rn th

at th

e tw

o st

reng

ths

may

be

quite

dif

fere

nt.

Page 10: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

278

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g275

Stee

ls t

reat

ed t

o gi

ve d

iffe

rent

mic

rost

ruct

ures

hav

e di

ffer

ent

S′ e/S u

tra

tios.

It

appe

ars

that

the

mor

e du

ctile

mic

rost

ruct

ures

hav

e a

high

er r

atio

. Mar

tens

ite h

as a

ver

ybr

ittle

nat

ure

and

is h

ighl

y su

scep

tible

to fa

tigue

-ind

uced

cra

ckin

g; th

us th

e ra

tio is

low

.W

hen

desi

gns

incl

ude

deta

iled

he

at-t

reat

ing

spec

ific

atio

ns

to

obta

in

spec

ific

mic

rost

ruct

ures

, it

is p

ossi

ble

to u

se a

n es

timat

e of

the

end

uran

ce l

imit

base

d on

tes

tda

ta fo

r the

par

ticul

ar m

icro

stru

ctur

e; s

uch

estim

ates

are

muc

h m

ore

relia

ble

and

inde

edsh

ould

be

used

.T

he e

ndur

ance

lim

its f

or v

ario

us c

lass

es o

f ca

st i

rons

, po

lishe

d or

mac

hine

d, a

regi

ven

in T

able

A–2

4. A

lum

inum

allo

ys d

o no

t ha

ve a

n en

dura

nce

limit.

The

fat

igue

stre

ngth

s of

som

e al

umin

um a

lloys

at

5(10

8 ) cy

cles

of

reve

rsed

str

ess

are

give

n in

Tabl

eA

–24.

6–8

Fatigue

Stre

ngth

As

show

n in

Fig

. 6–

10,

a re

gion

of

low

-cyc

le f

atig

ue e

xten

ds f

rom

N=

1to

abo

ut10

3cy

cles

. In

this

reg

ion

the

fati

gue

stre

ngth

Sf

is o

nly

slig

htly

sm

alle

r th

an th

e te

n-si

le s

tren

gth

S ut.

An

anal

ytic

al a

ppro

ach

has

been

giv

en b

y M

isch

ke10

for

both

020

4060

8010

012

014

016

018

020

026

030

022

024

028

0

Tens

ile s

tren

gth S u

t, kp

si

020406080100

120

140

Endurance limit S'e, kpsi

105

kpsi

0.4

0.5

S'e Su=

0.6

Car

bon

stee

ls

Allo

y st

eels

Wro

ught

iron

s

Figure

6–1

7

Gra

ph o

f end

uran

ce li

mits

ver

sus

tens

ile s

treng

ths

from

act

ual t

est r

esul

ts fo

r a la

rge

num

ber o

f wro

ught

irons

and

ste

els.

Rat

ios

of S

′ e/S u

tof

0.6

0, 0

.50,

and

0.4

0 ar

e sh

own

by th

e so

lid a

nd d

ashe

d lin

es.

Not

e al

so th

e ho

rizon

tal d

ashe

d lin

e fo

r S′ e=

105

kpsi.

Poi

nts

show

n ha

ving

a te

nsile

stre

ngth

gre

ater

than

210

kps

i hav

e a

mea

n en

dura

nce

limit

of S

′ e=

105

kpsi

and

a sta

ndar

d de

viat

ion

of 1

3.5

kpsi.

(Col

late

d fro

m d

ata

com

pile

d by

H. J

. Gro

ver,

S. A

. Gor

don,

and

L.R

. Jac

kson

in F

atig

ue o

f Met

als

and

Stru

ctur

es,B

urea

u of

Nav

al W

eapo

ns D

ocum

ent N

AVW

EPS

00-2

5-53

4, 1

960;

and

from

Fat

igue

Des

ign

Han

dboo

k,SA

E, 1

968,

p. 4

2.)

10J.

E. S

higl

ey, C

. R. M

isch

ke, a

nd T

. H. B

row

n, J

r., S

tand

ard

Han

dboo

k of

Mac

hine

Des

ign,

3rd

ed.,

McG

raw

-Hill

, New

Yor

k, 2

004,

pp.

29.2

5–29

.27.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

279

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

276

Mec

hani

cal E

ngin

eerin

g D

esig

n

high

-cyc

le a

nd l

ow-c

ycle

reg

ions

, re

quir

ing

the

para

met

ers

of t

he M

anso

n-C

offi

neq

uati

on p

lus

the

stra

in-s

tren

gthe

ning

exp

onen

t m

. E

ngin

eers

oft

en h

ave

to w

ork

wit

h le

ss i

nfor

mat

ion.

Figu

re6–

10in

dica

tes

that

the

high

-cyc

lefa

tigue

dom

ain

exte

nds

from

103

cycl

esfo

rst

eels

toth

een

dura

nce

limit

life

Ne,

whi

chis

abou

t106

to10

7cy

cles

.The

purp

ose

ofth

isse

ctio

nis

tode

velo

pm

etho

dsof

appr

oxim

atio

nof

the

S-N

diag

ram

inth

ehi

gh-

cycl

ere

gion

,whe

nin

form

atio

nm

aybe

assp

arse

asth

ere

sults

ofa

sim

ple

tens

ion

test

.E

xper

ienc

eha

ssh

own

high

-cyc

lefa

tigue

data

are

rect

ified

bya

loga

rith

mic

tran

sfor

mto

both

stre

ssan

dcy

cles

-to-

failu

re.E

quat

ion

(6–2

) ca

n be

use

d to

det

erm

ine

the

fatig

uest

reng

th a

t 10

3cy

cles

. D

efini

ng t

he s

peci

men

fat

igue

str

engt

h at

a s

peci

fic n

umbe

r of

cycl

es a

s (S

′ f) N

=E

�ε

e/2 ,

wri

te E

q. (

6–2)

as

(S′ f) N

′ F(2

N)b

(6–9

)

At1

03cy

cles

,

(S′ f) 1

03=

σ′ F(2

.103

)b=

fSu

t

whe

ref

is th

e fr

actio

n of

Su

tre

pres

ente

d by

(S′ f

) 103

cycl

es. S

olvi

ng f

or f

give

s

f=

σ′ F

S ut(2

·103

)b(6

–10)

Now

, fro

m E

q. (

2–11

), σ

′ F=

σ0ε

m, w

ith ε

′ F.

If th

is tr

ue-s

tres

s–tr

ue-s

trai

n eq

uatio

nis

not

kno

wn,

the

SAE

app

roxi

mat

ion11

for

stee

ls w

ith H

B≤

500

may

be

used

:

σ′ F

=S u

t+

50kp

sior

σ′ F

=S u

t+

345

MPa

(6–1

1)

To fi

nd b

, su

bstit

ute

the

endu

ranc

e st

reng

th a

nd c

orre

spon

ding

cyc

les,

S′ e

and

Ne,

resp

ectiv

ely

into

Eq.

(6–

9) a

nd s

olvi

ng f

or b

b=

−lo

g( σ

′ F/

S′ e)lo

g(2

Ne)

(6–1

2)

Thu

s, t

he e

quat

ion

S′ f=

σ′ F(2

N)b

is k

now

n. F

or e

xam

ple,

if

S ut=

105

kpsi

and

S′ e=

52.5

kpsi

at f

ailu

re,

Eq.

(6–

11)

σ′ F

=10

5+

50=

155

kpsi

Eq.

(6–

12)

b=

−lo

g(15

5/52

.5)

log( 2

·106) =

−0.0

746

Eq.

(6–

10)

f=

155

105

( 2·1

03) −0.0

746

=0.

837

and

for

Eq.

(6–

9), w

ith S

′ f=

(S′ f) N

,

S′ f=

155(

2N

)−0.

0746

=14

7N

−0.0

746

(a)

11Fa

tigu

e D

esig

n H

andb

ook,

vol.

4, S

ocie

ty o

f Aut

omot

ive

Eng

inee

rs, N

ew Y

ork,

195

8, p

. 27.

Page 11: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

280

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g277

The

pro

cess

giv

en f

or fi

ndin

g f

can

be r

epea

ted

for

vari

ous

ultim

ate

stre

ngth

s.Fi

gure

6–1

8 is

a p

lot o

f ffo

r70

≤S u

t≤

200

kpsi

. To

be c

onse

rvat

ive,

for

S ut<

70kp

si,

letf

� 0

.9.

For

an a

ctua

l m

echa

nica

l co

mpo

nent

, S′ e

is r

educ

ed t

o S e

(see

Sec

. 6–9

) w

hich

is

less

tha

n 0.

5 S u

t. H

owev

er,

unle

ss a

ctua

l da

ta i

s av

aila

ble,

we

reco

mm

end

usin

g th

eva

lue

of f

foun

d fr

om F

ig. 6

–18.

Equ

atio

n (a

), fo

r the

act

ual m

echa

nica

l com

pone

nt, c

anbe

wri

tten

in th

e fo

rm

Sf=

aN

b(6

–13)

whe

reN

is c

ycle

s to

fai

lure

and

the

con

stan

ts a

and

bar

e de

fined

by

the

poin

ts10

3,( S

f) 10

3an

d10

6,

S ew

ith( S

f) 10

3=

fSu

t. S

ubst

itutin

g th

ese

two

poin

ts i

n E

q.(6

–13)

giv

es

a=

(fS

ut)

2

S e(6

–14)

b=

−1 3

log

( fSu

t

S e

)(6

–15)

If a

com

plet

ely

reve

rsed

str

ess

σa

is g

iven

, se

tting

Sf=

σa

in E

q. (

6–13

), t

he n

umbe

rof

cyc

les-

to-f

ailu

re c

an b

e ex

pres

sed

as N=( σ a a

) 1/b(6

–16)

Low

-cyc

le f

atig

ue is

oft

en d

efine

d (s

ee F

ig. 6

–10)

as

failu

re th

at o

ccur

s in

a r

ange

of1

≤N

≤10

3cy

cles

. On

a lo

glog

plo

t suc

h as

Fig

. 6–1

0 th

e fa

ilure

locu

s in

this

rang

eis

nea

rly

linea

r be

low

103

cycl

es. A

str

aigh

t lin

e be

twee

n 10

3,

fSu

tan

d 1,

Su

t(t

rans

-fo

rmed

) is

con

serv

ativ

e, a

nd it

is g

iven

by

Sf

≥S u

tN(l

ogf)

/3

1≤

N≤

103

(6–1

7)

7080

9010

011

012

013

014

015

016

017

020

018

019

0

S ut,

kpsi

f

0.76

0.780.

8

0.82

0.84

0.86

0.880.

9Fi

gure

6–1

8

Fatig

ue s

treng

th fr

actio

n, f,

ofS u

tat

103

cycl

es fo

rS e

=S′ e

=0.

5S u

t.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

281

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

278

Mec

hani

cal E

ngin

eerin

g D

esig

n

EXA

MPLE

6–2

Giv

en a

105

0 H

R s

teel

, est

imat

e(a

) th

e ro

tatin

g-be

am e

ndur

ance

lim

it at

106

cycl

es.

(b)

the

endu

ranc

e st

reng

th o

f a

polis

hed

rota

ting-

beam

spe

cim

en c

orre

spon

ding

to

104

cycl

es to

fai

lure

(c)

the

expe

cted

life

of

a po

lishe

d ro

tatin

g-be

am s

peci

men

und

er a

com

plet

ely

reve

rsed

stre

ss o

f 55

kps

i.

Solu

tion

(a)

From

Tab

le A

–20,

Su

t=

90kp

si. F

rom

Eq.

(6–

8),

Ans

wer

S′ e=

0.5(

90)=

45kp

si

(b)

From

Fig

. 6–1

8, f

or S

ut=

90kp

si,f

. =0.

86. F

rom

Eq.

(6–

14),

a=

[0.8

6(90

)2]

45=

133.

1kp

si

From

Eq.

(6–

15),

b=

−1 3

log

[ 0.86

(90)

45

] =−0

.078

5

Thu

s, E

q. (

6–13

) is

S′ f=

133.

1N

−0.0

785

Ans

wer

For

104

cycl

es to

fai

lure

, S′ f

=13

3.1(

104)−0

.078

5=

64.6

kpsi

(c)

From

Eq.

(6–

16),

with

σa

=55

kpsi

,

Ans

wer

N=( 55

133.

1

) 1/−0.

0785

=77

500

=7.

75(1

04)c

ycle

s

Kee

p in

min

d th

at th

ese

are

only

est

imat

es.S

o ex

pres

sing

the

answ

ers

usin

g th

ree-

plac

eac

cura

cy is

a li

ttle

mis

lead

ing.

6–9

Endura

nce

Lim

it M

odif

yin

g F

act

ors

We

have

see

n th

at t

he r

otat

ing-

beam

spe

cim

en u

sed

in t

he l

abor

ator

y to

det

erm

ine

endu

ranc

e lim

its i

s pr

epar

ed v

ery

care

fully

and

tes

ted

unde

r cl

osel

y co

ntro

lled

cond

i-tio

ns. I

t is

unre

alis

tic to

exp

ect t

he e

ndur

ance

lim

it of

a m

echa

nica

l or

stru

ctur

al m

em-

ber

to m

atch

the

valu

es o

btai

ned

in th

e la

bora

tory

. Som

e di

ffer

ence

s in

clud

e

•M

ater

ial:

com

posi

tion,

bas

is o

f fa

ilure

, var

iabi

lity

•M

anuf

actu

ring

:m

etho

d, h

eat

trea

tmen

t, fr

ettin

g co

rros

ion,

sur

face

con

ditio

n, s

tres

sco

ncen

trat

ion

•E

nvir

onm

ent:

corr

osio

n, te

mpe

ratu

re, s

tres

s st

ate,

rel

axat

ion

times

•D

esig

n:si

ze, s

hape

, lif

e, s

tres

s st

ate,

str

ess

conc

entr

atio

n, s

peed

, fre

tting

, gal

ling

Page 12: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

282

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g279

Mar

in12

iden

tified

fac

tors

that

qua

ntifi

ed th

e ef

fect

s of

sur

face

con

ditio

n, s

ize,

load

ing,

tem

pera

ture

, and

mis

cella

neou

s ite

ms.

The

que

stio

n of

whe

ther

to a

djus

t the

end

uran

celim

it by

sub

trac

tive

corr

ectio

ns o

r m

ultip

licat

ive

corr

ectio

ns w

as r

esol

ved

by a

n ex

ten-

sive

sta

tistic

al a

naly

sis

of a

434

0 (e

lect

ric

furn

ace,

air

craf

t qu

ality

) st

eel,

in w

hich

aco

rrel

atio

n co

effic

ient

of

0.85

was

fou

nd f

or t

he m

ultip

licat

ive

form

and

0.4

0 fo

r th

ead

ditiv

e fo

rm. A

Mar

in e

quat

ion

is th

eref

ore

wri

tten

as

S e=

k ak b

k ck d

k ek f

S′ e(6

–18)

whe

rek a

=su

rfac

e co

nditi

on m

odifi

catio

n fa

ctor

k b=

size

mod

ifica

tion

fact

or

k c=

load

mod

ifica

tion

fact

or

k d=

tem

pera

ture

mod

ifica

tion

fact

or

k e=

relia

bilit

y fa

ctor

13

k f=

mis

cella

neou

s-ef

fect

s m

odifi

catio

n fa

ctor

S′ e=

rota

ry-b

eam

test

spe

cim

en e

ndur

ance

lim

it

S e=

endu

ranc

e lim

it at

the

criti

cal l

ocat

ion

of a

mac

hine

par

t in

the

geom

-et

ry a

nd c

ondi

tion

of u

se

Whe

nen

dura

nce

test

sof

part

sar

eno

tav

aila

ble,

estim

atio

nsar

em

ade

byap

plyi

ngM

arin

fact

ors

toth

een

dura

nce

limit.

Surf

ace

Fact

or

ka

The

surf

ace

ofa

rota

ting-

beam

spec

imen

ishi

ghly

polis

hed,

with

afin

alpo

lishi

ngin

the

axia

ldi

rect

ion

tosm

ooth

out

any

circ

umfe

rent

ial

scra

tche

s.T

hesu

rfac

em

odifi

catio

nfa

ctor

depe

nds

onth

equ

ality

ofth

efin

ish

ofth

eac

tual

part

surf

ace

and

onth

ete

nsile

stre

ngth

ofth

epa

rtm

ater

ial.

Tofin

dqu

antit

ativ

eex

pres

sion

sfo

rco

mm

onfin

ishe

sof

mac

hine

part

s(g

roun

d,m

achi

ned,

orco

ld-d

raw

n,ho

t-ro

lled,

and

as-f

orge

d),t

heco

ordi

-na

tes

ofda

tapo

ints

wer

ere

capt

ured

from

apl

otof

endu

ranc

elim

itve

rsus

ultim

ate

tens

ilest

reng

thof

data

gath

ered

byL

ipso

nan

dN

oll

and

repr

oduc

edby

Hor

ger.

14T

heda

ta c

an b

e re

pres

ente

d by

k a=

aSb u

t(6

–19)

whe

reS u

tis

the

min

imum

tens

ile s

tren

gth

and

aan

db

are

to b

e fo

und

in T

able

6–2

.

12Jo

seph

Mar

in, M

echa

nica

l Beh

avio

r of

Eng

inee

ring

Mat

eria

ls,P

rent

ice-

Hal

l, E

ngle

woo

d C

liffs

, N.J

.,19

62, p

. 224

.13

Com

plet

e st

ocha

stic

ana

lysi

s is

pre

sent

ed in

Sec

. 6–1

7. U

ntil

that

poi

nt th

e pr

esen

tatio

n he

re is

one

of

ade

term

inis

tic n

atur

e. H

owev

er, w

e m

ust t

ake

care

of

the

know

n sc

atte

r in

the

fatig

ue d

ata.

Thi

s m

eans

that

we

will

not

car

ry o

ut a

true

rel

iabi

lity

anal

ysis

at t

his

time

but w

ill a

ttem

pt to

ans

wer

the

ques

tion:

Wha

t is

the

prob

abili

ty th

at a

kno

wn

(ass

umed

) st

ress

will

exc

eed

the

stre

ngth

of

a ra

ndom

ly s

elec

ted

com

pone

ntm

ade

from

this

mat

eria

l pop

ulat

ion?

14C

. J. N

oll a

nd C

. Lip

son,

“A

llow

able

Wor

king

Str

esse

s,”

Soci

ety

for

Exp

erim

enta

l Str

ess

Ana

lysi

s,vo

l.3,

no. 2

, 194

6, p

. 29.

Rep

rodu

ced

by O

. J. H

orge

r (e

d.),

Met

als

Eng

inee

ring

Des

ign

ASM

E H

andb

ook,

McG

raw

-Hill

, New

Yor

k, 1

953,

p. 1

02.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

283

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

280

Mec

hani

cal E

ngin

eerin

g D

esig

n

EXA

MPLE

6–3

A s

teel

has

a m

inim

um u

ltim

ate

stre

ngth

of

520

MPa

and

a m

achi

ned

surf

ace.

Est

imat

ek a

.

Solu

tion

From

Tab

le 6

–2, a

=4.

51 a

nd b

=−0

.265

. The

n, f

rom

Eq.

(6–

19)

Ans

wer

k a=

4.51

(520

)−0.2

65=

0.86

0

Surf

ace

Fact

or

aEx

ponen

tFi

nis

hS u

t,k

psi

S ut,

MPa

b

Gro

und

1.34

1.58

−0.0

85M

achi

ned

or c

old-

draw

n2.

704.

51−0

.265

Hot

-rolle

d14

.457

.7−0

.718

As-f

orge

d39

.927

2.−0

.995

Table

6–2

Para

met

ers

for M

arin

Surfa

ce M

odifi

catio

nFa

ctor

, Eq.

(6–1

9)

From

C.J. N

oll an

d C. L

ipson

, “All

owab

le Wo

rking

Stre

sses,”

Soc

iety f

or Ex

perim

ental

Stre

ss An

alysis

,vol.

3,

no. 2

, 194

6 p.

29. R

eprod

uced

by O

.J. H

orger

(ed.)

Meta

ls En

ginee

ring D

esign

ASME

Han

dboo

k, Mc

Graw

-Hill,

New

York.

Copy

right

© 1

953

by Th

e McG

raw-Hi

ll Com

panie

s, Inc

. Rep

rinted

by pe

rmiss

ion.

Aga

in, i

t is

im

port

ant

to n

ote

that

thi

s is

an

appr

oxim

atio

n as

the

dat

a is

typ

ical

lyqu

ite s

catte

red.

Fur

ther

mor

e, t

his

is n

ot a

cor

rect

ion

to t

ake

light

ly. F

or e

xam

ple,

if

inth

e pr

evio

us e

xam

ple

the

stee

l was

for

ged,

the

corr

ectio

n fa

ctor

wou

ld b

e 0.

540,

a s

ig-

nific

ant r

educ

tion

of s

tren

gth.

Size

Fact

or

kb

The

siz

e fa

ctor

has

bee

n ev

alua

ted

usin

g 13

3 se

ts o

f da

ta p

oint

s.15

The

res

ults

for

ben

d-in

g an

d to

rsio

n m

ay b

e ex

pres

sed

as

k b=

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩(d/0.

3)−0

.107

=0.

879d

−0.1

070.

11≤

d≤

2in

0.91

d−0

.157

2<

d≤

10in

(d/7.

62)−

0.10

7=

1.24

d−0

.107

2.79

≤d

≤51

mm

1.51

d−0

.157

51<

d≤

254

mm

(6–2

0)

For

axia

l loa

ding

ther

e is

no

size

eff

ect,

so k b=

1(6

–21)

but s

ee k

c.O

ne o

f th

e pr

oble

ms

that

ari

ses

in u

sing

Eq.

(6–

20)

is w

hat t

o do

whe

n a

roun

d ba

rin

ben

ding

is

not

rota

ting,

or

whe

n a

nonc

ircu

lar

cros

s se

ctio

n is

use

d. F

or e

xam

ple,

wha

t is

the

size

fac

tor

for

a ba

r 6

mm

thic

k an

d 40

mm

wid

e? T

he a

ppro

ach

to b

e us

ed

15C

harl

es R

. Mis

chke

, “Pr

edic

tion

of S

toch

astic

End

uran

ce S

tren

gth,

”Tr

ans.

of A

SME

, Jou

rnal

of V

ibra

tion

,A

cous

tics

, Str

ess,

and

Rel

iabi

lity

in D

esig

n,vo

l. 10

9, n

o. 1

, Jan

uary

198

7, T

able

3.

Page 13: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

284

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g281

here

em

ploy

s an

effe

ctiv

e di

men

sion

de

obta

ined

by

equa

ting

the

volu

me

of m

ater

ial

stre

ssed

at

and

abov

e 95

per

cent

of

the

max

imum

str

ess

to t

he s

ame

volu

me

in t

hero

tatin

g-be

am s

peci

men

.16It

tur

ns o

ut t

hat

whe

n th

ese

two

volu

mes

are

equ

ated

,th

ele

ngth

s ca

ncel

, and

so

we

need

onl

y co

nsid

er th

e ar

eas.

For

a r

otat

ing

roun

d se

ctio

n,th

e 95

per

cent

str

ess

area

is th

e ar

ea in

a r

ing

havi

ng a

n ou

tsid

e di

amet

er d

and

an in

side

diam

eter

of

0.95

d. S

o, d

esig

natin

g th

e 95

per

cent

str

ess

area

A0.

95σ

, we

have

A0.

95σ

=π 4

[d2−

(0.9

5d)2

]=

0.07

66d

2(6

–22)

Thi

s eq

uatio

n is

als

o va

lid f

or a

rot

atin

g ho

llow

rou

nd. F

or n

onro

tatin

g so

lid o

r ho

llow

roun

ds, t

he 9

5 pe

rcen

t st

ress

are

a is

tw

ice

the

area

out

side

of

two

para

llel

chor

ds h

av-

ing

a sp

acin

g of

0.9

5d, w

here

dis

the

diam

eter

. Usi

ng a

n ex

act c

ompu

tatio

n, th

is is

A0.

95σ

=0.

0104

6d2

(6–2

3)

with

d ein

Eq.

(6–

22),

set

ting

Eqs

. (6–

22)

and

(6–2

3) e

qual

to e

ach

othe

r en

able

s us

toso

lve

for

the

effe

ctiv

e di

amet

er. T

his

give

s

d e=

0.37

0d(6

–24)

as th

e ef

fect

ive

size

of

a ro

und

corr

espo

ndin

g to

a n

onro

tatin

g so

lid o

r ho

llow

rou

nd.

A r

ecta

ngul

ar s

ectio

n of

dim

ensi

ons

bha

sA

0.95

σ=

0.05

hb.

Usi

ng t

he s

ame

appr

oach

as

befo

re,

d e=

0.80

8(hb

)1/2

(6–2

5)

Tabl

e 6–

3 pr

ovid

es A

0.95

σar

eas

of c

omm

on s

truc

tura

l sh

apes

und

ergo

ing

non-

rota

ting

bend

ing.

EXA

MPLE

6–4

A s

teel

sha

ft lo

aded

in b

endi

ng is

32

mm

in d

iam

eter

, abu

tting

a fi

llete

d sh

ould

er 3

8m

min

dia

met

er.

The

sha

ft m

ater

ial

has

a m

ean

ultim

ate

tens

ile s

tren

gth

of 6

90 M

Pa.

Est

imat

e th

e M

arin

siz

e fa

ctor

kb

if th

e sh

aft i

s us

ed in

(a) A

rot

atin

g m

ode.

(b) A

non

rota

ting

mod

e.

Solu

tion

(a)

From

Eq.

(6–

20)

Ans

wer

k b=( d

7.62

) −0.1

07

=( 32 7.

62

) −0.1

07

=0.

858

(b)

From

Tab

le 6

–3,

d e=

0.37

d=

0.37

(32)

=11

.84

mm

From

Eq.

(6–

20),

Ans

wer

k b=( 11

.84

7.62

) −0.1

07

=0.

954

16Se

e R

. Kug

uel,

“A R

elat

ion

betw

een

The

oret

ical

Str

ess

Con

cent

ratio

n Fa

ctor

and

Fat

igue

Not

ch F

acto

rD

educ

ed f

rom

the

Con

cept

of

Hig

hly

Stre

ssed

Vol

ume,

” P

roc.

AST

M,v

ol. 6

1, 1

961,

pp.

732

–748

.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

285

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

282

Mec

hani

cal E

ngin

eerin

g D

esig

n

Loadin

g F

act

or

kc

Whe

nfa

tigue

test

sar

eca

rrie

dou

twith

rota

ting

bend

ing,

axia

l(pu

sh-p

ull)

,and

tors

ion-

allo

adin

g,th

een

dura

nce

limits

diff

erw

ithS u

t.T

his

isdi

scus

sed

furt

her

inSe

c.6–

17.

Her

e,w

ew

illsp

ecif

yav

erag

eva

lues

ofth

elo

adfa

ctor

as

k c={ 1

bend

ing

0.85

axia

l0.

59to

rsio

n17(6

–26)

Tem

per

atu

re F

act

or

kd

Whe

n op

erat

ing

tem

pera

ture

s ar

e be

low

roo

m t

empe

ratu

re,

britt

le f

ract

ure

is a

str

ong

poss

ibili

ty a

nd s

houl

d be

inv

estig

ated

firs

t. W

hen

the

oper

atin

g te

mpe

ratu

res

are

high

-er

tha

n ro

om t

empe

ratu

re,

yiel

ding

sho

uld

be i

nves

tigat

ed fi

rst

beca

use

the

yiel

dst

reng

th d

rops

off

so

rapi

dly

with

tem

pera

ture

; se

e Fi

g. 2

–9.

Any

str

ess

will

ind

uce

cree

p in

a m

ater

ial o

pera

ting

at h

igh

tem

pera

ture

s; s

o th

is fa

ctor

mus

t be

cons

ider

ed to

o.

A0.9

={ 0.

05ab

axis

1-1

0.05

2xa

+0.

1tf(

b−

x)ax

is2-

2

12

2

1a

bt f

x

A0.9

={ 0.

10at

fax

is1-

1

0.05

bat f

>0.

025a

axis

2-2

1

22

1a

bt f

A0.9

=0.

05hb

d e=

0.80

8√hb

b

h

2 2

11

A0.

95σ

=0.

0104

6d2

d e=

0.37

0dd

Table

6–3

A0.

95σ

Are

as o

fC

omm

on N

onro

tatin

gSt

ruct

ural

Sha

pes

17U

se th

is o

nly

for

pure

tors

iona

l fat

igue

load

ing.

Whe

n to

rsio

n is

com

bine

d w

ith o

ther

str

esse

s, s

uch

asbe

ndin

g, k

c=

1an

d th

e co

mbi

ned

load

ing

is m

anag

ed b

y us

ing

the

effe

ctiv

e vo

n M

ises

str

ess

as in

Sec.

5–5.

Not

e:Fo

r pu

re to

rsio

n, th

e di

stor

tion

ener

gy p

redi

cts

that

(k c

) tors

ion=

0.57

7.

Page 14: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

286

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g283

Fina

lly, i

t may

be

true

that

ther

e is

no

fatig

ue li

mit

for

mat

eria

ls o

pera

ting

at h

igh

tem

-pe

ratu

res.

Bec

ause

of

the

redu

ced

fatig

ue r

esis

tanc

e, t

he f

ailu

re p

roce

ss i

s, t

o so

me

exte

nt, d

epen

dent

on

time.

The

lim

ited

amou

nt o

f da

ta a

vaila

ble

show

tha

t th

e en

dura

nce

limit

for

stee

lsin

crea

ses

slig

htly

as

the

tem

pera

ture

ris

es a

nd th

en b

egin

s to

fall

off

in th

e 40

0 to

700

°Fra

nge,

not

unl

ike

the

beha

vior

of

the

tens

ile s

tren

gth

show

n in

Fig

. 2–9

. For

this

rea

son

it is

pro

babl

y tr

ue th

at th

e en

dura

nce

limit

is r

elat

ed to

tens

ile s

tren

gth

at e

leva

ted

tem

-pe

ratu

res

in th

e sa

me

man

ner a

s at

room

tem

pera

ture

.18It

see

ms

quite

logi

cal,

ther

efor

e,to

em

ploy

the

sam

e re

latio

ns to

pre

dict

end

uran

ce li

mit

at e

leva

ted

tem

pera

ture

s as

are

used

at r

oom

tem

pera

ture

, at l

east

unt

il m

ore

com

preh

ensi

ve d

ata

beco

me

avai

labl

e. A

tth

e ve

ry l

east

, th

is p

ract

ice

will

pro

vide

a u

sefu

l st

anda

rd a

gain

st w

hich

the

per

for-

man

ce o

f va

riou

s m

ater

ials

can

be

com

pare

d.Ta

ble

6–4

has

been

obt

aine

d fr

om F

ig. 2

–9 b

y us

ing

only

the

tens

ile-s

tren

gth

data

.N

ote

that

the

tabl

e re

pres

ents

145

test

s of

21

diff

eren

t car

bon

and

allo

y st

eels

. A f

ourt

h-or

der

poly

nom

ial c

urve

fit t

o th

e da

ta u

nder

lyin

g Fi

g. 2

–9 g

ives

k d=

0.97

5+

0.43

2(10

−3)T

F−

0.11

5(10

−5)T

2 F

+0.

104(

10−8

)T3 F−

0.59

5(10

−12)T

4 F(6

–27)

whe

re70

≤T

F≤

1000

◦ F.

Two

type

s of

pro

blem

s ar

ise

whe

n te

mpe

ratu

re i

s a

cons

ider

atio

n. I

f th

e ro

tatin

g-be

am e

ndur

ance

lim

it is

kno

wn

at r

oom

tem

pera

ture

, the

n us

e

k d=

S T S RT

(6–2

8)

Tem

per

atu

re, °C

S T/S

RT

Tem

per

atu

re, °F

S T/S

RT

201.

000

701.

000

501.

010

100

1.00

810

01.

020

200

1.02

015

01.

025

300

1.02

420

01.

020

400

1.01

825

01.

000

500

0.99

530

00.

975

600

0.96

335

00.

943

700

0.92

740

00.

900

800

0.87

245

00.

843

900

0.79

750

00.

768

1000

0.69

855

00.

672

1100

0.56

760

00.

549

*Data

sourc

e: Fig

. 2–9

.

Table

6–4

Effe

ct o

f Ope

ratin

gTe

mpe

ratu

re o

n th

eTe

nsile

Stre

ngth

of

Stee

l.* (S

T=

tens

ilestr

engt

h at

ope

ratin

gte

mpe

ratu

re;

S RT=

tens

ile s

treng

that

room

tem

pera

ture

; 0.

099

≤σ̂

≤0.

110)

18Fo

r m

ore,

see

Tab

le 2

of A

NSI

/ASM

E B

106.

1M

-198

5 sh

aft s

tand

ard,

and

E. A

. Bra

ndes

(ed

.), S

mit

hell

’sM

etal

s R

efer

ence

Boo

k,6t

h ed

., B

utte

rwor

th, L

ondo

n, 1

983,

pp.

22–

134

to 2

2–13

6, w

here

end

uran

ce li

mits

from

100

to 6

50°C

are

tabu

late

d.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

287

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

284

Mec

hani

cal E

ngin

eerin

g D

esig

n

from

Tab

le 6

–4 o

r Eq.

(6–2

7) a

nd p

roce

ed a

s us

ual.

If th

e ro

tatin

g-be

am e

ndur

ance

lim

itis

not

giv

en,

then

com

pute

it

usin

g E

q. (

6–8)

and

the

tem

pera

ture

-cor

rect

ed t

ensi

lest

reng

th o

btai

ned

by u

sing

the

fact

or f

rom

Tab

le 6

–4. T

hen

use

k d=

1 .

EXA

MPLE

6–5

A 1

035

stee

l has

a te

nsile

str

engt

h of

70

kpsi

and

is to

be

used

for

a p

art t

hat s

ees

450°

Fin

ser

vice

. Est

imat

e th

e M

arin

tem

pera

ture

mod

ifica

tion

fact

or a

nd (

S e) 4

50◦

if(a

) T

he r

oom

-tem

pera

ture

end

uran

ce li

mit

by te

st is

(S′ e)

70◦=

39.0

kpsi

.(b

) O

nly

the

tens

ile s

tren

gth

at r

oom

tem

pera

ture

is k

now

n.

Solu

tion

(a)

Firs

t, fr

om E

q. (

6–27

),

k d=

0.97

5+

0.43

2(10

−3)(

450)

−0.

115(

10−5

)(45

02)

+0.

104(

10−8

)(45

03)−

0.59

5(10

−12)(

4504

)=

1.00

7

Thu

s,

Ans

wer

(Se)

450◦

=k d

(S′ e)

70◦=

1.00

7(39

.0)=

39.3

kpsi

(b)

Inte

rpol

atin

g fr

om T

able

6–4

giv

es

(ST/

S RT) 4

50◦=

1.01

8+

(0.9

95−

1.01

8)45

0−

400

500

−40

0=

1.00

7

Thu

s, th

e te

nsile

str

engt

h at

450

°F is

est

imat

ed a

s

(Su

t)45

0◦=

(ST/

S RT) 4

50◦ (

S ut)

70◦=

1.00

7(70

)=

70.5

kpsi

From

Eq.

(6–

8) th

en,

Ans

wer

(Se)

450◦

=0.

5(S

ut)

450◦

=0.

5(70

.5)=

35.2

kpsi

Part

agi

ves

the

bette

r es

timat

e du

e to

act

ual t

estin

g of

the

part

icul

ar m

ater

ial.

Rel

iabili

ty F

act

or

ke

The

dis

cuss

ion

pres

ente

d he

re a

ccou

nts

for

the

scat

ter

of d

ata

such

as

show

n in

Fig.

6–17

whe

re th

e m

ean

endu

ranc

e lim

it is

sho

wn

to b

e S′ e/

S ut

. =0.

5,or

as

give

n by

Eq.

(6–

8).

Mos

t en

dura

nce

stre

ngth

dat

a ar

e re

port

ed a

s m

ean

valu

es.

Dat

a pr

esen

ted

byH

auge

n an

d W

irch

ing19

show

sta

ndar

d de

viat

ions

of e

ndur

ance

str

engt

hs o

f les

s th

an8

perc

ent.

Thu

s th

e re

liabi

lity

mod

ifica

tion

fact

or to

acc

ount

for

this

can

be

wri

tten

as

k e=

1−

0.08

z a(6

–29)

whe

rez a

is d

efine

d by

Eq.

(20

–16)

and

val

ues

for

any

desi

red

relia

bilit

y ca

n be

det

er-

min

ed f

rom

Tab

le A

–10.

Tab

le 6

–5 g

ives

rel

iabi

lity

fact

ors

for

som

e st

anda

rd s

peci

fied

relia

bilit

ies.

For

a m

ore

com

preh

ensi

ve a

ppro

ach

to r

elia

bilit

y, s

ee S

ec. 6

–17.

19E

. B. H

auge

n an

d P.

H. W

irsc

hing

, “Pr

obab

ilist

ic D

esig

n,”

Mac

hine

Des

ign,

vol.

47, n

o. 1

2, 1

975,

pp.1

0–14

.

Page 15: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

288

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g285

Mis

cella

neo

us-

Effe

cts

Fact

or

kf

Tho

ugh

the

fact

or k

fis

inte

nded

to a

ccou

nt f

or th

e re

duct

ion

in e

ndur

ance

lim

it du

e to

all

othe

r ef

fect

s, i

t is

rea

lly i

nten

ded

as a

rem

inde

r th

at t

hese

mus

t be

acc

ount

ed f

or,

beca

use

actu

al v

alue

s of

kf

are

not a

lway

s av

aila

ble.

Res

idua

l st

ress

esm

ay e

ither

im

prov

e th

e en

dura

nce

limit

or a

ffec

t it

adve

rsel

y.G

ener

ally

, if

the

resi

dual

str

ess

in th

e su

rfac

e of

the

part

is c

ompr

essi

on, t

he e

ndur

ance

limit

is im

prov

ed. F

atig

ue f

ailu

res

appe

ar to

be

tens

ile f

ailu

res,

or

at le

ast t

o be

cau

sed

by t

ensi

le s

tres

s, a

nd s

o an

ythi

ng t

hat

redu

ces

tens

ile s

tres

s w

ill a

lso

redu

ce t

he p

ossi

-bi

lity

of a

fatig

ue fa

ilure

. Ope

ratio

ns s

uch

as s

hot p

eeni

ng, h

amm

erin

g, a

nd c

old

rolli

ngbu

ild c

ompr

essi

ve s

tres

ses

into

the

surf

ace

of th

e pa

rt a

nd im

prov

e th

e en

dura

nce

limit

sign

ifica

ntly

. Of

cour

se, t

he m

ater

ial m

ust n

ot b

e w

orke

d to

exh

aust

ion.

The

end

uran

ce l

imits

of

part

s th

at a

re m

ade

from

rol

led

or d

raw

n sh

eets

or

bars

,as

wel

l as

part

s th

at a

re f

orge

d, m

ay b

e af

fect

ed b

y th

e so

-cal

led

dire

ctio

nal c

hara

cter

-is

tics

of t

he o

pera

tion.

Rol

led

or d

raw

n pa

rts,

for

exa

mpl

e, h

ave

an e

ndur

ance

lim

itin

the

tran

sver

se d

irec

tion

that

may

be

10 to

20

perc

ent l

ess

than

the

endu

ranc

e lim

it in

the

long

itudi

nal d

irec

tion.

Part

sth

atar

eca

se-h

arde

ned

may

fail

atth

esu

rfac

eor

atth

em

axim

umco

rera

dius

,de

pend

ing

upon

the

stre

ssgr

adie

nt.F

igur

e6–

19sh

ows

the

typi

calt

rian

gula

rst

ress

dis-

trib

utio

nof

aba

run

der

bend

ing

orto

rsio

n.A

lso

plot

ted

asa

heav

ylin

ein

this

figur

ear

eth

een

dura

nce

limits

S efo

rthe

case

and

core

.For

this

exam

ple

the

endu

ranc

elim

itof

the

core

rule

sth

ede

sign

beca

use

the

figur

esh

ows

that

the

stre

ssσ

orτ,

whi

chev

erap

plie

s,at

the

oute

rco

rera

dius

,is

appr

ecia

bly

larg

erth

anth

eco

reen

dura

nce

limit.

S e(c

ase)

� o

r �

S e(c

ore)

Cas

e Cor

e

Figure

6–1

9

The

failu

re o

f a c

ase-

hard

ened

part

in b

endi

ng o

r tor

sion.

Inth

is ex

ampl

e, fa

ilure

occ

urs

inth

e co

re.

Rel

iabili

ty, %

Transf

orm

ation V

ari

ate

za

Rel

iabili

ty F

act

or

ke

500

1.00

090

1.28

80.

897

951.

645

0.86

899

2.32

60.

814

99.9

3.09

10.

753

99.9

93.

719

0.70

299

.999

4.26

50.

659

99.9

999

4.75

30.

620

Table

6–5

Relia

bilit

y Fa

ctor

s k e

Cor

resp

ondi

ng to

8Pe

rcen

t Sta

ndar

dD

evia

tion

of th

eEn

dura

nce

Limit

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

289

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

286

Mec

hani

cal E

ngin

eerin

g D

esig

n

Of

cour

se,

if s

tres

s co

ncen

trat

ion

is a

lso

pres

ent,

the

stre

ss g

radi

ent

is m

uch

stee

per,

and

henc

e fa

ilure

in th

e co

re is

unl

ikel

y.

Cor

rosi

onIt

is to

be

expe

cted

that

par

ts th

at o

pera

te in

a c

orro

sive

atm

osph

ere

will

hav

e a

low

ered

fatig

ue r

esis

tanc

e. T

his

is, o

f co

urse

, tru

e, a

nd i

t is

due

to

the

roug

heni

ng o

r pi

tting

of

the

surf

ace

by t

he c

orro

sive

mat

eria

l. B

ut t

he p

robl

em i

s no

t so

sim

ple

as t

he o

ne o

ffin

ding

the

endu

ranc

e lim

it of

a s

peci

men

that

has

bee

n co

rrod

ed. T

he r

easo

n fo

r th

is is

that

the

corr

osio

n an

d th

e st

ress

ing

occu

r at

the

sam

e tim

e. B

asic

ally

, thi

s m

eans

that

intim

e an

y pa

rt w

ill f

ail

whe

n su

bjec

ted

to r

epea

ted

stre

ssin

g in

a c

orro

sive

atm

osph

ere.

The

re is

no

fatig

ue li

mit.

Thu

s th

e de

sign

er’s

pro

blem

is to

atte

mpt

to m

inim

ize

the

fac-

tors

that

aff

ect t

he f

atig

ue li

fe; t

hese

are

:

•M

ean

or s

tatic

str

ess

•A

ltern

atin

g st

ress

•E

lect

roly

te c

once

ntra

tion

•D

isso

lved

oxy

gen

in e

lect

roly

te

•M

ater

ial p

rope

rtie

s an

d co

mpo

sitio

n

•Te

mpe

ratu

re

•C

yclic

fre

quen

cy

•Fl

uid

flow

rat

e ar

ound

spe

cim

en

•L

ocal

cre

vice

s

Ele

ctro

lyti

c P

lati

ngM

etal

lic c

oatin

gs, s

uch

as c

hrom

ium

pla

ting,

nic

kel p

latin

g, o

r cad

miu

m p

latin

g, re

duce

the

endu

ranc

e lim

it by

as

muc

h as

50

perc

ent.

In s

ome

case

s th

e re

duct

ion

by c

oatin

gsha

s be

en s

o se

vere

tha

t it

has

been

nec

essa

ry t

o el

imin

ate

the

plat

ing

proc

ess.

Zin

cpl

atin

g do

es n

ot a

ffec

t th

e fa

tigue

str

engt

h. A

nodi

c ox

idat

ion

of l

ight

allo

ys r

educ

esbe

ndin

g en

dura

nce

limits

by

as m

uch

as 3

9 pe

rcen

t bu

t ha

s no

eff

ect

on t

he t

orsi

onal

endu

ranc

e lim

it.

Met

al S

pray

ing

Met

al s

pray

ing

resu

lts i

n su

rfac

e im

perf

ectio

ns t

hat

can

initi

ate

crac

ks.

Lim

ited

test

ssh

ow r

educ

tions

of

14 p

erce

nt in

the

fatig

ue s

tren

gth.

Cyc

lic F

requ

ency

If,

for

any

reas

on,

the

fatig

ue p

roce

ss b

ecom

es t

ime-

depe

nden

t, th

en i

t al

so b

ecom

esfr

eque

ncy-

depe

nden

t. U

nder

nor

mal

con

ditio

ns,

fatig

ue f

ailu

re i

s in

depe

nden

t of

fre

-qu

ency

. But

whe

n co

rros

ion

or h

igh

tem

pera

ture

s, o

r bo

th, a

re e

ncou

nter

ed, t

he c

yclic

rate

bec

omes

im

port

ant.

The

slo

wer

the

fre

quen

cy a

nd t

he h

ighe

r th

e te

mpe

ratu

re, t

hehi

gher

the

crac

k pr

opag

atio

n ra

te a

nd th

e sh

orte

r th

e lif

e at

a g

iven

str

ess

leve

l.

Fre

ttag

e C

orro

sion

The

phe

nom

enon

of

fret

tage

cor

rosi

on i

s th

e re

sult

of m

icro

scop

ic m

otio

ns o

f tig

htly

fittin

g pa

rts

or s

truc

ture

s. B

olte

d jo

ints

, be

arin

g-ra

ce fi

ts,

whe

el h

ubs,

and

any

set

of

tight

ly fi

tted

part

s ar

e ex

ampl

es. T

he p

roce

ss in

volv

es s

urfa

ce d

isco

lora

tion,

pitt

ing,

and

even

tual

fat

igue

. The

fre

ttage

fac

tor

k fde

pend

s up

on t

he m

ater

ial

of t

he m

atin

g pa

irs

and

rang

es f

rom

0.2

4 to

0.9

0.

Page 16: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

290

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g287

6–10

Stre

ss C

once

ntr

ation a

nd N

otc

h S

ensi

tivi

tyIn

Sec.

3–13

itw

aspo

inte

dou

tth

atth

eex

iste

nce

ofir

regu

lari

ties

ordi

scon

tinui

ties,

such

asho

les,

groo

ves,

orno

tche

s,in

apa

rtin

crea

ses

the

theo

retic

alst

ress

essi

gnifi

-ca

ntly

inth

eim

med

iate

vici

nity

ofth

edi

scon

tinui

ty.

Equ

atio

n(3

–48)

defin

eda

stre

ssco

ncen

trat

ion

fact

orK

t(o

rK

ts),

whi

chis

used

with

the

nom

inal

stre

ssto

obta

inth

em

axim

umre

sulti

ngst

ress

due

toth

eir

regu

lari

tyor

defe

ct.I

ttur

nsou

ttha

tsom

em

ate-

rial

sar

eno

tfu

llyse

nsiti

veto

the

pres

ence

ofno

tche

san

dhe

nce,

for

thes

e,a

redu

ced

valu

eof

Ktca

nbe

used

.For

thes

em

ater

ials

,the

max

imum

stre

ssis

,in

fact

,

σm

ax=

Kfσ

0or

τ max

=K

fsτ 0

(6–3

0)

whe

reK

fis

a r

educ

ed v

alue

of

Kt

and

σ0

is th

e no

min

al s

tres

s. T

he f

acto

r K

fis

com

-m

only

cal

led

a fa

tigu

e st

ress

-con

cent

rati

on f

acto

r,an

d he

nce

the

subs

crip

t f.

So i

t is

conv

enie

nt t

o th

ink

of K

fas

a s

tres

s-co

ncen

trat

ion

fact

or r

educ

ed f

rom

Kt

beca

use

ofle

ssen

ed s

ensi

tivity

to n

otch

es. T

he r

esul

ting

fact

or is

defi

ned

by th

e eq

uatio

n

Kf

=m

axim

umst

ress

inno

tche

dsp

ecim

en

stre

ssin

notc

h-fr

eesp

ecim

en(a

)

Not

ch s

ensi

tivi

ty q

is d

efine

d by

the

equa

tion

q=

Kf−

1

Kt−

1or

q she

ar=

Kfs

−1

Kts

−1

(6–3

1)

whe

req

is u

sual

ly b

etw

een

zero

and

uni

ty. E

quat

ion

(6–3

1) s

how

s th

at i

f q

=0,

then

Kf

=1,

and

the

mat

eria

l ha

s no

sen

sitiv

ity t

o no

tche

s at

all.

On

the

othe

r ha

nd,

ifq

=1,

then

Kf=

Kt,

and

the

mat

eria

l ha

s fu

ll no

tch

sens

itivi

ty. I

n an

alys

is o

r de

sign

wor

k, fi

nd K

tfir

st, f

rom

the

geom

etry

of

the

part

. The

n sp

ecif

y th

e m

ater

ial,

find

q, a

ndso

lve

for

Kffr

om th

e eq

uatio

n

Kf=

1+

q(K

t−

1)or

Kfs

=1

+q s

hear(K

ts−

1)(6

–32)

For

stee

ls a

nd 2

024

alum

inum

allo

ys, u

se F

ig. 6

–20

to fi

nd q

for

bend

ing

and

axia

llo

adin

g. F

or s

hear

loa

ding

, use

Fig

. 6–2

1. I

n us

ing

thes

e ch

arts

it

is w

ell

to k

now

tha

tth

e ac

tual

tes

t re

sults

fro

m w

hich

the

cur

ves

wer

e de

rive

d ex

hibi

t a

larg

e am

ount

of

00.

020.

040.

060.

080.

100.

120.

140.

16

00.

51.

01.

52.

02.

53.

03.

54.

0

0

0.2

0.4

0.6

0.8

1.0

Not

ch r

adiu

s r ,

in

Not

ch r

adiu

s r,

mm

Notch sensitivity q

Sut=

200

kpsi

(0.4

)

60100

150

(0.7

)

(1.0

)

(1.4

GPa

)

Stee

ls

Alu

m. a

lloy

Figure

6–2

0

Not

ch-se

nsiti

vity

cha

rts fo

rste

els

and

UN

S A

9202

4-T

wro

ught

alu

min

um a

lloys

subj

ecte

d to

reve

rsed

ben

ding

or re

vers

ed a

xial

load

s. F

orla

rger

not

ch ra

dii,

use

the

valu

es o

f qco

rresp

ondi

ngto

the

r=

0.1

6-in

(4-m

m)

ordi

nate

.(Fr

om G

eorg

e Si

nes

and

J. L.

Wai

sman

(eds

.),M

etal

Fat

igue

,McG

raw

-Hill,

New

Yor

k. C

opyr

ight

©19

69by

The

McG

raw

-Hill

Com

pani

es, I

nc. R

eprin

ted

bype

rmiss

ion.

)

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

291

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

288

Mec

hani

cal E

ngin

eerin

g D

esig

n

scat

ter.

Bec

ause

of

this

sca

tter

it is

alw

ays

safe

to

use

Kf

=K

tif

the

re i

s an

y do

ubt

abou

t the

true

val

ue o

f q.

Als

o, n

ote

that

qis

not

far

fro

m u

nity

for

larg

e no

tch

radi

i.T

he n

otch

sen

sitiv

ity o

f th

e ca

st i

rons

is

very

low

, va

ryin

g fr

om 0

to

abou

t 0.

20,

depe

ndin

g up

on th

e te

nsile

str

engt

h. T

o be

on

the

cons

erva

tive

side

, it i

s re

com

men

ded

that

the

valu

e q

=0.

20be

use

d fo

r al

l gra

des

of c

ast i

ron.

Figu

re 6

–20

has

as it

s ba

sis

the

Neu

ber

equa

tion

,whi

ch is

giv

en b

y

Kf=

1+

Kt−

1

1+

√ a/r

(6–3

3)

whe

re√ a

is d

efine

d as

the

Neu

ber

cons

tant

and

is a

mat

eria

l co

nsta

nt.

Equ

atin

gE

qs.(

6–31

) an

d (6

–33)

yie

lds

the

notc

h se

nsiti

vity

equ

atio

n

q=

1

1+

√ a √ r

(6–3

4)

For

stee

l, w

ith S

utin

kpsi

, th

e N

eube

r co

nsta

nt c

an b

e ap

prox

imat

ed b

y a

thir

d-or

der

poly

nom

ial fi

t of

data

as

√ a=

0.24

579

9−

0.30

779

4(10

−2)S

ut

+0.

150

874(

10−4

)S2 ut−

0.26

697

8(10

−7)S

3 ut

(6–3

5)

To u

se E

q. (

6–33

) or

(6–

34)

for

tors

ion

for

low

-allo

y st

eels

, in

crea

se t

he u

ltim

ate

stre

ngth

by

20 k

psi i

n E

q. (

6–35

) an

d ap

ply

this

val

ue o

f √ a.

00.

020.

040.

060.

080.

100.

120.

140.

16

00.

51.

01.

52.

02.

53.

03.

54.

0

0

0.2

0.4

0.6

0.8

1.0

Not

ch r

adiu

s r,

in

Not

ch r

adiu

s r,

mm

Notch sensitivity qshear

Alu

min

um a

lloysA

nnea

led

stee

ls (

Bhn

< 2

00)

Que

nche

d an

d dr

awn

stee

ls (

Bhn

> 2

00)

Figure

6–2

1

Not

ch-se

nsiti

vity

cur

ves

for

mat

eria

ls in

reve

rsed

tors

ion.

For l

arge

r not

ch ra

dii,

use

the

valu

es o

f qsh

ear

corre

spon

ding

to r

=0.

16 in

(4 m

m).

EXA

MPLE

6–6

A s

teel

sha

ft in

ben

ding

has

an

ultim

ate

stre

ngth

of

690

MPa

and

a s

houl

der

with

a fi

l-le

t ra

dius

of

3 m

m c

onne

ctin

g a

32-m

m d

iam

eter

with

a 3

8-m

m d

iam

eter

. Est

imat

e K

f

usin

g:(a

) Fi

gure

6–2

0.(b

) E

quat

ions

(6–

33)

and

(6–3

5).

Page 17: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

292

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Solu

tion

From

Fig.

A–1

5–9,

usin

gD

/d

=38

/32

=1.

1875

,r/

d=

3/32

=0.

093

75,

we

read

the

grap

hto

find

Kt

. =1.

65.

(a) F

rom

Fig

. 6–2

0, fo

r S u

t=

690

MPa

and

r=

3m

m,q

. =0.

84. T

hus,

from

Eq.

(6–3

2)

Ans

wer

Kf=

1+

q(K

t−

1). =

1+

0.84

(1.6

5−

1)=

1.55

(b)

From

Eq.

(6–

35)

with

Su

t=

690

MPa

=10

0 kp

si, √ a

=0.

0622

√ in=

0.31

3√ mm

.Su

bstit

utin

g th

is in

to E

q. (

6–33

) w

ith r

=3

mm

giv

es

Ans

wer

Kf=

1+

Kt−

1

1+

√ a/r

. =1

+1.

65−

1

1+

0.31

3√ 3

=1.

55

For

sim

ple

load

ing,

itis

acce

ptab

leto

redu

ceth

een

dura

nce

limit

byei

ther

divi

ding

the

unno

tche

dsp

ecim

enen

dura

nce

limit

byK

for

mul

tiply

ing

the

reve

rsin

gst

ress

byK

f.H

owev

er,i

nde

alin

gw

ithco

mbi

ned

stre

sspr

oble

ms

that

may

invo

lve

mor

eth

anon

eva

lue

offa

tigue

-con

cent

ratio

nfa

ctor

,the

stre

sses

are

mul

tiplie

dby

Kf.

EXA

MPLE

6–7

Con

side

r an

unn

otch

ed s

peci

men

with

an

endu

ranc

e lim

it of

55

kpsi

. If

the

spe

cim

enw

as n

otch

ed s

uch

that

Kf

=1.

6 , w

hat w

ould

be

the

fact

or o

f sa

fety

aga

inst

fai

lure

for

N>

106

cycl

es a

t a r

ever

sing

str

ess

of 3

0 kp

si?

(a)

Solv

e by

red

ucin

g S′ e.

(b)

Solv

e by

incr

easi

ng th

e ap

plie

d st

ress

.

Solu

tion

(a)

The

end

uran

ce li

mit

of th

e no

tche

d sp

ecim

en is

giv

en b

y

S e=

S′ e

Kf

=55 1.

6=

34.4

kpsi

and

the

fact

or o

f sa

fety

is

Ans

wer

n=

S e σa

=34

.4

30=

1.15

(b)

The

max

imum

str

ess

can

be w

ritte

n as

(σa) m

ax=

Kfσ

a=

1.6(

30)=

48.0

kpsi

and

the

fact

or o

f sa

fety

is

Ans

wer

n=

S′ e

Kfσ

a=

55 48=

1.15

Up

to t

his

poin

t, ex

ampl

es i

llust

rate

d ea

ch f

acto

r in

Mar

in’s

equ

atio

n an

d st

ress

conc

entr

atio

ns a

lone

. Let

us

cons

ider

a n

umbe

r of

fac

tors

occ

urri

ng s

imul

tane

ousl

y.

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g289

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

293

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

290

Mec

hani

cal E

ngin

eerin

g D

esig

n

EXA

MPLE

6–8

A 1

015

hot-

rolle

d st

eel

bar

has

been

mac

hine

d to

a d

iam

eter

of

1 in

. It

is t

o be

pla

ced

inre

vers

ed a

xial

loa

ding

for

70

000

cycl

es t

o fa

ilure

in

an o

pera

ting

envi

ronm

ent

of55

0°F.

Usi

ng A

STM

min

imum

pro

pert

ies,

and

a r

elia

bilit

y of

99

perc

ent,

estim

ate

the

endu

ranc

e lim

it an

d fa

tigue

str

engt

h at

70

000

cycl

es.

Solu

tion

From

Tab

le A

–20,

Sut

=50

kps

i at

70°

F. S

ince

the

rot

atin

g-be

am s

peci

men

end

uran

celim

it is

not

kno

wn

at r

oom

tem

pera

ture

, we

dete

rmin

e th

e ul

timat

e st

reng

th a

t th

e el

e-va

ted

tem

pera

ture

firs

t, us

ing

Tabl

e 6–

4. F

rom

Tab

le 6

–4,

( S T S RT

) 550◦

=0.

995

+0.

963

2=

0.97

9

The

ulti

mat

e st

reng

th a

t 550

°F is

then

(Su

t)55

0◦=

(ST/

S RT) 5

50◦(S

ut)

70◦=

0.97

9(50

)=

49.0

kpsi

The

rot

atin

g-be

am s

peci

men

end

uran

ce li

mit

at 5

50°F

is th

en e

stim

ated

fro

m E

q. (

6–8)

as

S′ e=

0.5(

49)=

24.5

kpsi

Nex

t, w

e de

term

ine

the

Mar

in f

acto

rs.

For

the

mac

hine

d su

rfac

e, E

q. (

6–19

) w

ithTa

ble

6–2

give

s

k a=

aSb u

t=

2.70

(49−0

.265

)=

0.96

3

For

axia

l loa

ding

, fro

m E

q. (

6–21

), th

e si

ze fa

ctor

kb=

1, a

nd f

rom

Eq.

(6–

26)

the

load

-in

g fa

ctor

is k

c=

0.85

. The

tem

pera

ture

fac

tor

k d=

1, s

ince

we

acco

unte

d fo

r th

e te

m-

pera

ture

in

mod

ifyi

ng t

he u

ltim

ate

stre

ngth

and

con

sequ

ently

the

end

uran

ce l

imit.

For

99 p

erce

nt r

elia

bilit

y, f

rom

Tab

le 6

–5,

k e=

0.81

4. F

inal

ly,

sinc

e no

oth

er c

ondi

tions

wer

e gi

ven,

the

mis

cella

neou

s fa

ctor

is

k f=

1. T

he e

ndur

ance

lim

it fo

r th

e pa

rt i

s es

ti-m

ated

by

Eq.

(6–

18)

as

Ans

wer

S e=

k ak b

k ck d

k ek f

S′ e

=0.

963(

1)(0

.85)

(1)(

0.81

4)(1

)24.

5=

16.3

kpsi

For

the

fatig

ue s

tren

gth

at 7

0 00

0 cy

cles

we

need

to

cons

truc

t th

e S-

Neq

uatio

n. F

rom

p. 2

77, s

ince

Su

t=

49<

70kp

si,t

hen

f�

0.9.

Fro

m E

q. (

6–14

)

a=

(fS

ut)

2

S e=

[0.9

(49)

]2

16.3

=11

9.3

kpsi

and

Eq.

(6–

15)

b=

−1 3

log

( fS u

t

S e

) =−

1 3lo

g

[ 0.9(

49)

16.3

] =−0

.144

1

Fina

lly, f

or th

e fa

tigue

str

engt

h at

70

000

cycl

es, E

q. (

6–13

) gi

ves

Ans

wer

Sf=

aN

b=

119.

3(70

000)

−0.1

441

=23

.9kp

si

Page 18: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

294

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g291

EXA

MPLE

6–9

Figu

re 6

–22a

show

s a

rota

ting

shaf

t si

mpl

y su

ppor

ted

in b

all

bear

ings

at

Aan

dD

and

load

ed b

y a

nonr

otat

ing

forc

e F

of 6

.8 k

N. U

sing

AST

M “

min

imum

” st

reng

ths,

est

imat

eth

e lif

e of

the

part

.

Solu

tion

From

Fig

. 6–2

2bw

e le

arn

that

fai

lure

will

pro

babl

y oc

cur

at B

rath

er th

an a

t Cor

at t

hepo

int

of m

axim

um m

omen

t. Po

int

Bha

s a

smal

ler

cros

s se

ctio

n, a

hig

her

bend

ing

mom

ent,

and

a hi

gher

str

ess-

conc

entr

atio

n fa

ctor

than

C, a

nd th

e lo

catio

n of

max

imum

mom

ent h

as a

larg

er s

ize

and

no s

tres

s-co

ncen

trat

ion

fact

or.

We

shal

l sol

ve th

e pr

oble

m b

y fir

st e

stim

atin

g th

e st

reng

th a

t poi

nt B

, sin

ce th

e st

reng

thw

ill b

e di

ffer

ent e

lsew

here

, and

com

pari

ng th

is s

tren

gth

with

the

stre

ss a

t the

sam

e po

int.

From

Tab

le A

–20

we

find

S ut=

690

MPa

and

Sy

=58

0M

Pa. T

he e

ndur

ance

lim

itS′ e

is e

stim

ated

as

S′ e=

0.5(

690)

=34

5M

Pa

From

Eq.

(6–

19)

and

Tabl

e 6–

2,

k a=

4.51

(690

)−0.

265

=0.

798

From

Eq.

(6–

20),

k b=

(32/

7.62

)−0.1

07=

0.85

8

Sinc

ek c

=k d

=k e

=k f

=1 ,

S e=

0.79

8(0.

858)

345

=23

6M

Pa

To fi

nd th

e ge

omet

ric

stre

ss-c

once

ntra

tion

fact

or K

tw

e en

ter

Fig.

A–1

5–9

with

D/d

=38

/32

=1.

1875

and

r/d

=3/

32=

0.09

375

and

read

K

t. =

1.65

.S

ubst

itut

ing

S ut=

690/

6.89

=10

0kp

si i

nto

Eq.

(6–

35)

yiel

ds √ a

=0.

0622

√ in=

0.31

3√ mm

.Su

bstit

utin

g th

is in

to E

q. (

6–33

) gi

ves

Kf=

1+

Kt−

1

1+

√ a/r

=1

+1.

65−

1

1+

0.31

3/√ 3

=1.

55

(a)

(b)

AB

MB

MC

Mm

ax

CD

3030

3235

38

1010

AB

CD

6.8

kN

250

125

100

75

R2

R1

Figure

6–2

2

(a) S

haft

draw

ing

show

ing

all

dim

ensio

ns in

milli

met

ers;

all

fille

ts 3-

mm

radi

us. T

he s

haft

rota

tes

and

the

load

issta

tiona

ry; m

ater

ial i

sm

achi

ned

from

AIS

I 105

0co

ld-d

raw

n ste

el. (

b) B

endi

ng-

mom

ent d

iagr

am.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

295

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

292

Mec

hani

cal E

ngin

eerin

g D

esig

n

The

nex

t st

ep i

s to

est

imat

e th

e be

ndin

g st

ress

at

poin

t B

. The

ben

ding

mom

ent

is

MB

=R

1x

=22

5F

550

250

=22

5(6.

8)

550

250

=69

5.5

N·m

Just

to th

e le

ft o

f B th

e se

ctio

n m

odul

us is

I/c

d3/32

323/32

=3.

217

(103

)mm

3.

The

rev

ersi

ng b

endi

ng s

tres

s is

, ass

umin

g in

finite

life

,

σ=

Kf

MB

I/c

=1.

5569

5.5

3.21

7(1

0)−6

=33

5.1(

106)

Pa=

335.

1M

Pa

Thi

s st

ress

is

grea

ter

than

Se

and

less

tha

n S y

. Thi

s m

eans

we

have

bot

h fin

ite l

ife

and

no y

ield

ing

on th

e fir

st c

ycle

. Fo

r fin

ite l

ife,

we

will

nee

d to

use

Eq.

(6–

16).

The

ulti

mat

e st

reng

th,

S ut=

690

MPa

= 1

00 k

psi.

From

Fig

. 6–1

8, f

=0.

844 .

Fro

m E

q. (

6–14

)

a=

(f

S ut)

2

S e=

[0.8

44(6

90)]

2

236

=14

37M

Pa

and

from

Eq.

(6–

15)

b=

−1 3

log

( fS u

t

S e

) =−

1 3lo

g

[ 0.84

4(69

0)

236

] =−0

.130

8

From

Eq.

(6–

16),

Ans

wer

N=( σ a a

) 1/b=( 33

5.1

1437

) −1/0.

1308

=68

(103

)cy

cles

6–11

Chara

cter

izin

g F

luct

uating S

tres

ses

Flu

ctua

ting

str

esse

s in

mac

hine

ry o

ften

take

the

form

of

a si

nuso

idal

pat

tern

bec

ause

of th

e na

ture

of

som

e ro

tati

ng m

achi

nery

. How

ever

, oth

er p

atte

rns,

som

e qu

ite

irre

g-ul

ar,

do o

ccur

. It

has

bee

n fo

und

that

in

peri

odic

pat

tern

s ex

hibi

ting

a s

ingl

e m

axi-

mum

and

a s

ingl

e m

inim

um o

f fo

rce,

the

sha

pe o

f th

e w

ave

is n

ot i

mpo

rtan

t, bu

t th

epe

aks

on b

oth

the

high

sid

e (m

axim

um)

and

the

low

sid

e (m

inim

um)

are

impo

rtan

t.T

hus

Fm

axan

dF

min

in a

cyc

le o

f fo

rce

can

be u

sed

to c

hara

cter

ize

the

forc

e pa

tter

n.It

is

also

tru

e th

at r

angi

ng a

bove

and

bel

ow s

ome

base

line

can

be

equa

lly

effe

ctiv

ein

cha

ract

eriz

ing

the

forc

e pa

tter

n. I

f th

e la

rges

t fo

rce

is F

max

and

the

smal

lest

for

ceis

Fm

in,

then

a s

tead

y co

mpo

nent

and

an

alte

rnat

ing

com

pone

nt c

an b

e co

nstr

ucte

das

fol

low

s:

Fm

=F

max

+F

min

2F

a=∣ ∣ ∣ ∣F

max

−F

min

2

∣ ∣ ∣ ∣w

here

Fm

is t

he m

idra

nge

stea

dy c

ompo

nent

of

forc

e, a

nd F

ais

the

am

plitu

de o

f th

eal

tern

atin

g co

mpo

nent

of

forc

e.

Page 19: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

296

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g293

Figu

re 6

–23

illus

trat

es s

ome

of th

e va

riou

s st

ress

-tim

e tr

aces

that

occ

ur. T

he c

om-

pone

nts

of s

tres

s, s

ome

of w

hich

are

sho

wn

in F

ig. 6

–23d

, are

σm

in=

min

imum

str

ess

σm

=m

idra

nge

com

pone

nt

σm

ax=

max

imum

str

ess

σr

=ra

nge

of s

tres

s

σa

=am

plitu

de c

ompo

nent

σs

=st

atic

or

stea

dy s

tres

s

The

ste

ady,

or

stat

ic, s

tres

s is

not

the

sam

e as

the

mid

rang

e st

ress

; in

fac

t, it

may

hav

ean

y va

lue

betw

een

σm

inan

max

. The

ste

ady

stre

ss e

xist

s be

caus

e of

a fi

xed

load

or p

re-

load

app

lied

to th

e pa

rt, a

nd it

is u

sual

ly in

depe

nden

t of

the

vary

ing

port

ion

of th

e lo

ad.

A h

elic

al c

ompr

essi

on s

prin

g, f

or e

xam

ple,

is

alw

ays

load

ed i

nto

a sp

ace

shor

ter

than

the

free

leng

th o

f th

e sp

ring

. The

str

ess

crea

ted

by th

is in

itial

com

pres

sion

is c

alle

d th

est

eady

, or

stat

ic, c

ompo

nent

of

the

stre

ss. I

t is

not t

he s

ame

as th

e m

idra

nge

stre

ss.

We

shal

l hav

e oc

casi

on to

app

ly th

e su

bscr

ipts

of

thes

e co

mpo

nent

s to

she

ar s

tres

s-es

as

wel

l as

norm

al s

tres

ses.

The

fol

low

ing

rela

tions

are

evi

dent

fro

m F

ig. 6

–23:

σm

max

min

2

σa

=∣ ∣ ∣ ∣σ

max

−σ

min

2

∣ ∣ ∣ ∣(6

–36)

Tim

e

Tim

e

Tim

e

Tim

e

Tim

e

Tim

e

Stress

Stress Stress

Stress

Stress Stress

(a)

(b)

(c)

�a

�a

�r

�m

�m

in

�m

ax

�a

�a

�r

�a

�a

�r

�m

�m

ax

O O

O

(d)

(e)

(f)

�m

in =

0

�m

= 0

+

Figure

6–2

3

Som

e str

ess-t

ime

rela

tions

:(a

)fluc

tuat

ing

stres

s w

ith h

igh-

frequ

ency

ripp

le; (

ban

dc)

nons

inus

oida

l fluc

tuat

ing

stres

s; (d

) sin

usoi

dal fl

uctu

atin

gstr

ess;

(e) r

epea

ted

stres

s;(f)

com

plet

ely

reve

rsed

sinus

oida

l stre

ss.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

297

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

294

Mec

hani

cal E

ngin

eerin

g D

esig

n

In a

dditi

on to

Eq.

(6–

36),

the

stre

ss r

atio

R=

σm

in

σm

ax(6

–37)

and

the

ampl

itud

e ra

tio

A=

σa

σm

(6–3

8)

are

also

defi

ned

and

used

in c

onne

ctio

n w

ith fl

uctu

atin

g st

ress

es.

Equ

atio

ns (

6–36

) ut

ilize

sym

bols

σa

and

σm

as t

he s

tres

s co

mpo

nent

s at

the

loc

a-tio

n un

der

scru

tiny.

Thi

s m

eans

, in

the

abse

nce

of a

not

ch, σ

aan

mar

e eq

ual

to t

heno

min

al s

tres

ses σ

aoan

mo

indu

ced

by lo

ads

Fa

and

Fm

, res

pect

ivel

y; in

the

pres

ence

of a

not

ch t

hey

are

Kfσ

aoan

dK

mo,

resp

ectiv

ely,

as

long

as

the

mat

eria

l re

mai

nsw

ithou

t pl

astic

str

ain.

In

othe

r w

ords

, th

e fa

tigue

str

ess

conc

entr

atio

n fa

ctor

Kf

isap

plie

d to

bot

hco

mpo

nent

s.W

hen

the

stea

dy s

tres

s co

mpo

nent

is h

igh

enou

gh to

indu

ce lo

caliz

ed n

otch

yie

ld-

ing,

the

des

igne

r ha

s a

prob

lem

. T

he fi

rst-

cycl

e lo

cal

yiel

ding

pro

duce

s pl

astic

str

ain

and

stra

in-s

tren

gthe

ning

. T

his

is o

ccur

ring

at

the

loca

tion

whe

re f

atig

ue c

rack

nuc

le-

atio

n an

d gr

owth

are

mos

t lik

ely.

The

mat

eria

l pro

pert

ies

(Sy

and

S ut)

are

new

and

dif

-fic

ult t

oqu

antif

y. T

he p

rude

nt e

ngin

eer

cont

rols

the

conc

ept,

mat

eria

l and

con

ditio

n of

use,

and

geom

etry

so

that

no

plas

tic s

trai

n oc

curs

. T

here

are

dis

cuss

ions

con

cern

ing

poss

ible

way

s of

qua

ntif

ying

wha

t is

occu

rrin

g un

der

loca

lized

and

gen

eral

yie

ldin

g in

the

pres

ence

of

a no

tch,

ref

erre

d to

as

the

nom

inal

mea

n st

ress

met

hod,

resi

dual

str

ess

met

hod,

an

d th

e lik

e.20

The

no

min

al

mea

n st

ress

m

etho

d (s

et σ

a=

Kfσ

aoan

m=

σm

o)

give

s ro

ughl

y co

mpa

rabl

e re

sults

to th

e re

sidu

al s

tres

s m

etho

d, b

ut b

oth

are

appr

oxim

atio

ns.

The

re is

the

met

hod

of D

owlin

g21fo

r du

ctile

mat

eria

ls, w

hich

, for

mat

eria

ls w

ith a

pron

ounc

ed y

ield

poi

nt a

nd a

ppro

xim

ated

by

an e

last

ic–p

erfe

ctly

pla

stic

beh

avio

rm

odel

, qua

ntita

tivel

y ex

pres

ses

the

stea

dy s

tres

s co

mpo

nent

str

ess-

conc

entr

atio

n fa

ctor

Kfm

as

Kfm

=K

fK

f|σ m

ax,o|<

S y

Kfm

=S y

−K

ao

|σ mo|

Kf|σ m

ax,o|>

S y

Kfm

=0

Kf|σ m

ax,o

−σ

min

,o|>

2Sy

(6–3

9)

For

the

purp

oses

of

this

boo

k, f

or d

uctil

e m

ater

ials

in f

atig

ue,

•A

void

loca

lized

pla

stic

str

ain

at a

not

ch. S

et σ

a=

Kfσ

a,o

and

σm

=K

mo.

•W

hen

plas

tic s

trai

n at

a n

otch

can

not b

e av

oide

d, u

se E

qs. (

6–39

); o

r co

nser

vativ

ely,

setσ

a=

Kfσ

aoan

d us

e K

fm=

1 , th

at is

, σm

mo.

20R

. C. J

uvin

all,

Stre

ss, S

trai

n, a

nd S

tren

gth,

McG

raw

-Hill

, New

Yor

k, 1

967,

art

icle

s 14

.9–1

4.12

; R. C

.Ju

vina

ll an

d K

. M. M

arsh

ek, F

unda

men

tals

of M

achi

ne C

ompo

nent

Des

ign,

4th

ed.

, Wile

y, N

ew Y

ork,

200

6,Se

c.8.

11; M

. E. D

owlin

g, M

echa

nica

l Beh

avio

r of

Mat

eria

ls, 2

nd e

d., P

rent

ice

Hal

l, E

ngle

woo

d C

liffs

,N

.J.,

1999

, Sec

s. 1

0.3–

10.5

.21

Dow

ling,

op.

cit.

, p. 4

37–4

38.

Page 20: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

298

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g295

6–12

Fatigue

Failu

re C

rite

ria f

or

Fluct

uating S

tres

sN

ow th

at w

e ha

ve d

efine

d th

e va

riou

s co

mpo

nent

s of

str

ess

asso

ciat

ed w

ith a

par

t sub

-je

cted

to

fluct

uatin

g st

ress

, w

e w

ant

to v

ary

both

the

mid

rang

e st

ress

and

the

str

ess

ampl

itude

, or

alte

rnat

ing

com

pone

nt, t

o le

arn

som

ethi

ng a

bout

the

fatig

ue r

esis

tanc

e of

part

s w

hen

subj

ecte

d to

suc

h si

tuat

ions

. Thr

ee m

etho

ds o

f pl

ottin

g th

e re

sults

of

such

test

s ar

e in

gen

eral

use

and

are

sho

wn

in F

igs.

6–2

4, 6

–25,

and

6–2

6.T

hem

odifi

ed G

oodm

an d

iagr

amof

Fig

. 6–2

4 ha

s th

e m

idra

nge

stre

ss p

lotte

d al

ong

the

absc

issa

and

all

othe

r co

mpo

nent

s of

str

ess

plot

ted

on t

he o

rdin

ate,

with

ten

sion

in

the

posi

tive

dire

ctio

n. T

he e

ndur

ance

lim

it, f

atig

ue s

tren

gth,

or

finite

-lif

e st

reng

th,

whi

chev

er a

pplie

s, is

plo

tted

on th

e or

dina

te a

bove

and

bel

ow th

e or

igin

. The

mid

rang

e-st

ress

line

is a

45◦

line

from

the

orig

in to

the

tens

ile s

tren

gth

of th

e pa

rt. T

he m

odifi

edG

oodm

an d

iagr

am c

onsi

sts

of t

he l

ines

con

stru

cted

to

S e(o

rS

f)

abov

e an

d be

low

the

orig

in. N

ote

that

the

yiel

d st

reng

th is

als

o pl

otte

d on

bot

h ax

es, b

ecau

se y

ield

ing

wou

ldbe

the

crite

rion

of

failu

re if

σm

axex

ceed

ed S

y.

Ano

ther

way

to d

ispl

ay te

st r

esul

ts is

sho

wn

in F

ig. 6

–25.

Her

e th

e ab

scis

sa r

epre

-se

nts

the

ratio

of

the

mid

rang

e st

reng

th S

mto

the

ulti

mat

e st

reng

th, w

ith t

ensi

on p

lot-

ted

to t

he r

ight

and

com

pres

sion

to

the

left

. The

ord

inat

e is

the

rat

io o

f th

e al

tern

atin

gst

reng

th t

o th

e en

dura

nce

limit.

The

lin

e B

Cth

en r

epre

sent

s th

e m

odifi

ed G

oodm

ancr

iteri

on o

f fa

ilure

. Not

e th

at th

e ex

iste

nce

of m

idra

nge

stre

ss in

the

com

pres

sive

reg

ion

has

little

eff

ect o

n th

e en

dura

nce

limit.

The

ver

y cl

ever

dia

gram

of

Fig.

6–2

6 is

uni

que

in th

at it

dis

play

s fo

ur o

f th

e st

ress

com

pone

nts

as w

ell

as t

he t

wo

stre

ss r

atio

s. A

cur

ve r

epre

sent

ing

the

endu

ranc

e lim

itfo

r va

lues

of

Rbe

ginn

ing

at R

=−1

and

endi

ng w

ith R

=1

begi

ns a

t S e

on th

e σ

aax

isan

d en

ds a

t S u

ton

the

σm

axis

. Con

stan

t-lif

e cu

rves

for

N=

105

and

N=

104

cycl

es

Figure

6–2

4

Mod

ified

Goo

dman

dia

gram

show

ing

all t

he s

treng

ths

and

the

limiti

ng v

alue

s of

all

the

stres

s co

mpo

nent

s fo

r apa

rticu

lar m

idra

nge

stres

s.

S u S y S e

S yS u

�m

�m

ax Max

. stre

ss

�m

in

Midr

ange

stres

s

Min. stres

s

Stress

0

S e

Mid

rang

e st

ress

Parallel

45°

�a

�a

�a

�r

+

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

299

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

296

Mec

hani

cal E

ngin

eerin

g D

esig

n

have

bee

n dr

awn

too.

Any

str

ess

stat

e, s

uch

as th

e on

e at

A, c

an b

e de

scri

bed

by th

e m

in-

imum

and

max

imum

com

pone

nts,

or

by th

e m

idra

nge

and

alte

rnat

ing

com

pone

nts.

And

safe

ty is

indi

cate

d w

hene

ver t

he p

oint

des

crib

ed b

y th

e st

ress

com

pone

nts

lies

belo

w th

eco

nsta

nt-l

ife

line.

Figure

6–2

6

Mas

ter fa

tigue

dia

gram

crea

ted

for A

ISI 4

340 s

teel

havi

ngS u

t=

158

and

S y=

147

kpsi. Th

e stre

ssco

mpo

nent

s at

Aar

min

=20

max

=12

0,

σm

=70

, an

d σ

a=

50, al

l in

kpsi.

(Sou

rce:

H. J.

Gro

ver,

Fatig

ue o

f Airc

raft

Stru

ctur

es,

U.S

. G

over

nmen

t Prin

ting

Offi

ce, W

ashi

ngto

n, D

.C.,

1966, pp

. 317, 322. Se

eal

so J.

A. C

ollin

s, F

ailu

re o

fM

ater

ials in

Mec

hani

cal

Des

ign,

Wile

y, N

ewYo

rk,

1981, p.

216.)

–120

–100

–80

–60

–40

–20

020

4060

8010

012

014

016

018

0

20406080100

120

A =

�R

= –

1.0

20

40

60

80

100

120

140

160

180

Midr

ange

stres

s �m, k

psi

20

40

60

80

100

120

Altern

ating

stres

s �a, k

psi

RA

4.0

–0.

62.

33–

0.4

1.5

–0.

2A

= 1

R=

00.

67 0.2

0.43 0.4

0.25 0.6

0.11 0.8

0 1.0

Maximum stress �max, kpsi

Min

imum

str

ess

�m

in, k

psi

105 10

6

104

cycl

es

A

S ut

S e

Figure

6–2

5

Plot

of f

atig

ue fa

ilure

s fo

r mid

rang

e str

esse

s in

bot

h te

nsile

and

com

pres

sive

regi

ons.

Nor

mal

izin

gth

eda

ta b

y us

ing

the

ratio

of s

tead

y str

engt

h co

mpo

nent

to te

nsile

stre

ngth

Sm/S u

t, s

tead

y str

engt

hco

mpo

nent

to c

ompr

essiv

e str

engt

h S m

/S u

can

d str

engt

h am

plitu

de c

ompo

nent

to e

ndur

ance

lim

itS a

/S′ e

enab

les

a pl

ot o

f exp

erim

enta

l res

ults

for a

var

iety

of s

teel

s. [D

ata

sour

ce: T

hom

as J.

Dol

an,

“Stre

ss R

ange

,” S

ec.6

.2 in

O. J

. Hor

ger (

ed.),

ASM

E H

andb

ook—

Met

als

Engi

neer

ing

Des

ign,

McG

raw

-Hill,

New

Yor

k, 1

953.

]

–1.2

–1.0

–0.

8–

0.6

–0.

4–

0.2

00.

20.

40.

60.

81.

0

0.2

0.4

0.6

0.8

1.0

1.2

Mid

rang

e ra

tio

Com

pres

sion

S m/S

uc

Tens

ion

S m/S

ut

Amplitude ratio Sa/Se

AB

C

Page 21: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

300

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g297

Whe

n th

e m

idra

nge

stre

ss i

s co

mpr

essi

on,

failu

re o

ccur

s w

hene

ver

σa

=S e

orw

hene

ver σ

max

=S y

c, a

s in

dica

ted

by th

e le

ft-h

and

side

of

Fig.

6–2

5. N

eith

er a

fat

igue

diag

ram

nor

any

oth

er f

ailu

re c

rite

ria

need

be

deve

lope

d.In

Fig

. 6–2

7, t

he t

ensi

le s

ide

of F

ig. 6

–25

has

been

red

raw

n in

ter

ms

of s

tren

gths

,in

stea

d of

str

engt

h ra

tios,

with

the

sam

e m

odifi

ed G

oodm

an c

rite

rion

toge

ther

with

fou

rad

ditio

nal

crite

ria

of f

ailu

re.

Such

dia

gram

s ar

e of

ten

cons

truc

ted

for

anal

ysis

and

desi

gn p

urpo

ses;

they

are

eas

y to

use

and

the

resu

lts c

an b

e sc

aled

off

dir

ectly

.T

he e

arly

vie

wpo

int e

xpre

ssed

on

a σ

mdi

agra

m w

as th

at th

ere

exis

ted

a lo

cus

whi

chdi

vide

d sa

fe f

rom

uns

afe

com

bina

tions

of

σa

and

σm

. E

nsui

ng p

ropo

sals

inc

lude

d th

epa

rabo

la o

f Ger

ber (

1874

), th

e G

oodm

an (1

890)

22(s

trai

ght)

line

, and

the

Sode

rber

g (1

930)

(str

aigh

t) li

ne. A

s m

ore

data

wer

e ge

nera

ted

it be

cam

e cl

ear

that

a f

atig

ue c

rite

rion

, rat

her

than

bei

ng a

“fe

nce,

” w

as m

ore

like

a zo

ne o

r ban

d w

here

in th

e pr

obab

ility

of f

ailu

re c

ould

be e

stim

ated

. We

incl

ude

the

failu

re c

rite

rion

of

Goo

dman

bec

ause

•It

is a

str

aigh

t lin

e an

d th

e al

gebr

a is

line

ar a

nd e

asy.

•It

is e

asily

gra

phed

, eve

ry ti

me

for

ever

y pr

oble

m.

•It

rev

eals

sub

tletie

s of

insi

ght i

nto

fatig

ue p

robl

ems.

•A

nsw

ers

can

be s

cale

d fr

om th

e di

agra

ms

as a

che

ck o

n th

e al

gebr

a.

We

also

caut

ion

that

itis

dete

rmin

istic

and

the

phen

omen

onis

not.

Itis

bias

edan

dw

eca

nnot

quan

tify

the

bias

.Iti

sno

tcon

serv

ativ

e.It

isa

step

ping

-sto

neto

unde

rsta

ndin

g;it

ishi

stor

y;an

dto

read

the

wor

kof

othe

reng

inee

rsan

dto

have

mea

ning

fulo

rale

xcha

nges

with

them

,iti

sne

cess

ary

that

you

unde

rsta

ndth

eG

oodm

anap

proa

chsh

ould

itar

ise.

Eith

er th

e fa

tigue

lim

it S e

or th

e fin

ite-l

ife

stre

ngth

Sf

is p

lotte

d on

the

ordi

nate

of

Fig.

6–2

7. T

hese

val

ues

will

hav

e al

read

y be

en c

orre

cted

usi

ng t

he M

arin

fac

tors

of

Eq.

(6–1

8). N

ote

that

the

yiel

d st

reng

th S

yis

plo

tted

on th

e or

dina

te to

o. T

his

serv

es a

sa

rem

inde

r th

at fi

rst-

cycl

e yi

eldi

ng r

athe

r th

an f

atig

ue m

ight

be

the

crite

rion

of

failu

re.

The

mid

rang

e-st

ress

axi

s of

Fig

. 6–

27 h

as t

he y

ield

str

engt

h S y

and

the

tens

ilest

reng

thS u

tpl

otte

d al

ong

it.

Figure

6–2

7

Fatig

ue d

iagr

am s

how

ing

vario

us c

riter

ia o

f fai

lure

. For

each

crit

erio

n, p

oint

s on

or

“abo

ve”

the

resp

ectiv

e lin

ein

dica

te fa

ilure

. Som

e po

int A

on th

e G

oodm

an li

ne, f

orex

ampl

e, g

ives

the

stren

gth

S mas

the

limiti

ng v

alue

of σ

m

corre

spon

ding

to th

e str

engt

hS a

, whi

ch, p

aire

d w

ith σ

m, i

sth

e lim

iting

val

ue o

fσa.

Alternating stress �a

Mid

rang

e st

ress

�m

0S m

A

S ut

S y0S aS eS y

Sode

rber

g lin

e

Mod

ifie

d G

oodm

an li

ne

ASM

E-e

llipt

ic li

ne

Loa

d lin

e, s

lope

r =

Sa/S

m

Ger

ber

line

Yie

ld (

Lan

ger)

line

22It

is d

iffic

ult t

o da

te G

oodm

an’s

wor

k be

caus

e it

wen

t thr

ough

sev

eral

mod

ifica

tions

and

was

nev

erpu

blis

hed.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

301

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

298

Mec

hani

cal E

ngin

eerin

g D

esig

n

Five

crite

ria

offa

ilure

are

diag

ram

med

inFi

g.6–

27:

the

Sode

rber

g,th

em

odifi

edG

oodm

an,

the

Ger

ber,

the

ASM

E-e

llipt

ic,

and

yiel

ding

.The

diag

ram

show

sth

aton

lyth

eSo

derb

erg

crite

rion

guar

dsag

ains

tany

yiel

ding

,but

isbi

ased

low

.C

onsi

deri

ng t

he m

odifi

ed G

oodm

an l

ine

as a

cri

teri

on, p

oint

Are

pres

ents

a l

imit-

ing

poin

t with

an

alte

rnat

ing

stre

ngth

Sa

and

mid

rang

e st

reng

th S

m. T

he s

lope

of t

he lo

adlin

e sh

own

is d

efine

d as

r=

S a/

S m.

The

cri

teri

on e

quat

ion

for

the

Sode

rber

g lin

e is

S a S e+

S m S y=

1(6

–40)

Sim

ilarl

y, w

e fin

d th

e m

odifi

ed G

oodm

an r

elat

ion

to b

e

S a S e+

S m S ut

=1

(6–4

1)

Exa

min

atio

n of

Fig

. 6–2

5 sh

ows

that

bot

h a

para

bola

and

an

ellip

se h

ave

a be

tter

oppo

rtun

ity to

pas

s am

ong

the

mid

rang

e te

nsio

n da

ta a

nd to

per

mit

quan

tifica

tion

of th

epr

obab

ility

of

failu

re. T

he G

erbe

r fa

ilure

cri

teri

on is

wri

tten

as

S a S e+( S m S u

t

) 2 =1

(6–4

2)

and

the

ASM

E-e

llipt

ic is

wri

tten

as ( S a S e

) 2 +( S m S y

) 2 =1

(6–4

3)

The

Lan

ger

firs

t-cy

cle-

yiel

ding

cri

teri

on i

s us

ed i

n co

nnec

tion

wit

h th

e fa

tigu

ecu

rve:

S a+

S m=

S y(6

–44)

The

str

esse

s nσ

aan

dnσ

mca

n re

plac

e S a

and

S m, w

here

nis

the

desi

gn f

acto

r or

fac

tor

of s

afet

y. T

hen,

Eq.

(6–

40),

the

Sode

rber

g lin

e, b

ecom

es

Sode

rber

a S e+

σm S y

=1 n

(6–4

5)

Equ

atio

n (6

–41)

, the

mod

ified

Goo

dman

line

, bec

omes

mod

-Goo

dman

σa S e

m S ut

=1 n

(6–4

6)

Equ

atio

n (6

–42)

, the

Ger

ber

line,

bec

omes

Ger

ber

nσa

S e+( nσ

m

S ut

) 2 =1

(6–4

7)

Equ

atio

n (6

–43)

, the

ASM

E-e

llipt

ic li

ne, b

ecom

es

ASM

E-e

llipt

ic( nσ

a

S e

) 2 +( nσ

m

S y

) 2 =1

(6–4

8)

We

will

em

phas

ize

the

Ger

ber

and

ASM

E-e

llipt

ic f

or f

atig

ue f

ailu

re c

rite

rion

and

the

Lan

ger

for

first

-cyc

le y

ield

ing.

How

ever

, con

serv

ativ

e de

sign

ers

ofte

n us

e th

e m

odifi

edG

oodm

an c

rite

rion

, so

we

will

con

tinue

to

incl

ude

it in

our

dis

cuss

ions

. T

he d

esig

neq

uatio

n fo

r th

e L

ange

r fir

st-c

ycle

-yie

ldin

g is

Lan

ger

stat

ic y

ield

σa+

σm

=S y n

(6–4

9)

Page 22: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

302

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g299

Inte

rsec

ting E

quations

Inte

rsec

tion C

oord

inate

s

S a S e+( S m S u

t

) 2 =1

S a=

r2S2 ut

2S e

⎡ ⎣ −1

+√ 1

+( 2

S erS

ut

) 2⎤ ⎦

Load

line

r=

S a S mS m

=S a r

S a S y+

S m S y=

1S a

=rS

y

1+

r

Load

line

r=

S a S mS m

=S y

1+

r

S a S e+( S m S u

t

) 2 =1

S m=

S2 ut

2S e

⎡ ⎣ 1−√ 1

+( 2

S e S ut

) 2(1

−S y S e

)⎤ ⎦S a S y

+S m S y

=1

S a=

S y−

S m,r

crit

=S a

/S m

Fatig

ue fa

ctor

of s

afet

y

n f=

1 2

( S ut

σm

) 2 σa S e

⎡ ⎣ −1

+√ 1

+( 2σ

mS e

S utσ

a

) 2⎤ ⎦σ

m>

0

Table

6–7

Am

plitu

de a

nd S

tead

yC

oord

inat

es o

f Stre

ngth

and

Impo

rtant

Inte

rsec

tions

in F

irst

Qua

dran

t for

Ger

ber

and

Lang

er F

ailu

reC

riter

ia

Inte

rsec

ting E

quations

Inte

rsec

tion C

oord

inate

s

S a S e+

S m S ut

=1

S a=

rSeS

ut

rSut

+S e

Load

line

r=

S a S mS m

=S a r

S a S y+

S m S y=

1S a

=rS

y

1+

r

Load

line

r=

S a S mS m

=S y

1+

rS a S e

+S m S u

t=

1S m

=( S y

−S e) S u

t

S ut−

S eS a S y

+S m S y

=1

S a=

S y−

S m,r

crit

=S a

/S m

Fatig

ue fa

ctor

of s

afet

y

n f=

a S e+

σm S ut

Table

6–6

Am

plitu

de a

nd S

tead

yC

oord

inat

es o

f Stre

ngth

and

Impo

rtant

Inte

rsec

tions

in F

irst

Qua

dran

t for

Mod

ified

Goo

dman

and

Lan

ger

Failu

re C

riter

ia

The

fai

lure

cri

teri

a ar

e us

ed i

n co

njun

ctio

n w

ith a

loa

d lin

e, r

=S a

/S m

a/σ

m.

Prin

cipa

l in

ters

ectio

ns a

re t

abul

ated

in

Tabl

es 6

–6 t

o 6–

8. F

orm

al e

xpre

ssio

ns f

orfa

tigue

fac

tor

of s

afet

y ar

e gi

ven

in th

e lo

wer

pan

el o

f Ta

bles

6–6

to 6

–8. T

he fi

rst r

owof

eac

h ta

ble

corr

espo

nds

to t

he f

atig

ue c

rite

rion

, th

e se

cond

row

is

the

stat

ic L

ange

rcr

iteri

on,

and

the

thir

d ro

w c

orre

spon

ds t

o th

e in

ters

ectio

n of

the

sta

tic a

nd f

atig

ue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

303

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

300

Mec

hani

cal E

ngin

eerin

g D

esig

n

crite

ria.

The

firs

t co

lum

n gi

ves

the

inte

rsec

ting

equa

tions

and

the

sec

ond

colu

mn

the

inte

rsec

tion

coor

dina

tes.

The

re a

re tw

o w

ays

to p

roce

ed w

ith

a ty

pica

l ana

lysi

s. O

ne m

etho

d is

to a

ssum

eth

at f

atig

ue o

ccur

s fi

rst

and

use

one

of E

qs. (

6–45

) to

(6–

48)

to d

eter

min

e n

or s

ize,

depe

ndin

g on

the

tas

k. M

ost

ofte

n fa

tigu

e is

the

gov

erni

ng f

ailu

re m

ode.

The

nfo

llow

wit

h a

stat

ic c

heck

. If

stat

ic f

ailu

re g

over

ns th

en th

e an

alys

is is

rep

eate

d us

ing

Eq.

(6–4

9).

Alte

rnat

ivel

y, o

ne c

ould

use

the

tabl

es. D

eter

min

e th

e lo

ad li

ne a

nd e

stab

lish

whi

chcr

iteri

on th

e lo

ad li

ne in

ters

ects

firs

t and

use

the

corr

espo

ndin

g eq

uatio

ns in

the

tabl

es.

Som

e ex

ampl

es w

ill h

elp

solid

ify

the

idea

s ju

st d

iscu

ssed

.

EXA

MPLE

6–1

0A

1.5

-in-

diam

eter

bar

has

bee

n m

achi

ned

from

an

AIS

I 10

50 c

old-

draw

n ba

r. T

his

part

is to

with

stan

d a

fluct

uatin

g te

nsile

load

var

ying

fro

m 0

to 1

6 ki

p. B

ecau

se o

f th

e en

ds,

and

the

fille

t ra

dius

, a

fatig

ue s

tres

s-co

ncen

trat

ion

fact

or K

fis

1.8

5 fo

r 10

6or

lar

ger

life.

Fin

d S a

and

S man

d th

e fa

ctor

of

safe

ty g

uard

ing

agai

nst

fatig

ue a

nd fi

rst-

cycl

eyi

eldi

ng, u

sing

(a)

the

Ger

ber

fatig

ue li

ne a

nd (

b) th

e A

SME

-elli

ptic

fat

igue

line

.

Solu

tion

We

begi

n w

ith s

ome

prel

imin

arie

s. F

rom

Tab

le A

–20,

Su

t=

100

kpsi

and

Sy

=84

kpsi

.N

ote

that

Fa

=F

m=

8ki

p. T

he M

arin

fac

tors

are

, det

erm

inis

tical

ly,

k a=

2.70

(100

)−0.

265

=0.

797:

Eq.

(6–

19),

Tab

le 6

–2, p

. 279

k b=

1(a

xial

load

ing,

see

k c)

Inte

rsec

ting E

quations

Inte

rsec

tion C

oord

inate

s

( S a S e

) 2 +( S m S y

) 2 =1

S a=√ √ √ √

r2S2 e

S2 y

S2 e+

r2S2 y

Load

line

r=

S a/S m

S m=

S a rS a S y

+S m S y

=1

S a=

rSy

1+

r

Load

line

r=

S a/S m

S m=

S y1

+r

( S a S e

) 2 +( S m S y

) 2 =1

S a=

0,2

S yS2 e

S2 e+

S2 y

S a S y+

S m S y=

1S m

=S y

−S a

,rcr

it=

S a/S m

Fatig

ue fa

ctor

of s

afet

y

n f=√ √ √ √

1

(σa/S e

)2+( σ

m/S y) 2

Table

6–8

Am

plitu

de a

nd S

tead

yC

oord

inat

es o

f Stre

ngth

and

Impo

rtant

Inte

rsec

tions

in F

irst

Qua

dran

t for

ASM

E-El

liptic

and

Lan

ger

Failu

re C

riter

ia

Page 23: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

304

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g301

k c=

0.85

:E

q. (

6–26

), p

. 282

k d=

k e=

k f=

1

S e=

0.79

7(1)

0.85

0(1)

(1)(

1)0.

5(10

0)=

33.9

kpsi

:Eqs

. (6–

8), (

6–18

), p

. 274

, p. 2

79

The

nom

inal

axi

al s

tres

s co

mpo

nent

s σ

aoan

mo

are

σao

=4

Fa

πd

2=

4(8)

π1.

52=

4.53

kpsi

σm

o=

4F

m

πd

2=

4(8)

π1.

52=

4.53

kpsi

App

lyin

gK

fto

bot

h co

mpo

nent

s σ

aoan

mo

cons

titut

es a

pre

scri

ptio

n of

no

notc

hyi

eldi

ng:

σa

=K

ao=

1.85

(4.5

3)=

8.38

kpsi

m

(a)

Let

us

calc

ulat

e th

e fa

ctor

s of

saf

ety

first

. Fro

m th

e bo

ttom

pan

el f

rom

Tab

le 6

–7 th

efa

ctor

of

safe

ty f

or f

atig

ue is

Ans

wer

nf

=1 2

( 100

8.38

) 2(8.

38

33.9

)⎧ ⎨ ⎩−1+√ 1

+[ 2(

8.38

)33.

9

100(

8.38

)

] 2⎫ ⎬ ⎭=3.

66

From

Eq.

(6–

49)

the

fact

or o

f sa

fety

gua

rdin

g ag

ains

t firs

t-cy

cle

yiel

d is

Ans

wer

ny

=S y

σa+

σm

=84

8.38

+8.

38=

5.01

Thu

s, w

e se

e th

at f

atig

ue w

ill o

ccur

firs

t an

d th

e fa

ctor

of

safe

ty i

s 3.

68. T

his

can

bese

en in

Fig

. 6–2

8 w

here

the

load

line

inte

rsec

ts th

e G

erbe

r fa

tigue

cur

ve fi

rst a

t poi

nt B

.If

the

plot

s ar

e cr

eate

d to

true

sca

le it

wou

ld b

e se

en th

at n

f=

OB/

OA

.Fr

om th

e fir

st p

anel

of

Tabl

e 6–

7, r

a/σ

m=

1,

Ans

wer

S a=

(1)2

1002

2(33

.9)

⎧ ⎨ ⎩−1+√ 1

+[ 2(

33.9

)

(1)1

00

]2⎫ ⎬ ⎭=30

.7kp

si

Stress amplitude �a, kpsi

Mid

rang

e st

ress

�m

, kps

i

030

.78.

38

8.38

4250

6484

100

020

33.9

30.74250

Loa

d lin

e

Lan

ger

line

r crit

84100

Ger

ber

fatig

ue c

urve

A

B

C

D

Figure

6–2

8

Prin

cipa

l poi

nts

A,B

,C, a

ndD

on th

e de

signe

r’s d

iagr

amdr

awn

for G

erbe

r, La

nger

, and

load

line

.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

305

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

302

Mec

hani

cal E

ngin

eerin

g D

esig

n

Ans

wer

S m=

S a r=

30.7 1

=30

.7kp

si

As

a ch

eck

on t

he p

revi

ous

resu

lt, n

f=

OB/

OA

=S a

a=

S m/σ

m=

30.7

/8.

38=

3.66

and

we

see

tota

l agr

eem

ent.

We

coul

d ha

ve d

etec

ted

that

fat

igue

fai

lure

wou

ld o

ccur

firs

t with

out d

raw

ing

Fig.

6–28

by

calc

ulat

ing

r cri

t. F

rom

the

thir

d ro

w th

ird

colu

mn

pane

l of T

able

6–7

, the

inte

r-se

ctio

n po

int b

etw

een

fatig

ue a

nd fi

rst-

cycl

e yi

eld

is

S m=

1002

2(33

.9)

⎡ ⎣ 1−√ 1

+( 2(

33.9

)

100

) 2(1

−84 33.9

)⎤ ⎦ =64

.0kp

si

S a=

S y−

S m=

84−

64=

20kp

si

The

cri

tical

slo

pe is

thus

r cri

t=

S a S m=

20 64=

0.31

2

whi

ch is

less

than

the

actu

al lo

ad li

ne o

f r=

1 . T

his

indi

cate

s th

at fa

tigue

occ

urs

befo

refir

st-c

ycle

-yie

ld.

(b)

Rep

eatin

g th

e sa

me

proc

edur

e fo

r th

e A

SME

-elli

ptic

line

, for

fat

igue

Ans

wer

nf=√

1

(8.3

8/33

.9)2

+(8

.38/

84)2

=3.

75

Aga

in, t

his

is l

ess

than

ny

=5.

01an

d fa

tigue

is

pred

icte

d to

occ

ur fi

rst.

From

the

firs

tro

w s

econ

d co

lum

n pa

nel

of T

able

6–8

, w

ith r

=1 ,

we

obta

in t

he c

oord

inat

es S

aan

dS m

of p

oint

Bin

Fig

. 6–2

9 as

Stress amplitude �a, kpsi

Mid

rang

e st

ress

�m

, kps

i

08.

3831

.442

5060

.584

100

0

8.38

31.4

23.54250

Loa

d lin

e

Lan

ger

line

84100

ASM

E-e

llipt

ic li

ne

A

B

C

D

Figure

6–2

9

Prin

cipa

l poi

nts

A,B

,C, a

ndD

on th

e de

signe

r’s d

iagr

amdr

awn

for A

SME-

ellip

tic,

Lang

er, a

nd lo

ad li

nes.

Page 24: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

306

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g303

EXA

MPLE

6–1

1A

flat

-lea

f sp

ring

is

used

to

reta

in a

n os

cilla

ting

flat-

face

d fo

llow

er i

n co

ntac

t w

ith a

plat

e ca

m. T

he f

ollo

wer

ran

ge o

f m

otio

n is

2 in

and

fixe

d, s

o th

e al

tern

atin

g co

mpo

nent

of f

orce

, ben

ding

mom

ent,

and

stre

ss i

s fix

ed, t

oo. T

he s

prin

g is

pre

load

ed t

o ad

just

to

vari

ous

cam

spe

eds.

The

pre

load

mus

t be

inc

reas

ed t

o pr

even

t fo

llow

er fl

oat

or j

ump.

For

low

er s

peed

s th

e pr

eloa

d sh

ould

be

decr

ease

d to

obt

ain

long

er l

ife

of c

am a

ndfo

llow

er s

urfa

ces.

The

spr

ing

is a

ste

el c

antil

ever

32

in lo

ng, 2

in w

ide,

and

1 4in

thic

k,as

see

n in

Fig

. 6–3

0a. T

he s

prin

g st

reng

ths

are

S ut=

150

kpsi

,Sy

=12

7kp

si, a

nd S

e=

28kp

si f

ully

cor

rect

ed. T

he t

otal

cam

mot

ion

is 2

in.

The

des

igne

r w

ishe

s to

pre

load

the

spri

ng b

y de

flect

ing

it 2

in f

or lo

w s

peed

and

5 in

for

hig

h sp

eed.

(a)

Plot

the

Ger

ber-

Lan

ger

failu

re li

nes

with

the

load

line

.(b

) W

hat a

re th

e st

reng

th f

acto

rs o

f sa

fety

cor

resp

ondi

ng to

2 in

and

5 in

pre

load

?

Solu

tion

We

begi

n w

ith p

relim

inar

ies.

The

sec

ond

area

mom

ent o

f th

e ca

ntile

ver

cros

s se

ctio

n is

I=

bh3

12=

2(0.

25)3

12=

0.00

260

in4

Sinc

e, f

rom

Tab

le A

–9, b

eam

1, f

orce

Fan

d de

flect

ion

yin

a c

antil

ever

are

rel

ated

by

F=

3E

Iy/

l3 ,th

en s

tres

s σ

and

defle

ctio

n y

are

rela

ted

by

σ=

Mc I

=32

Fc

I=

32(3

EIy

)

l3

c I=

96E

cy

l3=

Ky

whe

reK

=96

Ec

l3=

96(3

0·1

06)0

.125

323

=10

.99(

103)

psi/i

n=

10.9

9kp

si/in

Now

the

min

imum

s an

d m

axim

ums

of y

and

σca

n be

defi

ned

by

y min

y max

=2

σm

in=

σm

ax=

K(2

+δ)

Ans

wer

S a=√ (1

)233

.92(8

4)2

33.9

2+

(1)2

842

=31

.4kp

si,

S m=

S a r=

31.4 1

=31

.4kp

si

To v

erif

y th

e fa

tigue

fac

tor

of s

afet

y, n

f=

S a/σ

a=

31.4

/8.

38=

3.75

.A

s be

fore

, le

t us

cal

cula

te r

crit.

From

the

thi

rd r

ow s

econ

d co

lum

n pa

nel

ofTa

ble

6–8, S a

=2(

84)3

3.92

33.9

2+

842

=23

.5kp

si,

S m=

S y−

S a=

84−

23.5

=60

.5kp

si

r cri

t=

S a S m=

23.5

60.5

=0.

388

whi

ch a

gain

is le

ss th

an r

=1 ,

ver

ifyi

ng th

at f

atig

ue o

ccur

s fir

st w

ith n

f=

3.75

.T

he G

erbe

r an

d th

e A

SME

-elli

ptic

fat

igue

fai

lure

cri

teri

a ar

e ve

ry c

lose

to

each

othe

r an

d ar

e us

ed i

nter

chan

geab

ly.

The

AN

SI/A

SME

Sta

ndar

d B

106.

1M–1

985

uses

ASM

E-e

llipt

ic f

or s

haft

ing.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

307

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

304

Mec

hani

cal E

ngin

eerin

g D

esig

n

The

str

ess

com

pone

nts

are

thus

σa

=K

(2+

δ)−

2=

K=

10.9

9kp

si

σm

=K

(2+

δ)+

2=

K(1

+δ)=

10.9

9(1

+δ)

Forδ

=0,

σa

m=

10.9

9=

11kp

si

2 in

32 in

(a)

� =

2 in

� =

5 in

� =

2 in

pre

load

� =

5 in

pre

load

1 4in

+ + +

Figure

6–3

0

Cam

follo

wer

reta

inin

g sp

ring.

(a) G

eom

etry

; (b)

des

igne

r’sfa

tigue

dia

gram

for E

x. 6

–11.

Amplitude stress component �a, kpsi

Stea

dy s

tres

s co

mpo

nent

�m

, kps

i

(b)

1133

5065

.910

011

5.6

127

150

050100

150

AA'

A"

Ger

ber

line

Lan

ger

line

Page 25: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

308

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g305

Forδ

=2

in,

σa

=11

kpsi

m=

10.9

9(1

+2)

=33

kpsi

Forδ

=5

in,

σa

=11

kpsi

m=

10.9

9(1

+5)

=65

.9kp

si

(a)

A p

lot

of t

he G

erbe

r an

d L

ange

r cr

iteri

a is

sho

wn

in F

ig. 6

–30b

. The

thr

ee p

relo

adde

flect

ions

of

0, 2

, an

d 5

in a

re s

how

n as

poi

nts

A,

A′ ,

and

A′′ .

Not

e th

at s

ince

σa

isco

nsta

nt a

t 11

kps

i, th

e lo

ad l

ine

is h

oriz

onta

l an

d do

es n

ot c

onta

in t

he o

rigi

n. T

hein

ters

ectio

n be

twee

n th

e G

erbe

r lin

e an

d th

e lo

ad li

ne is

fou

nd f

rom

sol

ving

Eq.

(6–

42)

for

S man

d su

bstit

utin

g 11

kps

i for

Sa:

S m=

S ut√ 1

−S a S e

=15

0√ 1−

11 28=

116.

9kp

si

The

int

erse

ctio

n of

the

Lan

ger

line

and

the

load

lin

e is

fou

nd f

rom

sol

ving

Eq.

(6–

44)

for

S man

d su

bstit

utin

g 11

kps

i for

Sa:

S m=

S y−

S a=

127

−11

=11

6kp

si

The

thre

ats

from

fat

igue

and

firs

t-cy

cle

yiel

ding

are

app

roxi

mat

ely

equa

l.(b

) Fo

r δ

=2

in,

Ans

wer

nf=

S m σm

=11

6.9

33=

3.54

ny

=11

6

33=

3.52

and

for δ

=5

in,

Ans

wer

nf=

116.

9

65.9

=1.

77n

y=

116

65.9

=1.

76

EXA

MPLE

6–1

2A

ste

el b

ar u

nder

goes

cyc

lic lo

adin

g su

ch th

at σ

max

=60

kpsi

and

σm

in=

−20

kpsi

. For

the

mat

eria

l, S u

t=

80kp

si,

S y=

65kp

si,

a fu

lly c

orre

cted

end

uran

ce l

imit

of S

e=

40kp

si, a

nd f

=0.

9 . E

stim

ate

the

num

ber

of c

ycle

s to

a f

atig

ue f

ailu

re u

sing

:(a

) M

odifi

ed G

oodm

an c

rite

rion

.(b

) G

erbe

r cr

iteri

on.

Solu

tion

From

the

give

n st

ress

es,

σa

=60

−(−

20)

2=

40kp

siσ

m=

60+

(−20

)

2=

20kp

si

From

the

mat

eria

l pro

pert

ies,

Eqs

. (6–

14)

to (

6–16

), p

. 277

, giv

e

a=

(fS

ut)

2

S e=

[0.9

(80)

]2

40=

129.

6kp

si

b=

−1 3

log

( fSu

t

S e

) =−

1 3lo

g

[ 0.9(

80)

40

] =−0

.085

1

N=( S

f a

) 1/b=( S

f

129.

6

) −1/0.

0851

(1)

whe

reS

fre

plac

edσ

ain

Eq.

(6–

16).

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

309

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

306

Mec

hani

cal E

ngin

eerin

g D

esig

n

(a)

The

mod

ified

Goo

dman

lin

e is

giv

en b

y E

q. (

6–46

), p

. 29

8, w

here

the

end

uran

celim

itS e

is u

sed

for

infin

ite l

ife.

For

fini

te l

ife

at

Sf>

S e,

repl

ace

S ew

ithS

fin

Eq.

(6–4

6) a

nd r

earr

ange

giv

ing

Sf=

σa

1−

σm S ut

=40

1−

20 80

=53

.3kp

si

Subs

titut

ing

this

into

Eq.

(1)

yie

lds

Ans

wer

N=( 53

.3

129.

6

) −1/0.

0851

. =3.

4(10

4)

cycl

es

(b)

For

Ger

ber,

sim

ilar

to p

art (

a), f

rom

Eq.

(6–

47),

Sf

a

1−( σ

m S ut

) 2=40

1−( 20 80

) 2=42

.7kp

si

Aga

in, f

rom

Eq.

(1)

,

Ans

wer

N=( 42

.7

129.

6

) −1/0.

0851

. =4.

6(10

5)

cycl

es

Com

pari

ng t

he a

nsw

ers,

we

see

a la

rge

diff

eren

ce i

n th

e re

sults

. Aga

in,

the

mod

ified

Goo

dman

cri

teri

on i

s co

nser

vativ

e as

com

pare

d to

Ger

ber

for

whi

ch t

he m

oder

ate

dif-

fere

nce

in S

fis

then

mag

nifie

d by

a lo

gari

thm

ic S

,Nre

latio

nshi

p.

For

man

y br

ittl

em

ater

ials

, the

firs

t qu

adra

nt f

atig

ue f

ailu

re c

rite

ria

follo

ws

a co

n-ca

ve u

pwar

d Sm

ith-D

olan

locu

s re

pres

ente

d by

S a S e=

1−

S m/

S ut

1+

S m/

S ut

(6–5

0)

or a

s a

desi

gn e

quat

ion,

nσa

S e=

1−

nσm/

S ut

1+

nσm/

S ut

(6–5

1)

For

a ra

dial

loa

d lin

e of

slo

pe r

, we

subs

titut

e S a

/r

for

S min

Eq.

(6–

50)

and

solv

e fo

rS a

, obt

aini

ng

S a=

rSu

t+

S e2

[ −1+√ 1

+4r

S utS

e

(rS u

t+

S e)2

](6

–52)

The

fatig

uedi

agra

mfo

rabr

ittle

mat

eria

ldif

fers

mar

kedl

yfr

omth

atof

adu

ctile

mat

eria

lbe

caus

e:

•Y

ield

ing

is n

ot in

volv

ed s

ince

the

mat

eria

l may

not

hav

e a

yiel

d st

reng

th.

•C

hara

cter

istic

ally

, th

e co

mpr

essi

ve u

ltim

ate

stre

ngth

exc

eeds

the

ulti

mat

e te

nsile

stre

ngth

sev

eral

fold

.

Page 26: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

310

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g307

•Fi

rst-

quad

rant

fat

igue

fai

lure

loc

us i

s co

ncav

e-up

war

d (S

mith

-Dol

an),

for

exa

mpl

e,an

d as

flat

as

Goo

dman

. Bri

ttle

mat

eria

ls a

re m

ore

sens

itive

to m

idra

nge

stre

ss, b

eing

low

ered

, but

com

pres

sive

mid

rang

e st

ress

es a

re b

enefi

cial

.

•N

ot e

noug

h w

ork

has

been

don

e on

bri

ttle

fatig

ue to

dis

cove

r in

sigh

tful

gen

eral

ities

,so

we

stay

in th

e fir

st a

nd a

bit

of th

e se

cond

qua

dran

t.

The

mos

t lik

ely

dom

ain

of d

esig

ner

use

is i

n th

e ra

nge

from

−S u

t≤

σm

≤S u

t. T

helo

cus

in th

e fir

st q

uadr

ant i

s G

oodm

an, S

mith

-Dol

an, o

r som

ethi

ng in

bet

wee

n. T

he p

or-

tion

of t

he s

econ

d qu

adra

nt t

hat

is u

sed

is r

epre

sent

ed b

y a

stra

ight

lin

e be

twee

n th

epo

ints

−Su

t,S u

tan

d 0,

Se,

whi

ch h

as th

e eq

uatio

n

S a=

S e+( S e S u

t−

1) S m−

S ut≤

S m≤

0(f

orca

stir

on)

(6–5

3)

Tabl

e A

–24

give

s pr

oper

ties

of g

ray

cast

iro

n. T

he e

ndur

ance

lim

it st

ated

is

real

lyk a

k bS′ e

and

only

cor

rect

ions

kc,

k d,k

e, a

nd k

fne

ed b

e m

ade.

The

ave

rage

kc

for

axia

lan

d to

rsio

nal l

oadi

ng is

0.9

.

EXA

MPLE

6–1

3A

gra

de 3

0 gr

ay c

ast

iron

is

subj

ecte

d to

a l

oad

Fap

plie

d to

a 1

by

3 8-i

n cr

oss-

sect

ion

link

with

a 1 4

-in-

diam

eter

hol

e dr

illed

in

the

cent

er a

s de

pict

ed i

n Fi

g. 6

–31a

. The

sur

-fa

ces

are

mac

hine

d. I

n th

e ne

ighb

orho

od o

f th

e ho

le, w

hat i

s th

e fa

ctor

of

safe

ty g

uard

-in

g ag

ains

t fai

lure

und

er th

e fo

llow

ing

cond

ition

s:(a

) T

he lo

ad F

=10

00lb

f te

nsile

, ste

ady.

(b)

The

load

is 1

000

lbf

repe

ated

ly a

pplie

d.(c

) T

he lo

ad fl

uctu

ates

bet

wee

n −1

000

lbf

and

300

lbf

with

out c

olum

n ac

tion.

Use

the

Smith

-Dol

an f

atig

ue lo

cus.

S a =

18.

5 kp

si

S a =

7.6

3

S e

S ut

–S u

t–

9.95

7.63

010

2030

S ut

Mid

rang

e st

ress

�m

, kps

i

Alte

rnat

ing

stre

ss, �

a

1 4in

D. d

rill

F F1 in

S m

r =

1

r =

–1.

86

(b)

(a)

3 8in

Figure

6–3

1

The

grad

e 30

cas

t-iron

par

t in

axia

l fat

igue

with

(a) i

ts ge

omet

ry d

ispla

yed

and

(b) i

ts de

signe

r’s fa

tigue

dia

gram

for t

heci

rcum

stanc

es o

f Ex.

6–13

.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

311

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

308

Mec

hani

cal E

ngin

eerin

g D

esig

n

Solu

tion

Som

epr

epar

ator

yw

ork

isne

eded

.Fr

omTa

ble

A–2

4,S u

t=

31kp

si,

S uc=

109

kpsi

,k a

k bS′ e

=14

kpsi

.Sin

cek c

for

axia

llo

adin

gis

0.9,

then

S e=

(kak b

S′ e)k c

=14

(0.9

)=

12.6

kpsi

.Fro

mTa

ble

A–1

5–1,

A=

t(w

−d)=

0.37

5(1

−0.

25)=

0.28

1in

2,d

/w

=0.

25/1

=0.

25,a

ndK

t=

2.45

.The

notc

hse

nsiti

vity

for

cast

iron

is0.

20(s

eep.

288)

,so

Kf

=1

+q(K

t−

1)=

1+

0.20

(2.4

5−

1)=

1.29

(a)

σa

=K

fF

a

A=

1.29

(0)

0.28

1=

m=

KfF

m

A=

1.29

(100

0)

0.28

1(1

0−3)=

4.59

kpsi

and

Ans

wer

n=

S ut

σm

=31

.0

4.59

=6.

75

(b)

Fa

=F

m=

F 2=

1000 2

=50

0lb

f

σa

m=

KfF

a

A=

1.29

(500

)

0.28

1(1

0−3)=

2.30

kpsi

r=

σa

σm

=1

From

Eq.

(6–

52),

S a=

(1)3

1+

12.6

2

[ −1+√ 1

+4(

1)31

(12.

6)

[(1)

31+

12.6

]2

] =7.

63kp

si

Ans

wer

n=

S a σa

=7.

63

2.30

=3.

32

(c)

Fa

=1 2|30

0−

(−10

00)|

=65

0lb

a=

1.29

(650

)

0.28

1(1

0−3)=

2.98

kpsi

Fm

=1 2

[300

+(−

1000

)]=

−350

lbf

σm

=1.

29(−

350)

0.28

1(1

0−3)=

−1.6

1kp

si

r=

σa

σm

=3.

0

−1.6

1=

−1.8

6

From

Eq.

(6–

53),

Sa

=S e

+(S

e/S u

t−

1)S m

and

S m=

S a/

r . I

t fol

low

s th

at

S a=

S e

1−

1 r

( S e S ut−

1) =12

.6

1−

1

−1.8

6

( 12.6

31−

1) =18

.5kp

si

Ans

wer

n=

S a σa

=18

.5

2.98

=6.

20

Figu

re 6

–31b

show

s th

e po

rtio

n of

the

desi

gner

’s f

atig

ue d

iagr

am th

at w

as c

onst

ruct

ed.

Page 27: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

312

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g309

6–13

Tors

ional Fa

tigue

Stre

ngth

under

Fluct

uating S

tres

ses

Ext

ensi

ve t

ests

by

Smith

23pr

ovid

e so

me

very

int

eres

ting

resu

lts o

n pu

lsat

ing

tors

iona

lfa

tigue

. Sm

ith’s

firs

t re

sult,

bas

ed o

n 72

tes

ts,

show

s th

at t

he e

xist

ence

of

a to

rsio

nal

stea

dy-s

tres

s co

mpo

nent

not

mor

e th

an t

he t

orsi

onal

yie

ld s

tren

gth

has

no e

ffec

t on

the

tors

iona

l end

uran

ce li

mit,

pro

vide

d th

e m

ater

ial i

s du

ctil

e,po

lish

ed,n

otch

-fre

e,an

dcy

lind

rica

l.Sm

ith’s

sec

ond

resu

lt ap

plie

s to

mat

eria

ls w

ith s

tres

s co

ncen

trat

ion,

not

ches

, or

surf

ace

impe

rfec

tions

. In

thi

s ca

se,

he fi

nds

that

the

tor

sion

al f

atig

ue l

imit

decr

ease

sm

onot

onic

ally

with

tor

sion

al s

tead

y st

ress

. Si

nce

the

grea

t m

ajor

ity o

f pa

rts

will

hav

esu

rfac

es th

at a

re le

ss th

an p

erfe

ct, t

his

resu

lt in

dica

tes

Ger

ber,

ASM

E-e

llipt

ic, a

nd o

ther

appr

oxim

atio

ns

are

usef

ul.

Joer

res

of A

ssoc

iate

d Sp

ring

-Bar

nes

Gro

up,

confi

rms

Smith

’s r

esul

ts a

nd r

ecom

men

ds t

he u

se o

f th

e m

odifi

ed G

oodm

an r

elat

ion

for

puls

at-

ing

tors

ion.

In

cons

truc

ting

the

Goo

dman

dia

gram

, Joe

rres

use

s

S su

=0.

67S u

t(6

–54)

Als

o, f

rom

Cha

p. 5

, S s

y=

0.57

7Syt

from

dis

tort

ion-

ener

gy t

heor

y, a

nd t

he m

ean

load

fact

or k

cis

giv

en b

y E

q. (

6–26

), o

r 0.

577.

Thi

s is

dis

cuss

ed f

urth

er in

Cha

p. 1

0.

6–14

Com

bin

ations

of

Loadin

g M

odes

It m

ay b

e he

lpfu

l to

thin

k of

fat

igue

pro

blem

s as

bei

ng in

thre

e ca

tego

ries

:

•C

ompl

etel

y re

vers

ing

sim

ple

load

s

•Fl

uctu

atin

g si

mpl

e lo

ads

•C

ombi

nati

ons

of l

oadi

ng m

odes

The

sim

ples

t ca

tego

ry i

s th

at o

f a

com

plet

ely

reve

rsed

sin

gle

stre

ss w

hich

is

han-

dled

with

the

S-N

diag

ram

, re

latin

g th

e al

tern

atin

g st

ress

to

a lif

e. O

nly

one

type

of

load

ing

is a

llow

ed h

ere,

and

the

mid

rang

e st

ress

mus

t be

zero

. The

nex

t cat

egor

y in

cor-

pora

tes

gene

ral

fluct

uatin

g lo

ads,

usi

ng a

cri

teri

on t

o re

late

mid

rang

e an

d al

tern

atin

gst

ress

es (

mod

ified

Goo

dman

, G

erbe

r, A

SME

-elli

ptic

, or

Sod

erbe

rg).

Aga

in,

only

one

type

of

load

ing

is a

llow

ed a

t a

time.

The

thi

rd c

ateg

ory,

whi

ch w

e w

ill d

evel

op i

n th

isse

ctio

n, in

volv

es c

ases

whe

re th

ere

are

com

bina

tions

of

diff

eren

t typ

es o

f lo

adin

g, s

uch

as c

ombi

ned

bend

ing,

tors

ion,

and

axi

al.

In S

ec. 6

–9 w

e le

arne

d th

at a

loa

d fa

ctor

kc

is u

sed

to o

btai

n th

e en

dura

nce

limit,

and

henc

e th

e re

sult

is d

epen

dent

on

whe

ther

the

loa

ding

is

axia

l, be

ndin

g, o

r to

rsio

n.In

this

sec

tion

we

wan

t to

answ

er th

e qu

estio

n, “

How

do

we

proc

eed

whe

n th

e lo

adin

gis

a m

ixtu

reof

, say

, axi

al, b

endi

ng, a

nd to

rsio

nal l

oads

?” T

his

type

of l

oadi

ng in

trod

uces

a fe

w c

ompl

icat

ions

in

that

the

re m

ay n

ow e

xist

com

bine

d no

rmal

and

she

ar s

tres

ses,

each

with

alte

rnat

ing

and

mid

rang

e va

lues

, and

sev

eral

of

the

fact

ors

used

in d

eter

min

-in

g th

e en

dura

nce

limit

depe

nd o

n th

e ty

pe o

f lo

adin

g. T

here

may

als

o be

mul

tiple

stre

ss-c

once

ntra

tion

fact

ors,

one

for

eac

h m

ode

of lo

adin

g. T

he p

robl

em o

f ho

w to

dea

lw

ith c

ombi

ned

stre

sses

was

enc

ount

ered

whe

n de

velo

ping

sta

tic f

ailu

re t

heor

ies.

The

dist

ortio

n en

ergy

fai

lure

the

ory

prov

ed t

o be

a s

atis

fact

ory

met

hod

of c

ombi

ning

the

23Ja

mes

O. S

mith

, “T

he E

ffec

t of

Ran

ge o

f St

ress

on

the

Fatig

ue S

tren

gth

of M

etal

s,”

Uni

v. o

f Ill

. Eng

. Exp

.

Sta.

Bul

l. 33

4, 1

942.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

313

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

310

Mec

hani

cal E

ngin

eerin

g D

esig

n

mul

tiple

str

esse

s on

a s

tres

s el

emen

t int

o a

sing

le e

quiv

alen

t von

Mis

es s

tres

s. T

he s

ame

appr

oach

will

be

used

her

e.T

he fi

rst s

tep

is to

gen

erat

e tw

ost

ress

ele

men

ts—

one

for t

he a

ltern

atin

g st

ress

es a

ndon

e fo

r th

e m

idra

nge

stre

sses

. App

ly th

e ap

prop

riat

e fa

tigue

str

ess

conc

entr

atio

n fa

ctor

sto

eac

h of

the

stre

sses

; i.e

., ap

ply

(Kf) b

endi

ngfo

r th

e be

ndin

g st

ress

es, (

Kfs

) tor

sion

for

the

tors

iona

l st

ress

es, a

nd (

Kf) a

xial

for

the

axia

l st

ress

es. N

ext,

calc

ulat

e an

equ

ival

ent

von

Mis

es s

tres

s fo

r ea

ch o

f th

ese

two

stre

ss e

lem

ents

, σ

′ aan

′ m.

Fina

lly,

sele

ct a

fat

igue

failu

re c

rite

rion

(m

odifi

ed G

oodm

an, G

erbe

r, A

SME

-elli

ptic

, or

Sode

rber

g) to

com

plet

eth

e fa

tigue

ana

lysi

s. F

or t

he e

ndur

ance

lim

it, S

e, u

se t

he e

ndur

ance

lim

it m

odifi

ers,

k a,k

b, a

nd k

c, f

or b

endi

ng. T

he to

rsio

nal l

oad

fact

or, k

c=

0.59

shou

ld n

ot b

e ap

plie

d as

it is

alr

eady

acc

ount

ed f

or i

n th

e vo

n M

ises

str

ess

calc

ulat

ion

(see

foo

tnot

e 17

on

page

282)

. The

load

fac

tor

for

the

axia

l loa

d ca

n be

acc

ount

ed f

or b

y di

vidi

ng th

e al

tern

atin

gax

ial

stre

ss b

y th

e ax

ial

load

fac

tor

of 0

.85.

For

exa

mpl

e, c

onsi

der

the

com

mon

cas

e of

a sh

aft

with

ben

ding

str

esse

s, t

orsi

onal

she

ar s

tres

ses,

and

axi

al s

tres

ses.

For

thi

s ca

se,

the

von

Mis

es s

tres

s is

of

the

form

σ′ =( σ

x2+

3τx

y2) 1/2

. Con

side

ring

that

the

bend

ing,

tors

iona

l, an

d ax

ial

stre

sses

hav

e al

tern

atin

g an

d m

idra

nge

com

pone

nts,

the

von

Mis

esst

ress

es f

or th

e tw

o st

ress

ele

men

ts c

an b

e w

ritte

n as

σ′ a={ [ (K

f) b

endi

ng(σ

a) b

endi

ng+

(Kf) a

xial

(σa) a

xial

0.85

] 2 +3[ (K

fs) t

orsi

on(τ

a) t

orsi

on] 2} 1/2 (6

–55)

σ′ m

={ [ (K

f) b

endi

ng(σ

m) b

endi

ng+

(Kf) a

xial

(σm

) axi

al] 2 +

3[ (K

fs) t

orsi

on(τ

m) t

orsi

on] 2} 1

/2

(6–5

6)

For fi

rst-

cycl

e lo

caliz

ed y

ield

ing,

the

max

imum

von

Mis

es s

tres

s is

cal

cula

ted.

Thi

sw

ould

be

done

by

first

add

ing

the

axia

l and

ben

ding

alte

rnat

ing

and

mid

rang

e st

ress

es to

obta

inσ

max

and

addi

ng th

e al

tern

atin

g an

d m

idra

nge

shea

r st

ress

es to

obt

ain

τ max

. The

nsu

bstit

uteσ

max

and

τ max

into

the

equa

tion

for t

he v

on M

ises

str

ess.

A s

impl

er a

nd m

ore

con-

serv

ativ

e m

etho

d is

to a

dd E

q. (

6–55

) an

d E

q. (

6–56

). T

hat i

s, le

t σ′ m

ax. =

σ′ a+

σ′ m

If th

e st

ress

com

pone

nts

are

not i

n ph

ase

but h

ave

the

sam

e fr

eque

ncy,

the

max

ima

can

be fo

und

by e

xpre

ssin

g ea

ch c

ompo

nent

in tr

igon

omet

ric

term

s, u

sing

pha

se a

ngle

s,an

d th

en fi

ndin

g th

e su

m. I

f tw

o or

mor

e st

ress

com

pone

nts

have

dif

feri

ng f

requ

enci

es,

the

prob

lem

is

diffi

cult;

one

sol

utio

n is

to

assu

me

that

the

tw

o (o

r m

ore)

com

pone

nts

ofte

n re

ach

an in

-pha

se c

ondi

tion,

so

that

thei

r m

agni

tude

s ar

e ad

ditiv

e.

EXA

MPLE

6–1

4A

rot

atin

g sh

aft

is m

ade

of 4

2- ×

4-m

m A

ISI

1018

col

d-dr

awn

stee

l tu

bing

and

has

a6-

mm

-dia

met

er h

ole

drill

ed tr

ansv

erse

ly th

roug

h it.

Est

imat

e th

e fa

ctor

of

safe

ty g

uard

-in

g ag

ains

t fat

igue

and

sta

tic fa

ilure

s us

ing

the

Ger

ber a

nd L

ange

r fai

lure

cri

teri

a fo

r the

follo

win

g lo

adin

g co

nditi

ons:

(a)

The

sha

ft is

sub

ject

ed to

a c

ompl

etel

y re

vers

ed to

rque

of

120

N · m

in p

hase

with

aco

mpl

etel

y re

vers

ed b

endi

ng m

omen

t of

150

N · m

.(b

) T

he s

haft

is

subj

ecte

d to

a p

ulsa

ting

torq

ue fl

uctu

atin

g fr

om 2

0 to

160

N ·

m a

nd a

stea

dy b

endi

ng m

omen

t of

150

N · m

.

Solu

tion

Her

e w

e fo

llow

the

proc

edur

e of

est

imat

ing

the

stre

ngth

s an

d th

en th

e st

ress

es, f

ollo

wed

by r

elat

ing

the

two.

Page 28: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

314

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g311

From

Tab

le A

–20

we

find

the

min

imum

str

engt

hs t

o be

Su

t=

440

MPa

and

Sy

=37

0M

Pa. T

he e

ndur

ance

lim

it of

the

rot

atin

g-be

am s

peci

men

is

0.5(

440)

=22

0 M

Pa.

The

sur

face

fac

tor,

obta

ined

fro

m E

q. (

6–19

) an

d Ta

ble

6–2,

p. 2

79 is

k a=

4.51

S−0.2

65u

t=

4.51

(440

)−0.2

65=

0.89

9

From

Eq.

(6–

20)

the

size

fac

tor

is

k b=( d

7.62

) −0.1

07

=( 42 7.

62

) −0.1

07

=0.

833

The

rem

aini

ng M

arin

fac

tors

are

all

unity

, so

the

mod

ified

end

uran

ce s

tren

gth

S eis

S e=

0.89

9(0.

833)

220

=16

5M

Pa

(a)

The

oret

ical

stre

ss-c

once

ntra

tion

fact

ors

are

foun

dfr

omTa

ble

A–1

6.U

sing

a/D

=6/

42=

0.14

3an

dd/

D=

34/42

=0.

810 ,

and

usin

glin

ear

inte

rpol

atio

n,w

eob

tain

A=

0.79

8an

dK

t=

2.36

6fo

rbe

ndin

g;an

dA

=0.

89an

dK

ts=

1.75

for

tors

ion.

Thu

s,fo

rbe

ndin

g,

Zne

t=

πA

32D

(D4−

d4)=

π(0

.798

)

32(4

2)[(

42)4

−(3

4)4]=

3.31

(103

)mm

3

and

for

tors

ion

J net

A

32(D

4−

d4)=

π(0

.89)

32[(

42)4

−(3

4)4]=

155

(103

)mm

4

Nex

t, us

ing

Figs

. 6–2

0 an

d 6–

21, p

p. 2

87–2

88, w

ith a

not

ch r

adiu

s of

3 m

m w

e fin

d th

eno

tch

sens

itivi

ties

to b

e 0.

78 f

or b

endi

ng a

nd 0

.96

for

tors

ion.

The

tw

o co

rres

pond

ing

fatig

ue s

tres

s-co

ncen

trat

ion

fact

ors

are

obta

ined

fro

m E

q. (

6–32

) as

Kf=

1+

q(K

t−

1)=

1+

0.78

(2.3

66−

1)=

2.07

Kfs

=1

+0.

96(1

.75

−1)

=1.

72

The

alte

rnat

ing

bend

ing

stre

ss is

now

fou

nd to

be

σxa

=K

fM Zne

t=

2.07

150

3.31

(10−

6)

=93

.8(1

06)P

a=

93.8

MPa

and

the

alte

rnat

ing

tors

iona

l str

ess

is

τx

ya=

Kfs

TD

2J n

et=

1.72

120(

42)(

10−3

)

2(15

5)(1

0−9)

=28

.0(1

06)P

a=

28.0

MPa

The

mid

rang

e vo

n M

ises

com

pone

nt σ

′ mis

zer

o. T

he a

ltern

atin

g co

mpo

nent

σ′ a

is g

iven

by

σ′ a=( σ

2 xa+

3τ2 xya

) 1/2=

[93.

82+

3(28

2)]

1/2

=10

5.6

MPa

Sinc

eS e

=S a

, the

fat

igue

fac

tor

of s

afet

y n

fis

Ans

wer

nf

=S a σ

′ a

=16

5

105.

6=

1.56

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

315

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

312

Mec

hani

cal E

ngin

eerin

g D

esig

n

The

firs

t-cy

cle

yiel

d fa

ctor

of

safe

ty is

Ans

wer

ny

=S y σ

′ a

=37

0

105.

6=

3.50

The

re is

no

loca

lized

yie

ldin

g; th

e th

reat

is f

rom

fat

igue

. See

Fig

. 6–3

2.(b

) T

his

part

ask

s us

to fi

nd th

e fa

ctor

s of

saf

ety

whe

n th

e al

tern

atin

g co

mpo

nent

is d

ueto

pul

satin

g to

rsio

n, a

nd a

ste

ady

com

pone

nt i

s du

e to

bot

h to

rsio

n an

d be

ndin

g. W

eha

ve T

a=

(160

−20

)/2

=70

N· m

and

Tm

=(1

60+

20)/

2=

90N

· m. T

he c

orre

-sp

ondi

ng a

mpl

itude

and

ste

ady-

stre

ss c

ompo

nent

s ar

e

τx

ya=

Kfs

T aD

2J n

et=

1.72

70(4

2)(1

0−3)

2(15

5)(1

0−9)

=16

.3(1

06)P

a=

16.3

MPa

τx

ym=

Kfs

T mD

2J n

et=

1.72

90(4

2)(1

0−3)

2(15

5)(1

0−9)

=21

.0(1

06)P

a=

21.0

MPa

The

ste

ady

bend

ing

stre

ss c

ompo

nent

σxm

is

σxm

=K

fM

m

Zne

t=

2.07

150

3.31

(10−

6)

=93

.8(1

06)P

a=

93.8

MPa

The

von

Mis

es c

ompo

nent

s σ

′ aan

′ mar

e

σ′ a=

[3(1

6.3)

2]1/

2=

28.2

MPa

σ′ m

=[9

3.82

+3(

21)2

]1/2

=10

0.6

MPa

From

Tab

le 6

–7, p

. 299

, the

fat

igue

fac

tor

of s

afet

y is

Ans

wer

nf=

1 2

( 440

100.

6

) 2 28.2

165

⎧ ⎨ ⎩−1+√ 1

+[ 2(

100.

6)16

5

440(

28.2

)

] 2⎫ ⎬ ⎭=3.

03

Von Mises amplitude stress component �a, MPa '

Von

Mis

es s

tead

y st

ress

com

pone

nt �

m, M

Pa'

305

500

440

165

100

105.

6

85.5

200

300

400 0

Ger

ber

r =

0.2

8

Figure

6–3

2

Des

igne

r’s fa

tigue

dia

gram

for

Ex. 6

–14.

Page 29: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

316

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g313

From

the

sam

e ta

ble,

with

r=

σ′ a/σ

′ m=

28.2

/10

0.6

=0.

280 ,

the

str

engt

hs c

an b

esh

own

to b

e S a

=85

.5M

Paan

dS m

=30

5M

Pa. S

ee th

e pl

ot in

Fig

. 6–3

2.T

he fi

rst-

cycl

e yi

eld

fact

or o

f sa

fety

ny

is

Ans

wer

ny

=S y

σ′ a+

σ′ m

=37

0

28.2

+10

0.6

=2.

87

The

re i

s no

not

ch y

ield

ing.

The

lik

elih

ood

of f

ailu

re m

ay fi

rst

com

e f

rom

firs

t-cy

cle

yiel

ding

at t

he n

otch

. See

the

plot

in F

ig. 6

–32.

6–15

Vary

ing,

Fluct

uating S

tres

ses;

Cum

ula

tive

Fatigue

Dam

age

Inst

ead

of a

sin

gle

fully

rev

erse

d st

ress

his

tory

blo

ck c

ompo

sed

of n

cycl

es, s

uppo

se a

mac

hine

par

t, at

a c

ritic

al lo

catio

n, is

sub

ject

ed to

•A

ful

ly r

ever

sed

stre

ss σ

1fo

rn 1

cycl

es, σ

2fo

rn 2

cycl

es, .

..,

or

•A

“w

iggl

y” ti

me

line

of s

tres

s ex

hibi

ting

man

y an

d di

ffer

ent p

eaks

and

val

leys

.

Wha

t st

ress

es a

re s

igni

fican

t, w

hat

coun

ts a

s a

cycl

e, a

nd w

hat

is t

he m

easu

re o

fda

mag

ein

curr

ed?

Con

side

r a

fully

rev

erse

d cy

cle

with

str

esse

s va

ryin

g 60

, 80,

40,

and

60kp

si a

nd a

sec

ond

fully

rev

erse

d cy

cle

−40 ,

−60 ,

−20 ,

and

−40

kpsi

as

depi

cted

inFi

g.6–

33a.

Fir

st, i

t is

cle

ar t

hat

to i

mpo

se t

he p

atte

rn o

f st

ress

in

Fig.

6–3

3aon

a p

art

it is

nec

essa

ry t

hat

the

time

trac

e lo

ok l

ike

the

solid

lin

e pl

us t

he d

ashe

d lin

e in

Fig

.6–

33a.

Fig

ure

6–33

bm

oves

the

sna

psho

t to

exi

st b

egin

ning

with

80

kpsi

and

end

ing

with

80

kpsi

. Ack

now

ledg

ing

the

exis

tenc

e of

a s

ingl

e st

ress

-tim

e tr

ace

is to

dis

cove

r a

“hid

den”

cyc

le s

how

n as

the

dash

ed li

ne in

Fig

. 6–3

3b. I

f th

ere

are

100

appl

icat

ions

of

the

all-

posi

tive

stre

ss c

ycle

, th

en 1

00 a

pplic

atio

ns o

f th

e al

l-ne

gativ

e st

ress

cyc

le,

the

100 50 0

–50

100 50 0

–50

(a)

( b)

Figure

6–3

3

Varia

ble

stres

s di

agra

mpr

epar

ed fo

r ass

essin

gcu

mul

ativ

e da

mag

e.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

317

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

314

Mec

hani

cal E

ngin

eerin

g D

esig

n

hidd

en c

ycle

is

appl

ied

but

once

. If

the

all-

posi

tive

stre

ss c

ycle

is

appl

ied

alte

rnat

ely

with

the

all-

nega

tive

stre

ss c

ycle

, the

hid

den

cycl

e is

app

lied

100

times

.To

ens

ure

that

the

hid

den

cycl

e is

not

los

t, be

gin

on t

he s

naps

hot

with

the

lar

gest

(or s

mal

lest

) str

ess

and

add

prev

ious

his

tory

to th

e ri

ght s

ide,

as

was

don

e in

Fig

. 6–3

3b.

Cha

ract

eriz

atio

n of

a c

ycle

tak

es o

n a

max

–min

–sam

e m

ax (

or m

in–m

ax–s

ame

min

)fo

rm.

We

iden

tify

the

hidd

en c

ycle

firs

t by

mov

ing

alon

g th

e da

shed

-lin

e tr

ace

inFi

g.6–

33b

iden

tifyi

ng a

cyc

le w

ith a

n 80

-kps

i m

ax,

a 60

-kps

i m

in,

and

retu

rnin

g to

80kp

si. M

enta

lly d

elet

ing

the

used

par

t of

the

tra

ce (

the

dash

ed l

ine)

lea

ves

a 40

, 60,

40cy

cle

and

a −4

0 ,−2

0 ,−4

0cy

cle.

Sin

ce f

ailu

re lo

ci a

re e

xpre

ssed

in te

rms

of s

tres

sam

plitu

de c

ompo

nent

σa

and

stea

dy c

ompo

nent

σm

, we

use

Eq.

(6–

36)

to c

onst

ruct

the

tabl

e be

low

:

The

mos

t dam

agin

g cy

cle

is n

umbe

r 1.

It c

ould

hav

e be

en lo

st.

Met

hods

for

cou

ntin

g cy

cles

incl

ude:

•N

umbe

r of

tens

ile p

eaks

to f

ailu

re.

•A

ll m

axim

a ab

ove

the

wav

efor

m m

ean,

all

min

ima

belo

w.

•T

he g

loba

l m

axim

a be

twee

n cr

ossi

ngs

abov

e th

e m

ean

and

the

glob

al m

inim

abe

twee

n cr

ossi

ngs

belo

w th

e m

ean.

•A

ll po

sitiv

e sl

ope

cros

sing

s of

lev

els

abov

e th

e m

ean,

and

all

nega

tive

slop

e cr

oss-

ings

of

leve

ls b

elow

the

mea

n.

•A

mod

ifica

tion

of t

he p

rece

ding

met

hod

with

onl

y on

e co

unt

mad

e be

twee

n su

cces

-si

ve c

ross

ings

of

a le

vel a

ssoc

iate

d w

ith e

ach

coun

ting

leve

l.

•E

ach

loca

l m

axi-

min

exc

ursi

on i

s co

unte

d as

a h

alf-

cycl

e, a

nd t

he a

ssoc

iate

d am

pli-

tude

is h

alf-

rang

e.

•T

he p

rece

ding

met

hod

plus

con

side

ratio

n of

the

loca

l mea

n.

•R

ain-

flow

cou

ntin

g te

chni

que.

The

met

hod

used

her

e am

ount

s to

a v

aria

tion

of th

e ra

in-fl

ow c

ount

ing

tech

niqu

e.T

hePa

lmgr

en-M

iner

24cy

cle-

rati

o su

mm

atio

n ru

le,

also

cal

led

Min

er’s

rul

e,is

wri

tten

∑n i N

i=

c(6

–57)

whe

ren i

is th

e nu

mbe

r of

cyc

les

at s

tres

s le

vel σ

ian

dN

iis

the

num

ber

of c

ycle

s to

fail-

ure

at s

tres

s le

vel σ

i. T

he p

aram

eter

cha

s be

en d

eter

min

ed b

y ex

peri

men

t; it

is u

sual

lyfo

und

in th

e ra

nge

0.7

<c

<2.

2w

ith a

n av

erag

e va

lue

near

uni

ty.

Cycl

e N

um

ber

�m

ax

�m

in�

a�

m

180

�60

7010

260

4010

503

�20

�40

10�

30

24A

. Pal

mgr

en, “

Die

Leb

ensd

auer

von

Kug

ella

gern

,” Z

VD

I, v

ol. 6

8, p

p. 3

39–3

41, 1

924;

M. A

. Min

er,

“Cum

ulat

ive

Dam

age

in F

atig

ue,”

J. A

ppl.

Mec

h.,v

ol. 1

2, T

rans

. ASM

E,v

ol. 6

7, p

p. A

159–

A16

4, 1

945.

Page 30: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

318

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g315

Usi

ng th

e de

term

inis

tic f

orm

ulat

ion

as a

line

ar d

amag

e ru

le w

e w

rite

D=∑

n i Ni

(6–5

8)

whe

reD

is th

e ac

cum

ulat

ed d

amag

e. W

hen

D=

c=

1 , f

ailu

re e

nsue

s.

EXA

MPLE

6–1

5G

iven

a p

art w

ith S

ut=

151

kpsi

and

at t

he c

ritic

al lo

catio

n of

the

part

, Se=

67.5

kpsi

.Fo

r th

e lo

adin

g of

Fig

. 6–3

3, e

stim

ate

the

num

ber

of r

epet

ition

s of

the

stre

ss-t

ime

bloc

kin

Fig

. 6–3

3 th

at c

an b

e m

ade

befo

re f

ailu

re.

Solu

tion

From

Fig

. 6–1

8, p

. 277

, for

Su

t=

151

kpsi

,f

=0.

795 .

Fro

m E

q. (

6–14

),

a=

(fS

ut)

2

S e=

[0.7

95(1

51)]

2

67.5

=21

3.5

kpsi

From

Eq.

(6–

15),

b=

−1 3

log

( fSu

t

S e

) =−

1 3lo

g

[ 0.79

5(15

1)

67.5

] =−0

.083

3

So,

Sf

=21

3.5

N−0

.083

3N

=( S

f

213.

5

) −1/0.

0833

(1),

(2)

We

prep

are

to a

dd tw

o co

lum

ns to

the

prev

ious

tabl

e. U

sing

the

Ger

ber f

atig

ue c

rite

rion

,E

q. (

6–47

), p

. 298

, with

Se=

Sf, a

nd n

=1 ,

we

can

wri

te

Sf={

σa

1−

(σm/

S ut)

m>

0

S eσ

m≤

0(3

)

Cyc

le1:

r=

σa/σ

m=

70/10

=7 ,

and

the

stre

ngth

am

plitu

de f

rom

Tab

le 6

–7, p

. 299

, is

S a=

7215

12

2(67

.5)

⎧ ⎨ ⎩−1+√ 1

+[ 2(

67.5

)

7(15

1)

] 2⎫ ⎬ ⎭=67

.2kp

si

Sinc

a>

S a, t

hat i

s, 7

0>

67.2

, lif

e is

red

uced

. Fro

m E

q. (

3),

Sf

=70

1−

(10/

151)

2=

70.3

kpsi

and

from

Eq.

(2)

N=( 70

.3

213.

5

) −1/0.

0833

=61

9(10

3)

cycl

es

Cyc

le2:

r=

10/50

=0.

2 , a

nd th

e st

reng

th a

mpl

itude

is

S a=

0.22

1512

2(67

.5)

⎧ ⎨ ⎩−1+√ 1

+[ 2(

67.5

)

0.2(

151)

] 2⎫ ⎬ ⎭=24

.2kp

si

FatigueStrength

LifeCycles

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

319

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

316

Mec

hani

cal E

ngin

eerin

g D

esig

n

Sinc

a<

S a,

that

is

10

<24

.2,

then

S

f=

S ean

d in

defin

ite

life

follo

ws.

Thu

s,

N∞

�.

Cyc

le3:

r=

10/−3

0=

−0.3

33, a

nd s

ince

σm

<0 ,

Sf

=S e

, ind

efini

te li

fe f

ollo

ws

and

N∞

From

Eq.

(6–

58)

the

dam

age

per

bloc

k is

D=∑

n i Ni

=N

[1

619(

103)

+1 ∞

+1 ∞] =

N

619(

103)

Ans

wer

Setti

ngD

=1

yiel

dsN

=61

9(10

3)

cycl

es.

Cycl

e N

um

ber

S f,

kpsi

N,

cycl

es

170

.361

9(10

3 )2

67.5

∞3

67.5

←←

To f

urth

er il

lust

rate

the

use

of th

e M

iner

rul

e, le

t us

choo

se a

ste

el h

avin

g th

e pr

op-

ertie

sS u

t=

80kp

si,

S′ e,0

=40

kpsi

, and

f=

0.9 ,

whe

re w

e ha

ve u

sed

the

desi

gnat

ion

S′ e,0

inst

ead

of th

e m

ore

usua

l S′ e

to in

dica

te th

e en

dura

nce

limit

of th

e vi

rgin

,or

unda

m-

aged

,mat

eria

l. T

he lo

g S–

log

Ndi

agra

m f

or th

is m

ater

ial i

s sh

own

in F

ig. 6

–34

by th

ehe

avy

solid

lin

e. N

ow a

pply

, say

, a r

ever

sed

stre

ss σ

1=

60kp

si f

or n

1=

3000

cycl

es.

Sinc

1>

S′ e,0,

the

endu

ranc

e lim

it w

ill b

e da

mag

ed,

and

we

wis

h to

find

the

new

endu

ranc

e lim

it S′ e,

1of

the

dam

aged

mat

eria

l usi

ng th

e M

iner

rul

e. T

he e

quat

ion

of th

evi

rgin

mat

eria

l fai

lure

line

in F

ig. 6

–34

in th

e 10

3to

106

cycl

e ra

nge

is

Sf=

aN

b=

129.

6N

−0.0

8509

1

The

cyc

les

to f

ailu

re a

t str

ess

leve

l σ1

=60

kpsi

are

N1

=( σ

1

129.

6

) −1/0.

085

091

=( 60

129.

6

) −1/0.

085

091

=85

20cy

cles

72 60 4038

.6 103

104

105

106

65

43

4.9

4.8

4.7

4.6

4.5

LogS

Sokpsi

N

Log

N

�1

0.9S

ut

n 1 =

3(1

03 )

n2

= 0

.648

(106 )

S f,0

S f,2

S e,0

S e,1

S f,1

N1

= 8

.52(

103 )

N1

– n 1

= 5

.52(

103 )

Figure

6–3

4

Use

of t

he M

iner

rule

topr

edic

t the

end

uran

ce li

mit

ofa

mat

eria

l tha

t has

bee

nov

erstr

esse

d fo

r a fi

nite

num

ber o

f cyc

les.

Page 31: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

320

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g317

Fig

ure

6–34

sho

ws

that

the

mat

eria

l ha

s a

life

N1

=85

20cy

cles

at

60 k

psi,

and

con-

sequ

entl

y, a

fter

the

app

lica

tion

of

σ1

for

3000

cyc

les,

the

re a

re N

1−

n 1=

5520

cycl

es o

f li

fe r

emai

ning

at σ

1. T

his

loca

tes

the

fini

te-l

ife

stre

ngth

Sf,

1of

the

dam

aged

mat

eria

l, as

sho

wn

in F

ig. 6

–34.

To

get

a se

cond

poi

nt, w

e as

k th

e qu

esti

on: W

ith

n 1an

dN

1gi

ven,

how

man

y cy

cles

of

stre

ss σ

2=

S′ e,0

can

be a

ppli

ed b

efor

e th

e da

mag

edm

ater

ial

fail

s?

Thi

s co

rres

pond

s to

n2

cycl

es o

f st

ress

rev

ersa

l, an

d he

nce,

fro

m E

q. (

6–58

), w

e ha

ve

n 1 N1

+n 2 N

2=

1(a

)

or

n 2=( 1

−n 1 N

1

) N2

(b)

The

n

n 2=[ 1

−3(

10)3

8.52

(10)

3

] (106

)=

0.64

8(10

6)

cycl

es

Thi

s co

rres

pond

s to

the

finite

-lif

e st

reng

th S

f,2

in F

ig. 6

–34.

A li

ne th

roug

h S

f,1

and

Sf,

2

is t

he l

og S

–log

Ndi

agra

m o

f th

e da

mag

ed m

ater

ial

acco

rdin

g to

the

Min

er r

ule.

The

new

end

uran

ce li

mit

is S

e,1

=38

.6kp

si.

We

coul

d le

ave

it at

thi

s, b

ut a

litt

le m

ore

inve

stig

atio

n ca

n be

hel

pful

. W

e ha

vetw

opo

ints

on

the

new

fat

igue

loc

us,

N1−

n 1,σ

1an

dn 2

,σ2.

It i

s us

eful

to

prov

e th

atth

e sl

ope

of th

e ne

w li

ne is

stil

l b. F

or th

e eq

uatio

n S

f=

a′ Nb′ , w

here

the

valu

es o

f a′

and

b′ are

est

ablis

hed

by tw

o po

ints

αan

. The

equ

atio

n fo

r b′ i

s

b′ =lo

α/σ

β

log

Nα/

(c)

Exa

min

e th

e de

nom

inat

or o

f E

q. (

c):

log

=lo

gN

1−

n 1n 2

=lo

gN

1−

n 1(1

−n 1

/N

1)N

2=

log

N1

N2

=lo

g(σ

1/a)

1/b

(σ2/a)

1/b

=lo

g

( σ1

σ2

) 1/b=

1 blo

g

( σ1

σ2

)Su

bstit

utin

g th

is in

to E

q. (

c) w

ith σ

α/σ

β=

σ1/σ

2gi

ves

b′ =lo

g(σ

1/σ

2)

(1/b)

log(

σ1/σ

2)

=b

whi

ch m

eans

the

dam

aged

mat

eria

l lin

e ha

s th

e sa

me

slop

e as

the

vir

gin

mat

eria

l lin

e;th

eref

ore,

the

lin

es a

re p

aral

lel.

Thi

s in

form

atio

n ca

n be

hel

pful

in

wri

ting

a co

mpu

ter

prog

ram

for

the

Palm

gren

-Min

er h

ypot

hesi

s.T

houg

h th

e M

iner

rul

e is

qui

te g

ener

ally

use

d, i

t fa

ils i

n tw

o w

ays

to a

gree

with

expe

rim

ent.

Firs

t, no

te th

at th

is th

eory

sta

tes

that

the

stat

ic s

tren

gth

S ut

is d

amag

ed, t

hat

is,

decr

ease

d, b

ecau

se o

f th

e ap

plic

atio

n of

σ1;

see

Fig.

6–3

4 at

N=

103

cycl

es.

Exp

erim

ents

fai

l to

veri

fy th

is p

redi

ctio

n.T

he M

iner

rul

e, a

s gi

ven

by E

q. (

6–58

), d

oes

not a

ccou

nt f

or th

e or

der

in w

hich

the

stre

sses

are

app

lied,

and

hen

ce ig

nore

s an

y st

ress

es le

ss th

an S

′ e,0. B

ut it

can

be

seen

inFi

g. 6

–34

that

a s

tres

s σ

3in

the

ran

ge S

′ e,1

3<

S′ e,0

wou

ld c

ause

dam

age

if a

pplie

daf

ter

the

endu

ranc

e lim

it ha

d be

en d

amag

ed b

y th

e ap

plic

atio

n of

σ1.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

321

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

318

Mec

hani

cal E

ngin

eerin

g D

esig

n

Man

son’

s25ap

proa

ch o

verc

omes

bot

h of

the

defi

cien

cies

not

ed f

or t

he P

alm

gren

-M

iner

met

hod;

his

tori

cally

it

is a

muc

h m

ore

rece

nt a

ppro

ach,

and

it

is j

ust

as e

asy

tous

e. E

xcep

t for

a s

light

cha

nge,

we

shal

l use

and

reco

mm

end

the

Man

son

met

hod

in th

isbo

ok. M

anso

n pl

otte

d th

e S–

log

Ndi

agra

m i

nste

ad o

f a

log

S–lo

gN

plot

as

is r

ecom

-m

ende

d he

re.

Man

son

also

res

orte

d to

exp

erim

ent

to fi

nd t

he p

oint

of

conv

erge

nce

ofth

eS–

log

Nlin

es c

orre

spon

ding

to th

e st

atic

str

engt

h, in

stea

d of

arb

itrar

ily s

elec

ting

the

inte

rsec

tion

of N

=10

3cy

cles

with

S=

0.9S

ut

as is

don

e he

re. O

f co

urse

, it i

s al

way

sbe

tter

to u

se e

xper

imen

t, bu

t ou

r pu

rpos

e in

thi

s bo

ok h

as b

een

to u

se t

he s

impl

e te

stda

ta to

lear

n as

muc

h as

pos

sibl

e ab

out f

atig

ue f

ailu

re.

The

met

hod

of M

anso

n, a

s pr

esen

ted

here

, con

sist

s in

hav

ing

all l

og S

–log

Nlin

es,

that

is,

lin

es f

or b

oth

the

dam

aged

and

the

vir

gin

mat

eria

l, co

nver

ge t

o th

e sa

me

poin

t,0.

9Su

tat

103

cycl

es. I

n ad

ditio

n, th

e lo

g S–

log

Nlin

es m

ust b

e co

nstr

ucte

d in

the

sam

ehi

stor

ical

ord

er in

whi

ch th

e st

ress

es o

ccur

.T

he d

ata

from

the

prec

edin

g ex

ampl

e ar

e us

ed f

or il

lust

rativ

e pu

rpos

es. T

he r

esul

tsar

e sh

own

in F

ig.6

–35.

Not

e th

at t

he s

tren

gth

Sf,

1co

rres

pond

ing

to

N1−

n 1=

5.52

(103

)cy

cles

is f

ound

in th

e sa

me

man

ner

as b

efor

e. T

hrou

gh th

is p

oint

and

thro

ugh

0.9S

ut

at10

3cy

cles

, dra

w th

e he

avy

dash

ed li

ne to

mee

t N

=10

6cy

cles

and

defi

ne th

een

dura

nce

limit

S′ e,1

of t

he d

amag

ed m

ater

ial.

In t

his

case

the

new

end

uran

ce l

imit

is34

.4 k

psi,

som

ewha

t les

s th

an th

at f

ound

by

the

Min

er m

etho

d.It

is n

ow e

asy

to s

ee f

rom

Fig

. 6–3

5 th

at a

rev

erse

d st

ress

σ=

36kp

si, s

ay, w

ould

not h

arm

the

endu

ranc

e lim

it of

the

virg

in m

ater

ial,

no m

atte

r ho

w m

any

cycl

es it

mig

htbe

app

lied.

How

ever

, if σ

=36

kpsi

sho

uld

be a

pplie

d af

ter

the

mat

eria

l was

dam

aged

byσ

1=

60kp

si, t

hen

addi

tiona

l dam

age

wou

ld b

e do

ne.

Bot

h th

ese

rule

s in

volv

e a

num

ber

of c

ompu

tatio

ns, w

hich

are

rep

eate

d ev

ery

time

dam

age

is e

stim

ated

. Fo

r co

mpl

icat

ed s

tres

s-tim

e tr

aces

, th

is m

ight

be

ever

y cy

cle.

Cle

arly

a c

ompu

ter

prog

ram

is u

sefu

l to

perf

orm

the

task

s, in

clud

ing

scan

ning

the

trac

ean

d id

entif

ying

the

cycl

es.

72 60 40

103

104

105

106

65

43

4.9

4.8

4.7

4.6

4.5

LogS

Sokpsi

N

Log

N

�1

0.9S

ut

n 1 =

3(1

03 )

S f,0

S'e,

0

S'e,

1

S f,1

N1

= 8

.52(

103 )

N1

– n 1

= 5

.52(

103 )

34.4

Figure

6–3

5

Use

of t

he M

anso

n m

etho

d to

pred

ict t

he e

ndur

ance

lim

it of

a m

ater

ial t

hat h

as b

een

over

stres

sed

for a

fini

tenu

mbe

r of c

ycle

s.

25S.

S. M

anso

n, A

. J. N

acht

igal

l, C

. R. E

nsig

n, a

nd J

. C. F

resc

he, “

Furt

her

Inve

stig

atio

n of

a R

elat

ion

for

Cum

ulat

ive

Fatig

ue D

amag

e in

Ben

ding

,” T

rans

. ASM

E, J

. Eng

. Ind

.,se

r. B

, vol

.87,

No.

1, p

p. 2

5–35

,Fe

brua

ry 1

965.

Page 32: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

322

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g319

Col

lins

said

it w

ell:

“In

spite

of

all t

he p

robl

ems

cite

d, th

e Pa

lmgr

en li

near

dam

age

rule

is

freq

uent

ly u

sed

beca

use

of i

ts s

impl

icity

and

the

exp

erim

enta

l fa

ct t

hat

othe

rm

ore

com

plex

dam

age

theo

ries

do

not

alw

ays

yiel

d a

sign

ifica

nt i

mpr

ovem

ent

in f

ail-

ure

pred

ictio

n re

liabi

lity.

”26

6–16

Surf

ace

Fatigue

Stre

ngth

The

surf

ace

fatig

uem

echa

nism

isno

tde

finiti

vely

unde

rsto

od.

The

cont

act-

affe

cted

zone

,in

the

abse

nce

ofsu

rfac

esh

eari

ngtr

actio

ns,

ente

rtai

nsco

mpr

essi

vepr

inci

pal

stre

sses

.R

otar

yfa

tigue

has

itscr

acks

grow

nat

orne

arth

esu

rfac

ein

the

pres

ence

ofte

nsile

stre

sses

that

are

asso

ciat

edw

ithcr

ack

prop

agat

ion,

toca

tast

roph

icfa

ilure

.The

rear

esh

ear

stre

sses

inth

ezo

ne,w

hich

are

larg

estj

ustb

elow

the

surf

ace.

Cra

cks

seem

togr

owfr

omth

isst

ratu

mun

tilsm

allp

iece

sof

mat

eria

lare

expe

lled,

leav

ing

pits

onth

esu

r-fa

ce.B

ecau

seen

gine

ers

had

tode

sign

dura

ble

mac

hine

rybe

fore

the

surf

ace

fatig

ueph

e-no

men

onw

asun

ders

tood

inde

tail,

they

had

take

nth

epo

stur

eof

cond

uctin

gte

sts,

obse

rvin

gpi

tson

the

surf

ace,

and

decl

arin

gfa

ilure

atan

arbi

trar

ypr

ojec

ted

area

ofho

le,

and

they

rela

ted

this

toth

eH

ertz

ian

cont

act

pres

sure

.T

his

com

pres

sive

stre

ssdi

dno

tpr

oduc

eth

efa

ilure

dire

ctly

,bu

tw

hate

ver

the

failu

rem

echa

nism

,w

hate

ver

the

stre

ssty

peth

atw

asin

stru

men

tal

inth

efa

ilure

,th

eco

ntac

tst

ress

was

anin

dex

toits

mag

nitu

de.

Buc

king

ham

27co

nduc

ted

a nu

mbe

r of

tes

ts r

elat

ing

the

fatig

ue a

t 10

8cy

cles

to

endu

ranc

e st

reng

th (

Her

tzia

n co

ntac

t pre

ssur

e). W

hile

ther

e is

evi

denc

e of

an

endu

ranc

elim

it at

abo

ut 3

(107

)cy

cles

for c

ast m

ater

ials

, har

dene

d st

eel r

olle

rs s

how

ed n

o en

dura

nce

limit

up t

o 4(

108)

cycl

es.

Subs

eque

nt t

estin

g on

har

d st

eel

show

s no

end

uran

ce l

imit.

Har

dene

d st

eel e

xhib

its s

uch

high

fatig

ue s

tren

gths

that

its

use

in r

esis

ting

surf

ace

fatig

ueis

wid

espr

ead.

Our

stu

dies

thu

s fa

r ha

ve d

ealt

with

the

fai

lure

of

a m

achi

ne e

lem

ent

by y

ield

ing,

by f

ract

ure,

and

by

fatig

ue. T

he e

ndur

ance

lim

it ob

tain

ed b

y th

e ro

tatin

g-be

am t

est

isfr

eque

ntly

cal

led

the

flexu

ral e

ndur

ance

lim

it,b

ecau

se it

is a

test

of

a ro

tatin

g be

am. I

nth

is s

ectio

n w

e sh

all s

tudy

a p

rope

rty

of m

atin

g m

ater

ials

calle

d th

e su

rfac

e en

dura

nce

shea

r. T

he d

esig

n en

gine

er m

ust f

requ

ently

sol

ve p

robl

ems

in w

hich

two

mac

hine

ele

-m

ents

mat

e w

ith o

ne a

noth

er b

y ro

lling

, slid

ing,

or

a co

mbi

natio

n of

rol

ling

and

slid

ing

cont

act.

Obv

ious

exa

mpl

es o

f su

ch c

ombi

natio

ns a

re th

e m

atin

g te

eth

of a

pai

r of

gea

rs,

a ca

m a

nd f

ollo

wer

, a w

heel

and

rai

l, an

d a

chai

n an

d sp

rock

et. A

kno

wle

dge

of th

e su

r-fa

ce s

tren

gth

of m

ater

ials

is

nece

ssar

y if

the

des

igne

r is

to

crea

te m

achi

nes

havi

ng a

long

and

sat

isfa

ctor

y lif

e.W

hen

two

surf

aces

rol

l or

rol

l an

d sl

ide

agai

nst

one

anot

her

with

suf

ficie

nt f

orce

,a

pitti

ng f

ailu

re w

ill o

ccur

aft

er a

cer

tain

num

ber

of c

ycle

s of

ope

ratio

n. A

utho

ritie

s ar

eno

t in

com

plet

e ag

reem

ent o

n th

e ex

act m

echa

nism

of

the

pitti

ng; a

lthou

gh th

e su

bjec

tis

qui

te c

ompl

icat

ed, t

hey

do a

gree

that

the

Her

tz s

tres

ses,

the

num

ber o

f cyc

les,

the

sur-

face

fini

sh, t

he h

ardn

ess,

the

degr

ee o

f lu

bric

atio

n, a

nd th

e te

mpe

ratu

re a

ll in

fluen

ce th

est

reng

th.

In S

ec.

3–19

it

was

lea

rned

tha

t, w

hen

two

surf

aces

are

pre

ssed

tog

ethe

r, a

max

imum

she

ar s

tres

s is

dev

elop

ed s

light

ly b

elow

the

cont

actin

g su

rfac

e. I

t is

post

ulat

edby

som

e au

thor

ities

tha

t a

surf

ace

fatig

ue f

ailu

re i

s in

itiat

ed b

y th

is m

axim

um s

hear

stre

ss a

nd th

en is

pro

paga

ted

rapi

dly

to th

e su

rfac

e. T

he lu

bric

ant t

hen

ente

rs th

e cr

ack

that

is f

orm

ed a

nd, u

nder

pre

ssur

e, e

vent

ually

wed

ges

the

chip

loos

e.

26J.

A. C

ollin

s, F

ailu

re o

f Mat

eria

ls in

Mec

hani

cal D

esig

n,Jo

hn W

iley

& S

ons,

New

Yor

k, 1

981,

p. 2

43.

27E

arle

Buc

king

ham

, Ana

lyti

cal M

echa

nics

of G

ears

,McG

raw

-Hill

, New

Yor

k, 1

949.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

323

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

320

Mec

hani

cal E

ngin

eerin

g D

esig

n

To d

eter

min

e th

e su

rfac

e fa

tigue

str

engt

h of

mat

ing

mat

eria

ls, B

ucki

ngha

m d

esig

ned

a si

mpl

e m

achi

ne f

or t

estin

g a

pair

of

cont

actin

g ro

lling

sur

face

s in

con

nect

ion

with

his

inve

stig

atio

n of

the

wea

r of

gea

r te

eth.

Buc

king

ham

and

, lat

er, T

albo

urde

t gat

here

d la

rge

num

bers

of

data

fro

m m

any

test

s so

tha

t co

nsid

erab

le d

esig

n in

form

atio

n is

now

avai

labl

e. T

o m

ake

the

resu

lts u

sefu

l fo

r de

sign

ers,

Buc

king

ham

defi

ned

a lo

ad-s

tres

sfa

ctor

,als

o ca

lled

a w

ear

fact

or,w

hich

is

deri

ved

from

the

Her

tz e

quat

ions

. Equ

atio

ns(3

–73)

and

(3–

74),

pp.

118

–119

, for

con

tact

ing

cylin

ders

are

fou

nd to

be

b=√ 2

F

πl

( 1−

ν2 1

) /E

1+( 1

−ν

2 2

) /E

2

(1/d 1

)+

(1/d 2

)(6

–59)

p max

=2

F

πbl

(6–6

0)

whe

reb

=ha

lf w

idth

of

rect

angu

lar

cont

act a

rea

F=

cont

act f

orce

l=

leng

th o

f cy

linde

rs

ν=

Pois

son’

s ra

tio

E=

mod

ulus

of

elas

ticity

d=

cylin

der

diam

eter

It is

mor

e co

nven

ient

to u

se th

e cy

linde

r ra

dius

, so

let 2

r=

d. I

f w

e th

en d

esig

nate

the

leng

th o

f th

e cy

linde

rs a

s w

(for

wid

th o

f ge

ar, b

eari

ng, c

am, e

tc.)

ins

tead

of

lan

dre

mov

e th

e sq

uare

roo

t sig

n, E

q. (

6–59

) be

com

es

b2=

4F

πw

( 1−

ν2 1

) /E

1+( 1

−ν

2 2

) /E

2

1/r 1

+1/

r 2(6

–61)

We

can

defin

e a

surf

ace

endu

ranc

e st

reng

thS C

usin

g

p max

=2

F

πbw

(6–6

2)

as

S C=

2F

πbw

(6–6

3)

whi

ch m

ay a

lso

be c

alle

d co

ntac

t str

engt

h,th

eco

ntac

t fat

igue

str

engt

h,or

the

Her

tzia

nen

dura

nce

stre

ngth

. T

he s

tren

gth

is t

he c

onta

ctin

g pr

essu

re w

hich

, af

ter

a sp

ecifi

ednu

mbe

r of

cyc

les,

will

cau

se f

ailu

re o

f th

e su

rfac

e. S

uch

failu

res

are

ofte

n ca

lled

wea

rbe

caus

e th

ey o

ccur

ove

r a

very

lon

g tim

e. T

hey

shou

ld n

ot b

e co

nfus

ed w

ith a

bras

ive

wea

r, ho

wev

er. B

y sq

uari

ng E

q. (

6–63

), s

ubst

itutin

g b2

from

Eq.

(6–

61),

and

rea

rran

g-in

g, w

e ob

tain

F w

( 1 r 1+

1 r 2

) =π

S2 C

[ 1−

ν2 1

E1

+1

−ν

2 2

E2

] =K

1(6

–64)

The

left

exp

ress

ion

cons

ists

of

para

met

ers

a de

sign

er m

ay s

eek

to c

ontr

ol in

depe

nden

tly.

The

cen

tral

exp

ress

ion

cons

ists

of

mat

eria

l pr

oper

ties

that

com

e w

ith t

he m

ater

ial

and

cond

ition

spe

cific

atio

n. T

he t

hird

exp

ress

ion

is t

he p

aram

eter

K1, B

ucki

ngha

m’s

loa

d-st

ress

fac

tor,

dete

rmin

ed b

y a

test

fixt

ure

with

val

ues

F,w

,r 1

,r 2

and

the

num

ber

of

Page 33: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

324

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g321

cycl

es a

ssoc

iate

d w

ith t

he fi

rst

tang

ible

evi

denc

e of

fat

igue

. In

gea

r st

udie

s a

sim

ilar

Kfa

ctor

is u

sed:

Kg

=K

1 4si

(6–6

5)

whe

reφ

is t

he t

ooth

pre

ssur

e an

gle,

and

the

ter

m [

(1−

ν2 1)/

E1+

(1−

ν2 2)/

E2]

isde

fined

as

1/(π

C2 P) ,

so

that

S C=

CP

√ F w

( 1 r 1+

1 r 2

)(6

–66)

Buc

king

ham

and

oth

ers

repo

rted

K1

for

108

cycl

es a

nd n

othi

ng e

lse.

Thi

s gi

ves

only

one

poin

t on

the

S CN

curv

e. F

or c

ast m

etal

s th

is m

ay b

e su

ffici

ent,

but f

or w

roug

ht s

teel

s, h

eat-

trea

ted,

som

e id

ea o

f th

e sl

ope

is u

sefu

l in

mee

ting

desi

gn g

oals

of

othe

r th

an 1

08cy

cles

.E

xper

imen

ts s

how

tha

t K

1ve

rsus

N,

Kg

vers

us N

, and

SC

vers

us N

data

are

rec

ti-fie

d by

logl

og tr

ansf

orm

atio

n. T

his

sugg

ests

that

K1

1N

β1

Kg

=a

Nb

S C=

αN

β

The

thre

e ex

pone

nts

are

give

n by

β1

=lo

g(K

1/

K2)

log(

N1/

N2)

b=

log(

Kg1

/K

g2)

log(

N1/

N2)

β=

log(

S C1/

S C2)

log(

N1/

N2)

(6–6

7)

Dat

a on

ind

uctio

n-ha

rden

ed s

teel

on

stee

l gi

ve (

S C) 1

07=

271

kpsi

and

(S C

) 108

=23

9kp

si, s

o β

, fro

m E

q. (

6–67

), is

β=

log(

271/

239)

log(

107/10

8)

=−0

.055

It m

ay b

e of

inte

rest

that

the

Am

eric

an G

ear

Man

ufac

ture

rs A

ssoc

iatio

n (A

GM

A)

uses

β�

�0.

056

betw

een

104

<N

<10

10if

the

des

igne

r ha

s no

dat

a to

the

con

trar

ybe

yond

107

cycl

es.

A lo

ngst

andi

ng c

orre

latio

n in

ste

els

betw

een

S Can

dH

Bat

108

cycl

es is

(SC) 1

08={ 0.

4H

B−

10kp

si2.

76H

B−

70M

Pa(6

–68)

AG

MA

use

s0.

99(S

C) 1

07=

0.32

7H

B+

26kp

si(6

–69)

Equ

atio

n (6

–66)

can

be

used

in d

esig

n to

find

an

allo

wab

le s

urfa

ce s

tres

s by

usi

nga

desi

gn f

acto

r. Si

nce

this

equ

atio

n is

non

linea

r in

its

str

ess-

load

tra

nsfo

rmat

ion,

the

desi

gner

mus

t de

cide

if

loss

of

func

tion

deno

tes

inab

ility

to

carr

y th

e lo

ad. I

f so

, the

nto

find

the

allo

wab

le s

tres

s, o

ne d

ivid

es th

e lo

ad F

by th

e de

sign

fac

tor

n d:

σC

=C

P

√F

wn d

( 1 r 1+

1 r 2

) =C

P√ n d

√ F w

( 1 r 1+

1 r 2

) =S C √ n d

and

n d=

(SC/σ

C)2

. If

the

loss

of

func

tion

is f

ocus

ed o

n st

ress

, the

n n d

=S C

C. I

t is

reco

mm

ende

d th

at a

n en

gine

er

•D

ecid

e w

heth

er lo

ss o

f fu

nctio

n is

fai

lure

to c

arry

load

or

stre

ss.

•D

efine

the

desi

gn f

acto

r an

d fa

ctor

of

safe

ty a

ccor

ding

ly.

•A

nnou

nce

wha

t he

or s

he is

usi

ng a

nd w

hy.

•B

e pr

epar

ed to

def

end

his

or h

er p

ositi

on.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

325

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

In t

his

way

eve

ryon

e w

ho i

s pa

rty

to t

he c

omm

unic

atio

n kn

ows

wha

t a

desi

gn f

acto

r(o

rfa

ctor

of

safe

ty)

of 2

mea

ns a

nd a

djus

ts, i

f ne

cess

ary,

the

judg

men

tal p

ersp

ectiv

e.

6–17

Stoch

ast

ic A

naly

sis2

8

As

alre

ady

dem

onst

rate

d in

this

cha

pter

, the

re a

re a

gre

at m

any

fact

ors

to c

onsi

der

ina

fati

gue

anal

ysis

, muc

h m

ore

so th

an in

a s

tati

c an

alys

is. S

o fa

r, e

ach

fact

or h

as b

een

trea

ted

in a

det

erm

inis

tic

man

ner,

and

if n

ot o

bvio

us, t

hese

fac

tors

are

sub

ject

to v

ari-

abil

ity

and

cont

rol

the

over

all

reli

abil

ity

of t

he r

esul

ts. W

hen

reli

abil

ity

is i

mpo

rtan

t,th

en fa

tigu

e te

stin

g m

ust c

erta

inly

be

unde

rtak

en. T

here

is n

o ot

her

way

. Con

sequ

entl

y,th

e m

etho

ds o

f st

ocha

stic

ana

lysi

s pr

esen

ted

here

and

in

othe

r se

ctio

ns o

f th

is b

ook

cons

titu

te g

uide

line

s th

at e

nabl

e th

e de

sign

er t

o ob

tain

a g

ood

unde

rsta

ndin

g of

the

vari

ous

issu

es i

nvol

ved

and

help

in

the

deve

lopm

ent

of a

saf

e an

d re

liab

le d

esig

n.In

this

sec

tion,

key

sto

chas

tic m

odifi

catio

ns to

the

dete

rmin

istic

fea

ture

s an

d eq

ua-

tions

des

crib

ed in

ear

lier

sect

ions

are

pro

vide

d in

the

sam

e or

der

of p

rese

ntat

ion.

Endura

nce

Lim

itTo

beg

in,

a m

etho

d fo

r es

timat

ing

endu

ranc

e lim

its,

the

tens

ile

stre

ngth

cor

rela

tion

met

hod,

is p

rese

nted

. T

he r

atio

�=

S′ e/S̄ u

tis

cal

led

the

fati

gue

rati

o.29

For

ferr

ous

met

als,

mos

t of

whi

ch e

xhib

it an

end

uran

ce l

imit,

the

end

uran

ce l

imit

is u

sed

as a

num

erat

or. F

or m

ater

ials

that

do

not s

how

an

endu

ranc

e lim

it, a

n en

dura

nce

stre

ngth

at

a sp

ecifi

ed n

umbe

r of

cyc

les

to f

ailu

re i

s us

ed a

nd n

oted

. G

ough

30re

port

ed t

he s

to-

chas

tic n

atur

e of

the

fat

igue

rat

io �

for

seve

ral

clas

ses

of m

etal

s, a

nd t

his

is s

how

n in

Fig.

6–36

. The

firs

t ite

m t

o no

te i

s th

at t

he c

oeffi

cien

t of

var

iatio

n is

of

the

orde

r 0.

10to

0.1

5, a

nd th

e di

stri

butio

n va

ries

for

cla

sses

of

met

als.

The

sec

ond

item

to n

ote

is th

atG

ough

’s d

ata

incl

ude

mat

eria

ls o

f no

int

eres

t to

eng

inee

rs.

In t

he a

bsen

ce o

f te

stin

g,en

gine

ers

use

the

corr

elat

ion

that

�re

pres

ents

to e

stim

ate

the

endu

ranc

e lim

it S′ e

from

the

mea

n ul

timat

e st

reng

th S̄

ut.

Gou

gh’s

dat

a ar

e fo

r en

sem

bles

of

met

als,

som

e ch

osen

for

met

allu

rgic

al i

nter

est,

and

incl

ude

mat

eria

ls t

hat

are

not

com

mon

ly s

elec

ted

for

mac

hine

par

ts.

Mis

chke

31

anal

yzed

dat

a fo

r 13

3 co

mm

on s

teel

s an

d tr

eatm

ents

in

vary

ing

diam

eter

s in

rot

atin

gbe

ndin

g,32

and

the

resu

lt w

as �=

0.44

5d−0

.107

LN

(1,0.

138)

whe

red

is th

e sp

ecim

en d

iam

eter

in in

ches

and

LN

(1,0.

138)

is a

uni

t log

norm

al v

ari-

ate

with

a m

ean

of 1

and

a s

tand

ard

devi

atio

n (a

nd c

oeffi

cien

t of v

aria

tion)

of 0

.138

. For

the

stan

dard

R. R

. Moo

re s

peci

men

,

�0.

30=

0.44

5(0.

30)−0

.107

LN

(1,0.

138)

=0.

506L

N(1

,0.

138)

322

Mec

hani

cal E

ngin

eerin

g D

esig

n

28R

evie

w C

hap.

20

befo

re r

eadi

ng th

is s

ectio

n.29

From

this

poi

nt, s

ince

we

will

be

deal

ing

with

sta

tistic

al d

istr

ibut

ions

in te

rms

of m

eans

, sta

ndar

dde

viat

ions

, etc

. A k

ey q

uant

ity, t

he u

ltim

ate

stre

ngth

, will

her

e be

pre

sent

ed b

y its

mea

n va

lue,

S̄u

t. T

his

mea

ns th

at c

erta

in te

rms

that

wer

e de

fined

ear

lier

in te

rms

of th

e m

inim

um v

alue

of

S utw

ill c

hang

e sl

ight

ly.

30In

J. A

. Pop

e, M

etal

Fat

igue

,Cha

pman

and

Hal

l, L

ondo

n, 1

959.

31C

harl

es R

. Mis

chke

, “Pr

edic

tion

of S

toch

astic

End

uran

ce S

tren

gth,

” Tr

ans.

ASM

E, J

ourn

al o

f Vib

rati

on,

Aco

usti

cs, S

tres

s, a

nd R

elia

bili

ty in

Des

ign,

vol.

109,

no.

1, J

anua

ry 1

987,

pp.

113

–122

.32

Dat

a fr

om H

. J. G

rove

r, S.

A. G

ordo

n, a

nd L

. R. J

acks

on, F

atig

ue o

f Met

als

and

Stru

ctur

es, B

urea

u of

Nav

al W

eapo

ns, D

ocum

ent N

AV

WE

PS 0

0-25

0043

5, 1

960.

Page 34: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

326

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g323

Als

o, 2

5 pl

ain

carb

on a

nd lo

w-a

lloy

stee

ls w

ith S

ut>

212

kpsi

are

des

crib

ed b

y

S′ e=

107L

N(1

,0.

139)

kpsi

In s

umm

ary,

for

the

rota

ting-

beam

spe

cim

en,

S′ e=

⎧ ⎪ ⎨ ⎪ ⎩0.50

6S̄u

tLN

(1,0.

138)

kpsi

orM

PaS̄ u

t≤

212

kpsi

(146

0M

Pa)

107L

N(1

,0.

139)

kpsi

S̄ ut>

212

kpsi

740L

N(1

,0.

139)

MPa

S̄ ut>

1460

MPa

(6–7

0)

whe

reS̄ u

tis

the

mea

nul

timat

e te

nsile

str

engt

h.E

quat

ions

(6–

70)

repr

esen

t the

sta

te o

f in

form

atio

n be

fore

an

engi

neer

has

cho

sen

a m

ater

ial.

In c

hoos

ing,

the

des

igne

r ha

s m

ade

a ra

ndom

cho

ice

from

the

ens

embl

e of

poss

ibili

ties,

and

the

stat

istic

s ca

n gi

ve th

e od

ds o

f di

sapp

oint

men

t. If

the

test

ing

is li

m-

ited

to fi

ndin

g an

est

imat

e of

the

ulti

mat

e te

nsile

str

engt

h m

ean

S̄ ut

with

the

cho

sen

mat

eria

l, E

qs. (

6–70

) ar

e di

rect

ly h

elpf

ul. I

f th

ere

is t

o be

rot

ary-

beam

fat

igue

tes

ting,

then

sta

tistic

al i

nfor

mat

ion

on t

he e

ndur

ance

lim

it is

gat

here

d an

d th

ere

is n

o ne

ed f

orth

e co

rrel

atio

n ab

ove.

Tabl

e 6–

9 co

mpa

res

appr

oxim

ate

mea

n va

lues

of

the

fatig

ue r

atio

φ̄0.

30fo

r se

vera

lcl

asse

s of

fer

rous

mat

eria

ls.

Endura

nce

Lim

it M

odif

yin

g F

act

ors

A M

arin

equ

atio

n ca

n be

wri

tten

as S e=

k ak b

k ck d

k fS′ e

(6–7

1)

whe

re t

he s

ize

fact

or k

bis

det

erm

inis

tic a

nd r

emai

ns u

ncha

nged

fro

m t

hat

give

n in

Sec.

6–9.

Als

o, s

ince

we

are

perf

orm

ing

a st

ocha

stic

ana

lysi

s, th

e “r

elia

bilit

y fa

ctor

” k e

is u

nnec

essa

ry h

ere.

The

sur

face

fac

tor

k aci

ted

earl

ier

in d

eter

min

istic

for

m a

s E

q. (

6–20

), p

. 28

0, i

sno

w g

iven

in s

toch

astic

for

m b

y

k a=

aS̄b u

tLN

(1,C

)(S̄

utin

kps

i or

MPa

)(6

–72)

whe

re T

able

6–1

0 gi

ves

valu

es o

f a,

b, a

nd C

for

vari

ous

surf

ace

cond

ition

s.

0.3

0.4

0.5

0.6

0.7

05

Probability density

Rot

ary

bend

ing

fatig

ue r

atio

�b

2

1

34

5

1 2 3 4 5

All

met

als

Non

ferr

ous

Iron

and

car

bon

stee

ls

Low

allo

y st

eels

Spec

ial a

lloy

stee

ls

380

152

111 78 39

Cla

ssN

o.Fi

gure

6–3

6

The

logn

orm

al p

roba

bilit

yde

nsity

PD

F of

the

fatig

ue ra

tioφ

bof

Gou

gh.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

327

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

324

Mec

hani

cal E

ngin

eerin

g D

esig

n

Table

6–9

Com

paris

on o

fA

ppro

xim

ate

Valu

es o

fM

ean

Fatig

ue R

atio

for

Som

e C

lass

es o

f Met

als

Mate

rial C

lass

φ0.3

0

Wro

ught

ste

els

0.50

C

ast s

teel

s0.

40Po

wde

red

steel

s0.

38G

ray

cast

iron

0.35

Mal

leab

le c

ast i

ron

0.40

Nor

mal

ized

nod

ular

cas

t iro

n0.

33

Table

6–1

0

Para

met

ers

in M

arin

Surfa

ce C

ondi

tion

Fact

or

ka

�aS

b utLN

(1,C

)Su

rface

aCoef

fici

ent

of

Finis

hk

psi

MPa

bV

ari

ation,

C

Gro

und∗

1.34

1.

58−0

.086

0.12

0M

achi

ned

or C

old-

rolle

d 2.

67

4.45

−0

.265

0.05

8H

ot-ro

lled

14.5

58.1

−0.7

190.

110

As-f

orge

d39

.827

1−0

.995

0.14

5

*Due

to th

e wide

scatt

er in

groun

d surf

ace d

ata, a

n alte

rnate

functi

on is

ka

�0.

878L

N(1,

0.1

20).

Note:

Sut

in kp

si or

MPa.

EXA

MPLE

6–1

6A

ste

el h

as a

mea

n ul

timat

e st

reng

th o

f 52

0 M

Pa a

nd a

mac

hine

d su

rfac

e. E

stim

ate

k a.

Solu

tion

From

Tab

le 6

–10,

k a=

4.45

(520

)−0.2

65L

N(1

,0.

058)

k̄ a=

4.45

(520

)−0.2

65(1

)=

0.84

8

σ̂ka

=C

k̄ a=

(0.0

58)4

.45(

520)

−0.2

65=

0.04

9

Ans

wer

sok a

=L

N(0

.848

,0.

049)

.

The

load

fac

tor

k cfo

r ax

ial a

nd to

rsio

nal l

oadi

ng is

giv

en b

y

(kc)

axia

l=

1.23

S̄−0.0

778

ut

LN

(1,0.

125)

(6–7

3)

(kc)

tors

ion

=0.

328S̄

0.12

5u

tL

N(1

,0.

125)

(6–7

4)

whe

reS̄ u

tis

in k

psi.

The

re a

re f

ewer

dat

a to

stu

dy f

or a

xial

fat

igue

. Equ

atio

n (6

–73)

was

dedu

ced

from

the

data

of

Lan

dgra

f an

d of

Gro

ver,

Gor

don,

and

Jac

kson

(as

cite

d ea

rlie

r).

Tors

iona

l da

ta a

re s

pars

er,

and

Eq.

(6–

74)

is d

educ

ed f

rom

dat

a in

Gro

ver

et a

l.N

otic

e th

e m

ild s

ensi

tivity

to

stre

ngth

in

the

axia

l an

d to

rsio

nal

load

fac

tor,

so k

cin

thes

e ca

ses

is n

ot c

onst

ant.

Ave

rage

val

ues

are

show

n in

the

last

col

umn

of T

able

6–1

1,an

d as

foo

tnot

es t

o Ta

bles

6–1

2 an

d 6–

13. T

able

6–1

4 sh

ows

the

influ

ence

of

mat

eria

lcl

asse

s on

the

loa

d fa

ctor

kc.

Dis

tort

ion

ener

gy t

heor

y pr

edic

ts (

k c) t

orsi

on=

0.57

7fo

rm

ater

ials

to w

hich

the

dist

ortio

n-en

ergy

theo

ry a

pplie

s. F

or b

endi

ng, k

c=

LN

(1,0)

.

Page 35: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

328

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Table

6–1

3

Aver

age

Mar

in L

oadi

ngFa

ctor

for T

orsio

nal L

oad

S̄ ut,

kpsi

k* c

500.

535

100

0.58

315

00.

614

200

0.63

6

*Ave

rage e

ntry 0

.59.

Table

6–1

4

Aver

age

Mar

in T

orsio

nal

Load

ing

Fact

or k

cfo

rSe

vera

l Mat

eria

ls

Mate

rial

Range

nk̄

cσ̂

kc

Wro

ught

ste

els

0.52

–0.6

931

0.60

0.03

Wro

ught

Al

0.43

–0.7

413

0.55

0.09

Wro

ught

Cu

and

allo

y 0.

41–0

.67

70.

560.

10W

roug

ht M

g an

d al

loy

0.49

–0.6

02

0.54

0.08

Tita

nium

0.37

–0.5

73

0.48

0.12

Cas

t iro

n0.

79–1

.01

90.

900.

07C

ast A

l, M

g, a

nd a

lloy

0.71

–0.9

15

0.85

0.09

Sourc

e: Th

e tab

le is

an ex

tensio

n of P

. G. F

orres

t, Fa

tigue

of M

etals,

Perga

mon P

ress,

Lond

on, 1

962,

Table

17,

p. 1

10,

with

stand

ard de

viatio

ns es

timate

d from

rang

e and

samp

le siz

e usin

g Tab

le A–

1 in

J. B.

Kenn

edy a

nd A.

M. N

eville

, Ba

sic S

tatist

ical M

ethod

s for

Engin

eers

and S

cienti

sts,3

rd ed

., Ha

rper &

Row,

New

York,

198

6, pp

. 54–

55.

Table

6–1

1

Para

met

ers

in M

arin

Load

ing

Fact

or

kc

�αS u

t− β

LN(1

, C

)M

ode

of

αA

vera

ge

Loadin

gk

psi

MPa

βC

kc

Bend

ing

11

00

1A

xial

1.23

1.43

−0.0

778

0.12

50.

85To

rsio

n0.

328

0.25

80.

125

0.12

50.

59

Table

6–1

2

Aver

age

Mar

in L

oadi

ngFa

ctor

for A

xial

Loa

d

S̄ ut,

kpsi

k* c

500.

907

100

0.86

015

00.

832

200

0.81

4

*Ave

rage e

ntry 0

.85.

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g325

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

329

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

326

Mec

hani

cal E

ngin

eerin

g D

esig

n

EXA

MPLE

6–1

7E

stim

ate

the

Mar

in lo

adin

g fa

ctor

kc

for

a 1–

in-d

iam

eter

bar

that

is u

sed

as f

ollo

ws.

(a)

In b

endi

ng. I

t is

mad

e of

ste

el w

ith S

ut=

100L

N(1

,0.

035)

kpsi

, and

the

des

igne

rin

tend

s to

use

the

corr

elat

ion

S′ e=

�0.

30S̄ u

tto

pre

dict

S′ e.

(b)

In b

endi

ng, b

ut e

ndur

ance

test

ing

gave

S′ e=

55L

N(1

,0.

081)

kpsi

.(c

) In

pus

h-pu

ll (a

xial

) fa

tigue

, Su

t=

LN

(86.

2,3.

92)

kpsi

, and

the

desi

gner

inte

nded

tous

e th

e co

rrel

atio

n S′ e

=�

0.30

S̄ ut.

(d)

In to

rsio

nal f

atig

ue. T

he m

ater

ial i

s ca

st ir

on, a

nd S

′ eis

kno

wn

by te

st.

Solu

tion

(a)

Sinc

e th

e ba

r is

in b

endi

ng,

Ans

wer

k c=

(1,0)

(b)

Sinc

e th

e te

st is

in b

endi

ng a

nd u

se is

in b

endi

ng,

Ans

wer

k c=

(1,0)

(c)

From

Eq.

(6–

73),

Ans

wer

(kc)

ax

=1.

23(8

6.2)

−0.0

778L

N(1

,0.

125)

k̄ c=

1.23

(86.

2)−0

.077

8(1

)=

0.87

0

σ̂kc

=C

k̄ c=

0.12

5(0.

870)

=0.

109

(d)

From

Tab

le 6

–15,

k̄c=

0.90

,σ̂kc

=0.

07, a

nd

Ans

wer

Ckc

=0.

07

0.90

=0.

08

The

tem

pera

ture

fac

tor

k dis

k d=

k̄ dL

N(1

,0.

11)

(6–7

5)

whe

rek̄ d

=k d

, giv

en b

y E

q. (

6–27

), p

. 283

.Fi

nally

, kfis

, as

befo

re, t

he m

isce

llane

ous

fact

or th

at c

an c

ome

abou

t fro

m a

gre

atm

any

cons

ider

atio

ns, a

s di

scus

sed

in S

ec. 6

–9, w

here

now

sta

tistic

al d

istr

ibut

ions

, pos

-si

bly

from

test

ing,

are

con

side

red.

Stre

ss C

once

ntr

ation a

nd N

otc

h S

ensi

tivi

tyN

otch

sen

sitiv

ity q

was

defi

ned

by E

q. (

6–31

), p

. 287

. The

sto

chas

tic e

quiv

alen

t is

q=

Kf−

1

Kt−

1(6

–76)

whe

reK

tis

the

the

oret

ical

(or

geo

met

ric)

str

ess-

conc

entr

atio

n fa

ctor

, a

dete

rmin

istic

quan

tity.

A s

tudy

of

lines

3 a

nd 4

of

Tabl

e 20

–6, w

ill r

evea

l th

at a

ddin

g a

scal

ar t

o (o

rsu

btra

ctin

g on

e fr

om)

a va

riat

e x

will

aff

ect o

nly

the

mea

n. A

lso,

mul

tiply

ing

(or

divi

d-in

g) b

y a

scal

ar a

ffec

ts b

oth

the

mea

n an

d st

anda

rd d

evia

tion.

With

this

in m

ind,

we

can

Page 36: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

330

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g327

rela

te th

e st

atis

tical

par

amet

ers

of th

e fa

tigue

str

ess-

conc

entr

atio

n fa

ctor

Kf

to th

ose

ofno

tch

sens

itivi

ty q

. It f

ollo

ws

that

q=

LN( K̄

f−

1

Kt−

1,

CK̄

f

Kt−

1

)

whe

reC

=C

Kf

and

q̄=

K̄f−

1

Kt−

1

σ̂q

=C

K̄f

Kt−

1(6

–77)

Cq

=C

K̄f

K̄f−

1

The

fatig

uest

ress

-con

cent

ratio

nfa

ctor

Kf

has

been

inve

stig

ated

mor

ein

Eng

land

than

inth

eU

nite

dSt

ates

.Fo

r K̄

f,

cons

ider

a m

odifi

ed N

eube

r eq

uatio

n (a

fter

Hey

woo

d33),

whe

re th

e fa

tigue

str

ess-

conc

entr

atio

n fa

ctor

is g

iven

by

K̄f

=K

t

1+

2(K

t−

1)

Kt

√ a √ r

(6–7

8)

whe

re T

able

6–1

5 gi

ves

valu

es o

f √ a

and

CK

ffo

r st

eels

wit

h tr

ansv

erse

hol

es,

shou

lder

s, o

r gr

oove

s.O

nce

Kf

isde

scri

bed,

qca

nal

sobe

quan

tifi

edus

ing

the

set

Eqs

.(6–

77).

The

mod

ified

Neu

ber

equa

tion

give

s th

e fa

tigue

str

ess

conc

entr

atio

n fa

ctor

as

Kf

=K̄

fL

N( 1,

CK

f

)(6

–79)

Table

6–1

5

Hey

woo

d’s

Para

met

er√ a

and

coef

ficie

nts

ofva

riatio

nC

Kffo

r ste

els

√ a(√ in

) ,√ a

(√ mm

) ,

Notc

h T

ype

S utin

kpsi

S utin

MPa

Coef

fici

ent

of

Vari

ation C

Kf

Tran

sver

se h

ole

5/S u

t17

4/S u

t0.

10Sh

ould

er4/

S ut

139/

S ut

0.11

Gro

ove

3/S u

t10

4/S u

t0.

15

EXA

MPLE

6–1

8E

stim

ate

Kf

and

qfo

r th

e st

eel s

haft

giv

en in

Ex.

6–6

, p. 2

88.

Solu

tion

From

Ex.

6–6

, a

stee

l sh

aft

with

Su

t=

690

Mpa

and

a s

houl

der

with

a fi

llet

of 3

mm

was

fou

nd t

o ha

ve a

the

oret

ical

str

ess-

conc

entr

atio

n-fa

ctor

of

Kt

. =1.

65.

From

Tab

le6–

15,

√ a=

139

S ut

=13

9

690

=0.

2014

√ mm

33R

. B. H

eyw

ood,

Des

igni

ng A

gain

st F

atig

ue, C

hapm

an &

Hal

l, L

ondo

n, 1

962.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

331

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

From

Eq.

(6–

78),

Kf=

Kt

1+

2(K

t−

1)

Kt

√ a √ r

=1.

65

1+

2(1.

65−

1)

1.65

0.20

14√ 3

=1.

51

whi

ch is

2.5

per

cent

low

er th

an w

hat w

as f

ound

in E

x. 6

–6.

From

Tab

le 6

–15,

CK

f=

0.11

. Thu

s fr

om E

q. (

6–79

),

Ans

wer

Kf=

1.51

LN

(1,0

.11)

From

Eq.

(6–

77),

with

Kt=

1.65

q̄=

1.51

−1

1.65

−1

=0.

785

Cq

=C

KfK̄

f

K̄f−

1=

0.11

(1.5

1)

1.51

−1

=0.

326

σ̂q

=C

qq̄

=0.

326(

0.78

5)=

0.25

6

So,

Ans

wer

q=

LN

(0.7

85,0.

256)

EXA

MPLE

6–1

9T

he b

ar s

how

n in

Fig

. 6–

37 i

s m

achi

ned

from

a c

old-

rolle

d fla

t ha

ving

an

ultim

ate

stre

ngth

of

S ut=

LN

(87.

6,5.

74)

kpsi

. T

he a

xial

loa

d sh

own

is c

ompl

etel

y re

vers

ed.

The

load

am

plitu

de is

Fa

=L

N(1

000,

120)

lbf.

(a)

Est

imat

e th

e re

liabi

lity.

(b)

Ree

stim

ate

the

relia

bilit

y w

hen

a ro

tatin

g be

ndin

g en

dura

nce

test

sho

ws

that

S′ e=

LN

(40,

2)kp

si.

Solu

tion

(a)

From

Eq.

(6–

70),

S′ e=

0.50

6S̄u

tLN

(1,0.

138)

=0.

506(

87.6

)LN

(1,0.

138)

=44

.3L

N(1

,0.

138)

kpsi

From

Eq.

(6–

72)

and

Tabl

e 6–

10,

k a=

2.67

S̄−0.2

65u

tL

N(1

,0.

058)

=2.

67(8

7.6)

−0.2

65L

N(1

,0.

058)

=0.

816L

N(1

,0.

058)

k b=

1(a

xial

load

ing)

3 4in

D.

3 16in

R.

in

1 42

in1 2

1in

1 4

1000

lbf

1000

lbf

Figure

6–3

7

328

Mec

hani

cal E

ngin

eerin

g D

esig

n

Page 37: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

332

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g329

From

Eq.

(6–

73),

k c=

1.23

S̄−0.0

778

ut

LN

(1,0.

125)

=1.

23(8

7.6)

−0.0

778L

N(1

,0.

125)

=0.

869L

N(1

,0.

125)

k d=

kf=

(1,0)

The

end

uran

ce s

tren

gth,

fro

m E

q. (

6–71

), is

S e=

k ak b

k ck d

kfS′ e

S e=

0.81

6LN

(1,0

.058

)(1)

0.86

9LN

(1,0

.125

)(1)

(1)4

4.3L

N(1

,0.1

38)

The

par

amet

ers

of S

ear

e

S̄ e=

0.81

6(0.

869)

44.3

=31

.4kp

si

CSe

=(0

.058

2+

0.12

52+

0.13

82)1/

2=

0.19

5

soS e

=31

.4L

N(1

,0.

195)

kpsi

.In

com

putin

g th

e st

ress

, th

e se

ctio

n at

the

hol

e go

vern

s. U

sing

the

ter

min

olog

yof

Tabl

e A

–15–

1 w

e fin

d d/w

=0.

50,

ther

efor

e K

t. =

2.18

. Fr

om

Tabl

e 6–

15,

√ a=

5/S u

t=

5/87

.6=

0.05

71an

dC

kf=

0.10

. Fr

om E

qs.

(6–7

8) a

nd (

6–79

) w

ithr

=0.

375

in,

Kf

=K

t

1+

2 (K

t−

1 )

Kt

√ a √ r

LN( 1,

CK

f

) =2.

18

1+

2 (2.

18−

1 )

2.18

0.05

71√ 0.

375

LN

(1,0.

10)

=1.

98L

N(1

,0.

10)

The

str

ess

at th

e ho

le is

�=

Kf

F A=

1.98

LN

(1,0.

10)10

00L

N(1

,0.

12)

0.25

(0.7

5)

σ̄=

1.98

1000

0.25

(0.7

5)10

−3=

10.5

6kp

si

=(0

.102

+0.

122)1/

2=

0.15

6

so s

tres

s ca

n be

exp

ress

ed a

s �

=10

.56L

N(1

,0.

156)

kpsi

.34

The

end

uran

ce l

imit

is c

onsi

dera

bly

grea

ter

than

the

loa

d-in

duce

d st

ress

, in

dica

t-in

g th

at fi

nite

lif

e is

not

a p

robl

em. F

or i

nter

feri

ng l

ogno

rmal

-log

norm

al d

istr

ibut

ions

,E

q.(5

–43)

, p. 2

42, g

ives

z=

−ln

( S̄ e σ̄

√ 1+

C2 σ

1+

C2 S e

)√ ln

[( 1+

C2 S e

)( 1+

C2 σ

)]=−

ln

⎛ ⎝31.

4

10.5

6

√ 1+

0.15

62

1+

0.19

52

⎞ ⎠√ ln

[(1

+0.

1952

)(1

+0.

1562

)]=

−4.3

7

From

Tab

le A

–10

the

prob

abili

ty o

f fa

ilure

pf

=�

(−4.

37)=

.000

006

35,

and

the

relia

bilit

y is

Ans

wer

R=

1−

0.00

000

635

=0.

999

993

65

34N

ote

that

ther

e is

a s

impl

ifica

tion

here

. The

are

a is

not

a de

term

inis

tic q

uant

ity. I

t will

hav

e a

stat

istic

aldi

stri

butio

n al

so. H

owev

er n

o in

form

atio

n w

as g

iven

her

e, a

nd s

o it

was

trea

ted

as b

eing

det

erm

inis

tic.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

333

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

(b)

The

rot

ary

endu

ranc

e te

sts

are

desc

ribe

d by

S′ e=

40L

N(1

,0.

05)

kpsi

who

se m

ean

isle

ssth

an th

e pr

edic

ted

mea

n in

par

t a. T

he m

ean

endu

ranc

e st

reng

th S̄

eis

S̄ e=

0.81

6(0.

869)

40=

28.4

kpsi

CSe

=(0

.058

2+

0.12

52+

0.05

2)1/

2=

0.14

7

so t

he e

ndur

ance

str

engt

h ca

n be

exp

ress

ed a

s S e

=28

.3L

N(1

,0.

147)

kpsi

. Fr

omE

q.(5

–43)

,

z=

−ln

⎛ ⎝28.

4

10.5

6

√ 1+

0.15

62

1+

0.14

72

⎞ ⎠√ ln

[(1

+0.

1472

)(1

+0.

1562

)]=

−4.6

5

Usi

ngTa

ble

A–1

0,w

ese

eth

epr

obab

ility

offa

ilure

pf=

�(−

4.65

)=

0.00

000

171

,an

d

R=

1−

0.00

000

171

=0.

999

998

29

anin

crea

se!

The

redu

ctio

nin

the

prob

abili

tyof

failu

reis

(0.0

0000

171

−0.

000

006

35)/

0.00

000

635

=−0

.73 ,

are

duct

ion

of73

perc

ent.

We

are

anal

yzin

gan

exis

ting

desi

gn,s

oin

part

(a)

the

fact

orof

safe

tyw

asn̄

=S̄/

σ̄=

31.4

/10

.56

=2.

97.I

npa

rt(b

)n̄

=28

.4/

10.5

6=

2.69

,ade

crea

se.T

hise

xam

ple

give

syou

the

oppo

rtun

ityto

see

the

role

ofth

ede

sign

fact

or.G

iven

know

ledg

eof

S̄ ,C

S,σ̄

,Cσ,a

ndre

liabi

lity

(thr

ough

z),t

hem

ean

fact

orof

safe

ty(a

sa

desi

gnfa

ctor

)sep

arat

esS̄

and

σ̄so

that

the

relia

bilit

ygo

alis

achi

eved

.K

now

ing

n̄al

one

says

noth

ing

abou

tth

epr

obab

ility

offa

ilure

.Loo

king

atn̄

=2.

97an

dn̄

=2.

69sa

ysno

thin

gab

outt

here

spec

tive

prob

abili

ties

offa

ilure

.The

test

sdi

dno

tred

uce

S̄ esi

gnifi

cant

ly,b

utre

duce

dth

eva

riat

ion

CS

such

that

the

relia

bilit

yw

asin

crea

sed.

Whe

n a

mea

n de

sign

fac

tor

(or

mea

n fa

ctor

of

safe

ty)

defi

ned

as S̄

e/σ̄

is s

aid

tobe

sile

nton

mat

ters

of

freq

uenc

y of

fai

lure

s, i

t m

eans

tha

t a

scal

ar f

acto

r of

saf

ety

by i

tsel

f do

es n

ot o

ffer

any

inf

orm

atio

n ab

out

prob

abil

ity

of f

ailu

re.

Nev

erth

eles

s,so

me

engi

neer

s le

t th

e fa

ctor

of

safe

ty s

peak

up,

and

the

y ca

n be

wro

ng i

n th

eir

conc

lusi

ons.

330

Mec

hani

cal E

ngin

eerin

g D

esig

n

As

reve

alin

g as

Ex.

6–1

9 is

con

cern

ing

the

mea

ning

(an

d la

ck o

f m

eani

ng)

of a

desi

gn f

acto

r or

fac

tor

of s

afet

y, le

t us

rem

embe

r th

at th

e ro

tary

test

ing

asso

ciat

ed w

ithpa

rt (

b) c

hang

ed n

othi

ngab

out

the

part

, bu

t on

ly o

ur k

now

ledg

e ab

out

the

part

. T

hem

ean

endu

ranc

e lim

it w

as 4

0 kp

si a

ll th

e tim

e, a

nd o

ur a

dequ

acy

asse

ssm

ent

had

tom

ove

with

wha

t was

kno

wn.

Fluct

uating S

tres

ses

Det

erm

inis

tic f

ailu

re c

urve

s th

at li

e am

ong

the

data

are

can

dida

tes

for

regr

essi

on m

od-

els.

Inc

lude

d am

ong

thes

e ar

e th

e G

erbe

r an

d A

SME

-elli

ptic

for

duc

tile

mat

eria

ls, a

nd,

for

britt

le m

ater

ials

, Sm

ith-D

olan

mod

els,

whi

ch u

se m

ean

valu

es in

thei

r pr

esen

tatio

n.Ju

st a

s th

e de

term

inis

tic f

ailu

re c

urve

s ar

e lo

cate

d by

end

uran

ce s

tren

gth

and

ultim

ate

tens

ile (

or y

ield

) st

reng

th, s

o to

o ar

e st

ocha

stic

fai

lure

cur

ves

loca

ted

by S

ean

d by

Su

t

orS

y.

Figu

re 6

–32,

p. 3

12,

show

s a

para

bolic

Ger

ber

mea

n cu

rve.

We

also

nee

d to

esta

blis

h a

cont

our

loca

ted

one

stan

dard

dev

iatio

n fr

om t

he m

ean.

Sin

ce s

toch

astic

Page 38: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

334

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g331

curv

es a

re m

ost l

ikel

y to

be

used

with

a r

adia

l loa

d lin

e w

e w

ill u

se th

e eq

uatio

n gi

ven

in T

able

6–7

, p. 2

99, e

xpre

ssed

in te

rms

of th

e st

reng

th m

eans

as

S̄ a=

r2S̄2 u

t

2S̄e

⎡ ⎣ −1

+√ 1

+( 2S̄

e

rS̄u

t

) 2⎤ ⎦(6

–80)

Bec

ause

of

the

posi

tive

corr

elat

ion

betw

een

S ean

dS u

t, w

e in

crem

ent

S̄ eby

CSe

S̄ e,S̄

ut

byC

SutS̄

ut,

and

S̄a

byC

SaS̄ a

, sub

stit

ute

into

Eq.

(6–

80),

and

sol

ve f

or C

Sato

obt

ain

CSa

=(1

+C

Sut)

2

1+

CSe

⎧ ⎨ ⎩−1+√ 1

+[ 2S̄

e(1

+C

Se)

rS̄u

t(1

+C

Sut)

] 2⎫ ⎬ ⎭⎡ ⎣ −

1+√ 1

+( 2S̄

e

rS̄u

t

) 2⎤ ⎦−

1(6

–81)

Equ

atio

n (6

–81)

can

be

view

ed a

s an

inte

rpol

atio

n fo

rmul

a fo

r CSa

, whi

ch fa

lls b

etw

een

CSe

and

CSu

tde

pend

ing

on lo

ad li

ne s

lope

r. N

ote

that

Sa

=S̄ a

LN

(1,C

Sa) .

Sim

ilarl

y, t

he A

SME

-elli

ptic

cri

teri

on o

f Ta

ble

6–8,

p. 3

00, e

xpre

ssed

in

term

s of

its m

eans

is

S̄ a=

rS̄yS̄ e

√ r2S̄2 y

+S̄2 e

(6–8

2)

Sim

ilarl

y, w

e in

crem

ent

S̄ eby

CSe

S̄ e,

S̄ yby

CS

yS̄ y

, an

d S̄ a

byC

SaS̄ a

, su

bstit

ute

into

Eq.

(6–8

2), a

nd s

olve

for

CSa

:

CSa

=(1

+C

Sy)(

1+

CSe

)√ √ √ √r2

S̄2 y+

S̄2 e

r2S̄2 y

(1+

CS

y)2

+S̄2 e

(1+

CSe

)2−

1(6

–83)

Man

y br

ittl

em

ater

ials

fol

low

a S

mith

-Dol

an f

ailu

re c

rite

rion

, wri

tten

dete

rmin

isti-

cally

as

nσa

S e=

1−

nσm/

S ut

1+

nσm/

S ut

(6–8

4)

Exp

ress

ed in

term

s of

its

mea

ns,

S̄ a S̄ e=

1−

S̄ m/

S̄ ut

1+

S̄ m/

S̄ ut

(6–8

5)

For

a ra

dial

load

line

slo

pe o

f r,

we

subs

titut

e S̄ a

/r

for

S̄ man

d so

lve

for

S̄ a, o

btai

ning

S̄ a=

rS̄u

t+

S̄ e2

⎡ ⎣ −1

+√ 1

+4r

S̄ utS̄

e

(rS̄ u

t+

S̄ e)2

⎤ ⎦(6

–86)

and

the

expr

essi

on f

or C

Sais

CSa

=rS̄

ut(

1+

CSu

t)+

S̄ e(1

+C

Se)

2S̄a

·{ −1+√ 1

+4r

S̄ utS̄

e(1

+C

Se)(

1+

CSu

t)

[rS̄ u

t(1

+C

Sut)

+S̄ e

(1+

CSe

)]2

} −1

(6–8

7)

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

335

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

332

Mec

hani

cal E

ngin

eerin

g D

esig

n

EXA

MPLE

6–2

0A

rot

atin

g sh

aft

expe

rien

ces

a st

eady

tor

que

T=

1360

LN

(1,0.

05)

lbf·

in,

and

at a

shou

lder

with

a 1

.1-i

n sm

all

diam

eter

, a

fatig

ue s

tres

s-co

ncen

trat

ion

fact

or K

f=

1.50

LN

(1,0.

11) ,

Kfs

=1.

28L

N(1

,0.

11) ,

and

at

that

loc

atio

n a

bend

ing

mom

ent

ofM

=12

60L

N(1

,0.

05)

lbf·

in. T

he m

ater

ial o

f whi

ch th

e sh

aft i

s m

achi

ned

is h

ot-r

olle

d10

35 w

ith S

ut=

86.2

LN

(1,0.

045)

kpsi

and

Sy

=56

.0L

N(1

,0.

077)

kpsi

. Est

imat

e th

ere

liabi

lity

usin

g a

stoc

hast

ic G

erbe

r fa

ilure

zon

e.

Solu

tion

Est

ablis

h th

e en

dura

nce

stre

ngth

. Fro

m E

qs. (

6–70

) to

(6–

72)

and

Eq.

(6–

20),

p. 2

80,

S′ e=

0.50

6(86

.2)L

N(1

,0.

138)

=43

.6L

N(1

,0.

138)

kpsi

k a=

2.67

(86.

2)−0

.265

LN

(1,0.

058)

=0.

820L

N(1

,0.

058)

k b=

(1.1

/0.

30)−

0.10

7=

0.87

0

k c=

k d=

kf=

LN

(1,0)

S e=

0.82

0LN

(1,0.

058)

0.87

0(43

.6)L

N(1

,0.

138)

S̄ e=

0.82

0(0.

870)

43.6

=31

.1kp

si

CSe

=(0

.058

2+

0.13

82)1/

2=

0.15

0

and

so S

e=

31.1

LN

(1,0.

150)

kpsi

.

Stre

ss(i

n kp

si): σ

a=

32K

fM

a

πd

3=

32(1

.50)

LN

(1,0.

11)1

.26L

N(1

,0.

05)

π(1

.1)3

σ̄a

=32

(1.5

0)1.

26

π(1

.1)3

=14

.5kp

si

a=

(0.1

12+

0.05

2)1/

2=

0.12

1

�m

=16

Kfs

Tm

πd

3=

16(1

.28)

LN

(1,0.

11)1

.36L

N(1

,0.

05)

π(1

.1)3

τ̄ m=

16(1

.28)

1.36

π(1

.1)3

=6.

66kp

si

m=

(0.1

12+

0.05

2)1/

2=

0.12

1

σ̄′ a=( σ̄

2 a+

3τ̄2 a

) 1/2=

[14.

52+

3(0)

2]1/

2=

14.5

kpsi

σ̄′ m

=( σ̄

2 m+

3τ̄2 m

) 1/2=

[0+

3(6.

66)2

]1/2

=11

.54

kpsi

r=

σ̄′ a

σ̄′ m

=14

.5

11.5

4=

1.26

Stre

ngth

: Fro

m E

qs. (

6–80

) an

d (6

–81)

,

S̄ a=

1.26

286

.22

2(31

.1)

⎧ ⎨ ⎩−1+√ 1

+[ 2(

31.1

)

1.26

(86.

2)

] 2⎫ ⎬ ⎭=28

.9kp

si

Page 39: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

336

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

CSa

=(1

+0.

045)

2

1+

0.15

0

−1+√ 1

+[

2(31

.1)(

1+

0.15

)

1.26

(86.

2)(1

+0.

045)

] 2

−1+√ 1

+[ 2(

31.1

)

1.26

(86.

2)

] 2−

1=

0.13

4

Rel

iabi

lity

:Si

nce

S a=

28.9

LN

(1,0.

134)

kpsi

an

d �

′ a=

14.5

LN

(1,0.

121)

kpsi

,E

q.(5

–44)

, p. 2

42, g

ives

z=

−ln

( S̄ a σ̄a

√ 1+

C2 σ

a

1+

C2 S a

)√ ln

[( 1+

C2 S a

)( 1+

C2 σ

a

)]=−

ln

⎛ ⎝28.9

14.5

√ 1+

0.12

12

1+

0.13

42

⎞ ⎠√ ln

[(1

+0.

1342

)(1

+0.

1212

)]=

−3.8

3

From

Tab

le A

–10

the

prob

abili

ty o

f fa

ilure

is

pf=

0.00

006

5 , a

nd t

he r

elia

bilit

y is

,ag

ains

t fat

igue

,

Ans

wer

R=

1−

pf=

1−

0.00

006

5=

0.99

993

5

The

cha

nce

of fi

rst-

cycl

e yi

eldi

ng i

s es

timat

ed b

y in

terf

erin

g S

yw

ith�

′ max

. T

hequ

antit

y�

′ max

is f

orm

ed f

rom

�′ a+

�′ m

. T

he m

ean

of �

′ max

isσ̄

′ a+

σ̄′ m

=14

.5+

11.5

4=

26.0

4kp

si.

The

coe

ffici

ent

of v

aria

tion

of t

he s

um i

s 0.

121,

sin

ce b

oth

CO

Vs

are

0.12

1, t

hus

max

=0.

121 .

We

inte

rfer

e S

y=

56L

N(1

,0.

077)

kpsi

with

�′ m

ax=

26.0

4LN

(1,0.

121)

kpsi

. The

cor

resp

ondi

ng z

vari

able

is

z=

−ln

⎛ ⎝56

26.0

4

√ 1+

0.12

12

1+

0.07

72

⎞ ⎠√ ln

[(1

+0.

0772

)(1

+0.

1212

)]=

−5.3

9

whi

ch r

epre

sent

s, f

rom

Tab

le A

–10,

a p

roba

bilit

y of

fai

lure

of

appr

oxim

atel

y 0.

0735

8[w

hich

rep

rese

nts

3.58

(10−8

) ] o

f fir

st-c

ycle

yie

ld in

the

fille

t.T

he p

roba

bilit

y of

obs

ervi

ng a

fat

igue

fai

lure

exc

eeds

the

pro

babi

lity

of a

yie

ldfa

ilure

, som

ethi

ng a

det

erm

inis

tic a

naly

sis

does

not

for

esee

and

in

fact

cou

ld l

ead

one

to e

xpec

t a

yiel

d fa

ilure

sho

uld

a fa

ilure

occ

ur.

Loo

k at

the

�′ aS a

inte

rfer

ence

and

the

�′ m

axS

yin

terf

eren

ce a

nd e

xam

ine

the

zex

pres

sion

s. T

hese

con

trol

the

rel

ativ

e pr

oba-

bilit

ies.

A d

eter

min

istic

ana

lysi

s is

obl

ivio

us t

o th

is a

nd c

an m

isle

ad.

Che

ck y

our

sta-

tistic

s te

xt f

or e

vent

s th

at a

re n

ot m

utua

lly e

xclu

sive

, bu

t ar

e in

depe

nden

t, to

qua

ntif

yth

e pr

obab

ility

of

failu

re:

pf=

p(yi

eld)

+p(

fatig

ue)−

p(yi

eld

and

fatig

ue)

=p(

yiel

d)+

p(fa

tigue

)−

p(yi

eld)

p(fa

tigue

)

=0.

358(

10−7

)+

0.65

(10−4

)−

0.35

8(10

−7)0

.65(

10−4

)=

0.65

0(10

−4)

R=

1−

0.65

0(10

−4)=

0.99

993

5

agai

nst e

ither

or

both

mod

es o

f fa

ilure

.

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g333

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

337

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

334

Mec

hani

cal E

ngin

eerin

g D

esig

n

Exa

min

e Fi

g. 6

–38,

whi

ch d

epic

ts th

e re

sults

of

Ex.

6–2

0. T

he p

robl

em d

istr

ibut

ion

ofS e

was

com

poun

ded

of h

isto

rica

l exp

erie

nce

with

S′ e

and

the

unce

rtai

nty

man

ifes

tatio

nsdu

e to

fea

ture

s re

quir

ing

Mar

in c

onsi

dera

tions

. The

Ger

ber

“fai

lure

zon

e” d

ispl

ays

this

.T

he i

nter

fere

nce

with

loa

d-in

duce

d st

ress

pre

dict

s th

e ri

sk o

f fa

ilure

. If

addi

tiona

l in

for-

mat

ion

is k

now

n (R

. R

. M

oore

tes

ting,

with

or

with

out

Mar

in f

eatu

res)

, th

e st

ocha

stic

Ger

ber

can

acco

mm

odat

e to

the

inf

orm

atio

n. U

sual

ly, t

he a

ccom

mod

atio

n to

add

ition

alte

st in

form

atio

n is

mov

emen

t and

con

trac

tion

of th

e fa

ilure

zon

e. I

n its

ow

n w

ay th

e st

o-ch

astic

fai

lure

mod

el a

ccom

plis

hes

mor

e pr

ecis

ely

wha

t th

e de

term

inis

tic m

odel

s an

dco

nser

vativ

e po

stur

es in

tend

. Add

ition

ally

, sto

chas

tic m

odel

s ca

n es

timat

e th

e pr

obab

ility

of f

ailu

re, s

omet

hing

a d

eter

min

istic

app

roac

h ca

nnot

add

ress

.

The

Des

ign F

act

or

in F

atigue

The

desi

gner

,in

envi

sion

ing

how

toex

ecut

eth

ege

omet

ryof

apa

rtsu

bjec

tto

the

impo

sed

cons

trai

nts,

can

begi

nm

akin

ga

prio

ride

cisi

ons

with

out

real

izin

gth

eim

pact

onth

ede

sign

task

.Now

isth

etim

eto

note

how

thes

eth

ings

are

rela

ted

toth

ere

liabi

lity

goal

.T

he m

ean

valu

e of

the

desi

gn f

acto

r is

giv

en b

y E

q. (

5–45

), r

epea

ted

here

as

n̄=

exp

[ −z√ ln

( 1+

C2 n

) +ln√ 1

+C

2 n

] . =ex

p[C

n(−

z+

Cn/2)

](6

–88)

in w

hich

, fro

m T

able

20–

6 fo

r th

e qu

otie

nt n

=S/

�,

Cn

=√ C

2 S+

C2 σ

1+

C2 σ

whe

reC

Sis

the

CO

V o

f th

e si

gnifi

cant

str

engt

h an

d C

σis

the

CO

V o

f th

e si

gnifi

cant

stre

ss a

t th

e cr

itic

al l

ocat

ion.

Not

e th

at n̄

is a

fun

ctio

n of

the

rel

iabi

lity

goa

l (t

hrou

ghz)

and

the

CO

Vs

of th

e st

reng

th a

nd s

tres

s. T

here

are

no

mea

ns p

rese

nt, j

ust m

easu

res

of v

aria

bili

ty.

The

nat

ure

of C

Sin

a f

atig

ue s

itua

tion

may

be

CSe

for

full

y re

vers

edlo

adin

g, o

r C

Saot

herw

ise.

Als

o, e

xper

ienc

e sh

ows

CSe

>C

Sa>

CSu

t, s

o C

Seca

n be

used

as

a co

nser

vativ

e es

tim

ate

of C

Sa. I

f th

e lo

adin

g is

ben

ding

or

axia

l, th

e fo

rm o

f

50 40 30 20 10 00

1020

3040

5060

7080

90

Mea

n Lange

r curv

e

+1Si

gma

curv

e

Mea

nG

erbe

r cur

ve

–1Si

gma

curv

e

Stea

dy s

tres

s co

mpo

nent

�m

, kps

i

Amplitude stress component �a, kpsi

Loa

d lin

e� S

a

� �a

S a_ �a_

Figure

6–3

8

Des

igne

r’s fa

tigue

dia

gram

forE

x. 6

–20.

Page 40: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

338

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g335

�′ a

mig

ht b

e

�′ a

=K

fM

ac

Ior

�′ a

=K

fF A

resp

ectiv

ely.

Thi

s m

akes

the

CO

V o

f �

′ a, n

amel

y C

σ′ a, e

xpre

ssib

le a

s

′ a=( C

2 Kf+

C2 F

) 1/2ag

ain

a fu

nctio

n of

var

iabi

litie

s. T

he C

OV

of

S e, n

amel

y C

Se, i

s

CSe

=( C

2 ka+

C2 kc

+C

2 kd+

C2 k

f+

C2 Se

′) 1/2ag

ain,

a f

unct

ion

of v

aria

bilit

ies.

An

exam

ple

will

be

usef

ul.

EXA

MPLE

6–2

1A

stra

pto

bem

ade

from

aco

ld-d

raw

nst

eels

trip

wor

kpie

ceis

toca

rry

afu

llyre

vers

edax

ial

load

F=

LN

(100

0,12

0)lb

fas

show

nin

Fig.

6–39

.C

onsi

dera

tion

ofad

jace

ntpa

rts

esta

blis

hed

the

geom

etry

assh

own

inth

efig

ure,

exce

ptfo

rth

eth

ickn

ess

t.M

ake

ade

cisi

onas

toth

em

agni

tude

ofth

ede

sign

fact

orif

the

relia

bilit

ygo

alis

tobe

0.99

995

,th

enm

ake

ade

cisi

onas

toth

ew

orkp

iece

thic

knes

st.

Solu

tion

Let

us

take

eac

h a

prio

ri d

ecis

ion

and

note

the

cons

eque

nce:

The

se e

ight

a p

rior

i de

cisi

ons

have

qua

ntifi

ed t

he m

ean

desi

gn f

acto

r as

n̄=

2.65

.Pr

ocee

ding

det

erm

inis

tical

ly h

erea

fter

we

wri

te

σ′ a=

S̄ e n̄=

K̄f

(w−

d)t

from

whi

ch

t=

K̄fn̄

(w−

d)S̄

e(1

)

A P

riori

Dec

isio

nConse

quen

ce

Use

101

8 C

D s

teel

S̄ ut�

87.

6kp

si,C

Sut�

0.0

655

Func

tion:

Car

ry a

xial

load

CF�

0.1

2,C

kc�

0.1

25R

≥0.

999

95z

� �

3.89

1M

achi

ned

surfa

ces

Cka

� 0

.058

Hol

e cr

itica

l C

Kf�

0.1

0,C

�� a�

(0.1

02�

0.1

22 )1/

2=

0.15

6A

mbi

ent t

empe

ratu

reC

kd�

0C

orre

latio

n m

etho

dC

S� e�

0.13

8H

ole

drille

dC

Se�

(0.0

582

+0.

1252

+0.

1382

)1/2

=0.

195

Cn

� √ √ √ √C

2 Se+

C2 σ

′ a

1+

C2 σ

′ a

=√ 0.

1952

+0.

1562

1+

0.15

62=

0.24

67

n̄�

exp[ −

(−3.

891)√ ln

(1+

0.24

672)+

ln√ 1

+0.

2467

2]

=2.

65

3 8in

D. d

rill

Fa

= 1

000

lbf

Fa

= 1

000

lbf

3 4in

Figure

6–3

9

A s

trap

with

a th

ickn

ess

tis

subj

ecte

d to

a fu

lly re

vers

edax

ial l

oad

of 1

000

lbf.

Exam

ple

6–21

con

sider

s th

eth

ickn

ess

nece

ssar

y to

atta

in a

relia

bilit

y of

0.9

99 9

5 ag

ains

ta

fatig

ue fa

ilure

.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

339

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

To e

valu

ate

the

prec

edin

g eq

uatio

n w

e ne

ed S̄

ean

dK̄

f. T

he M

arin

fac

tors

are

k a=

2.67

S̄−0.2

65u

tL

N(1

,0.

058)

=2.

67(8

7.6)

−0.2

65L

N(1

,0.

058)

k̄ a=

0.81

6

k b=

1

k c=

1.23

S̄−0.0

78u

tL

N(1

,0.

125)

=0.

868L

N(1

,0.

125)

k̄ c=

0.86

8

k̄ d=

k̄ f=

1

and

the

endu

ranc

e st

reng

th is

S̄ e=

0.81

6(1)

(0.8

68)(

1)(1

)0.5

06(8

7.6)

=31

.4kp

si

The

hol

e go

vern

s. F

rom

Tab

le A

–15–

1 w

e fin

d d/w

=0.

50, t

here

fore

Kt=

2.18

. Fro

mTa

ble

6–15

√ a=

5/S̄ u

t=

5/87

.6=

0.05

71,

r=

0.18

75in

. Fr

om E

q. (

6–78

) th

efa

tigue

str

ess

conc

entr

atio

n fa

ctor

is

K̄f

=2.

18

1+

2(2.

18−

1)

2.18

0.05

71√ 0.

1875

=1.

91

The

thic

knes

s t

can

now

be

dete

rmin

ed f

rom

Eq.

(1)

t≥

K̄fn̄

(w−

d)S

e=

1.91

(2.6

5)10

00

(0.7

5−

0.37

5)31

400

=0.

430

in

Use

1 2-i

n-th

ick

stra

p fo

r th

e w

orkp

iece

. The

1 2-i

n th

ickn

ess

atta

ins

and,

in th

e ro

undi

ngto

ava

ilabl

e no

min

al s

ize,

exc

eeds

the

relia

bilit

y go

al.

The

exam

ple

dem

onst

rate

sth

at,f

ora

give

nre

liabi

lity

goal

,the

fatig

uede

sign

fact

orth

atfa

cilit

ates

itsat

tain

men

tis

deci

ded

byth

eva

riab

ilitie

sof

the

situ

atio

n.Fu

rthe

rmor

e,th

ene

cess

ary

desi

gnfa

ctor

isno

taco

nsta

ntin

depe

nden

tof

the

way

the

conc

eptu

nfol

ds.

Rat

her,

itis

afu

nctio

nof

anu

mbe

rofs

eem

ingl

yun

rela

ted

apr

iori

deci

sion

sth

atar

em

ade

ingi

ving

defin

ition

toth

eco

ncep

t.T

hein

volv

emen

tof

stoc

hast

icm

etho

dolo

gyca

nbe

limite

dto

defin

ing

the

nece

ssar

yde

sign

fact

or.I

npa

rtic

ular

,in

the

exam

ple,

the

desi

gnfa

ctor

isno

tafu

nctio

nof

the

desi

gnva

riab

let;

rath

er,t

follo

ws

from

the

desi

gnfa

ctor

.

6–18

Road M

aps

and I

mport

ant

Des

ign E

quations

for

the

Stre

ss-L

ife

Met

hod

As

stat

ed i

n Se

c. 6

–15,

the

re a

re t

hree

cat

egor

ies

of f

atig

ue p

robl

ems.

The

im

port

ant

proc

edur

es a

nd e

quat

ions

for

det

erm

inis

tic s

tres

s-lif

e pr

oble

ms

are

pres

ente

d he

re.

Com

ple

tely

Rev

ersi

ng S

imple

Loadin

g1

Det

erm

ine

S′ eei

ther

fro

m te

st d

ata

or

p. 2

74S′ e

=

⎧ ⎪ ⎨ ⎪ ⎩0.

5Su

tS u

t≤

200

kpsi

(140

0M

Pa)

100

kpsi

S ut>

200

kpsi

700

MPa

S ut>

1400

MPa

(6–8

)

336

Mec

hani

cal E

ngin

eerin

g D

esig

n

Page 41: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

340

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g337

2M

odif

yS′ e

to d

eter

min

e S e

.

p. 2

79S e

=k a

k bk c

k dk e

k fS′ e

(6–1

8)

k a=

aSb u

t(6

–19)

Rel

iabili

ty,

%Tr

ansf

orm

ation V

ari

ate

za

Rel

iabili

ty F

act

or

ke

500

1.00

090

1.28

80.

897

951.

645

0.86

899

2.32

60.

814

99.9

3.09

10.

753

99.9

93.

719

0.70

299

.999

4.26

50.

659

99.9

999

4.75

30.

620

Table

6–5

Relia

bilit

y Fa

ctor

s k e

Cor

resp

ondi

ng to

8Pe

rcen

t Sta

ndar

dD

evia

tion

of th

eEn

dura

nce

Limit

Surf

ace

Fact

or

aEx

ponen

tFi

nis

hS u

t,k

psi

S ut,

MPa

b

Gro

und

1.34

1.58

−0.0

85M

achi

ned

or c

old-

draw

n2.

704.

51−0

.265

Hot

-rolle

d14

.457

.7−0

.718

As-f

orge

d39

.927

2.−0

.995

Table

6–2

Para

met

ers

for M

arin

Surfa

ce M

odifi

catio

nFa

ctor

, Eq.

(6–1

9)

Rot

atin

g sh

aft.

For

bend

ing

or to

rsio

n,

p. 2

80k b

=

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩(d/0.

3)−0

.107

=0.

879d

−0.1

070.

11≤

d≤

2in

0.91

d−0

.157

2<

d≤

10in

(d/7.

62)−0

.107

=1.

24d

−0.1

072.

79≤

d≤

51m

m

1.51

d−0

.157

51<

254

mm

(6–2

0)

For

axia

l,

k b=

1(6

–21)

Non

rota

ting

mem

ber.

Use

Tab

le 6

–3,

p. 2

82,

for

d ean

d su

bsti

tute

int

o E

q. (

6–20

)fo

rd.

p. 2

82k c

=

⎧ ⎪ ⎨ ⎪ ⎩1be

ndin

g

0.85

axia

l

0.59

tors

ion

(6–2

6)

p.28

3U

se T

able

6–4

for

kd,

or

k d=

0.97

5+

0.43

2(10

−3)T

F−

0.11

5(10

−5)T

2 F

+0.

104(

10−8

)T3 F−

0.59

5(10

−12)T

4 F(6

–27)

pp.2

84–2

85,

k e

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

341

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

338

Mec

hani

cal E

ngin

eerin

g D

esig

n

pp.2

85–2

86,

k f

3D

eter

min

e fa

tigue

str

ess-

conc

entr

atio

n fa

ctor

, Kf

orK

fs. F

irst

, find

Kt

orK

tsfr

omTa

ble

A–1

5.

p. 2

87K

f=

1+

q(K

t−

1)or

Kfs

=1

+q

(Kts

−1)

(6–3

2)

Obt

ain

qfr

om e

ither

Fig

. 6–2

0 or

6–2

1, p

p. 2

87–2

88.

Alte

rnat

ivel

y, f

or r

ever

sed

bend

ing

or a

xial

load

s,

p.28

8K

f=

1+

Kt−

1

1+

√ a/r

(6–3

3)

For

S ut

in k

psi, √ a

=0.

245

799

−0.

307

794(

10−2

)Su

t

+0.1

5087

4(10

−4)S

2 ut−

0.26

697

8(10

−7)S

3 ut

(6–3

5)

For

tors

ion

for

low

-allo

y st

eels

, inc

reas

e S u

tby

20

kpsi

and

app

ly to

Eq.

(6–

35).

4A

pply

Kf

orK

fsby

eith

erdi

vidi

ng S

eby

it

orm

ulti

plyi

ng i

t w

ith

the

pure

lyre

vers

ing

stre

ss n

otbo

th.

5D

eter

min

e fa

tigu

e li

fe c

onst

ants

aan

db.

If

S ut≥

70kp

si,

dete

rmin

e f

from

Fig.

6–1

8, p

. 277

. If

S ut<

70kp

si, l

et f

=0.

9.

p.27

7a

=(

fS u

t)2/

S e(6

–14)

b=

−[lo

g(f

S ut/

S e)]

/3

(6–1

5)

6D

eter

min

e fa

tigu

e st

reng

th S

fat

Ncy

cles

, or,

Ncy

cles

to

fail

ure

at a

rev

ersi

ngst

ress

σa

(Not

e: th

is o

nly

appl

ies

to p

urel

y re

vers

ing

stre

sses

whe

re σ

m=

0 ).

p. 2

77S

f=

aN

b(6

–13)

N=

(σa/a)

1/b

(6–1

6)

Fluct

uating S

imple

Loadin

gFo

r S e

,Kf

orK

fs, s

ee p

revi

ous

subs

ectio

n.

1C

alcu

late

σm

and

σa. A

pply

Kf

to b

oth

stre

sses

.

p.29

m=

(σm

ax+

σm

in)/

a=

|σ max

−σ

min|/2

(6–3

6)

2A

pply

to a

fat

igue

fai

lure

cri

teri

on, p

. 298

σm

≥0

Sode

rbur

a/

S e+

σm/

S y=

1/n

(6–4

5)

mod

-Goo

dman

σa/

S e+

σm/

S ut=

1/n

(6–4

6)

Ger

ber

nσa/

S e+

(nσ

m/

S ut)

2=

1(6

–47)

ASM

E-e

llipt

ic(σ

a/

S e)2

+(σ

m/

S ut)

2=

1/n2

(6–4

8)

σm

<0

p.29

a=

S e/

n

Page 42: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

342

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g339

Tors

ion.

Use

the

sam

e eq

uatio

ns a

s ap

ply

for σ

m≥

0 , e

xcep

t re

plac

e σ

man

aw

ithτ m

and

τ a,

use

k c=

0.59

for

S e,

repl

ace

S ut

with

S su

=0.

67S u

t[E

q. (

6–54

), p

. 30

9],

and

repl

ace

S yw

ithS s

y=

0.57

7Sy

[Eq.

(5–

21),

p. 2

17]

3C

heck

for

loca

lized

yie

ldin

g.

p.29

a+

σm

=S y

/n

(6–4

9)

or, f

or to

rsio

n,τ a

+τ m

=0.

577S

y/

n

4Fo

r fin

ite-l

ife

fatig

ue s

tren

gth

(see

Ex.

6–1

2, p

p. 3

05–3

06),

mod

-Goo

dman

Sf

a

1−

(σm/

S ut)

Ger

ber

Sf

a

1−

(σm/

S ut)

2

If d

eter

min

ing

the

finite

lif

e N

with

a f

acto

r of

saf

ety

n, s

ubst

itute

Sf/

nfo

ain

Eq.

(6–1

6). T

hat i

s,

N=( S

f/

n

a

) 1/b

Com

bin

ation o

f Lo

adin

g M

odes

See

prev

ious

sub

sect

ions

for

ear

lier

defin

ition

s.

1C

alcu

late

von

Mis

es s

tres

ses

for

alte

rnat

ing

and

mid

rang

e st

ress

sta

tes,

σ′ a

and

σ′ m.

Whe

n de

term

inin

g S e

, do

not u

se k

cno

r div

ide

by K

for

Kfs

. App

ly K

fan

d/or

Kfs

dire

ctly

to

each

spe

cifi

c al

tern

atin

g an

d m

idra

nge

stre

ss. I

f ax

ial

stre

ss i

s pr

esen

tdi

vide

the

alt

erna

ting

axi

al s

tres

s by

kc=

0.85

. For

the

spe

cial

cas

e of

com

bine

dbe

ndin

g, to

rsio

nal s

hear

, and

axi

al s

tres

ses

p.31

0

σ′ a={ [ (K

f) b

end

ing(σ

a) b

end

ing+

(Kf) a

xial

(σa) a

xial

0.85

] 2 +3[ (K

fs) t

orsi

on(τ

a) t

orsi

on] 2} 1/2

(6–5

5)

σ′ m

={ [ (K

f) b

end

ing(σ

m) b

end

ing+

(Kf) a

xial

(σm

) axi

al] 2 +

3[ (K

fs) t

orsi

on(τ

m) t

orsi

on] 2} 1

/2

(6–5

6)

2A

pply

str

esse

s to

fat

igue

cri

teri

on [

see

Eq.

(6–

45)

to (

6–48

), p

. 338

in

prev

ious

subs

ectio

n].

3C

onse

rvat

ive

chec

k fo

r lo

caliz

ed y

ield

ing

usin

g vo

n M

ises

str

esse

s.

p.29

′ a+

σ′ m

=S y

/n

(6–4

9)

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

343

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

PRO

BLE

MS

Prob

lem

s 6–

1 to

6–3

1 ar

e to

be

solv

ed b

y de

term

inis

tic m

etho

ds. P

robl

ems

6–32

to

6–38

are

to

be s

olve

d by

sto

chas

tic m

etho

ds. P

robl

ems

6–39

to 6

–46

are

com

pute

r pr

oble

ms .

Det

erm

inis

tic

Pro

ble

ms

6–1

A1 4

-in

drill

rod

was

hea

t-tr

eate

d an

d gr

ound

. The

mea

sure

d ha

rdne

ss w

as fo

und

to b

e 49

0 B

rine

ll.E

stim

ate

the

endu

ranc

e st

reng

th if

the

rod

is u

sed

in r

otat

ing

bend

ing.

6–2

Est

imat

eS′ e

for

the

follo

win

g m

ater

ials

:(a

) AIS

I 10

20 C

D s

teel

.(b

) AIS

I 10

80 H

R s

teel

.(c

) 20

24 T

3 al

umin

um.

(d) A

ISI

4340

ste

el h

eat-

trea

ted

to a

tens

ile s

tren

gth

of 2

50 k

psi.

6–3

Est

imat

e th

e fa

tigue

str

engt

h of

a ro

tatin

g-be

am s

peci

men

mad

e of

AIS

I 102

0 ho

t-ro

lled

stee

l cor

-re

spon

ding

to

a lif

e of

12.

5 ki

locy

cles

of

stre

ss r

ever

sal.

Als

o, e

stim

ate

the

life

of t

he s

peci

men

corr

espo

ndin

g to

a s

tres

s am

plitu

de o

f 36

kps

i. T

he k

now

n pr

oper

ties

are

S ut=

66.2

kpsi

,σ0

=11

5kp

si,m

=0.

22, a

nd ε

f=

0.90

.

6–4

Der

ive

Eq.

(6–1

7).

For

the

spec

imen

ofPr

ob.

6–3,

estim

ate

the

stre

ngth

corr

espo

ndin

gto

500

cycl

es.

6–5

For

the

inte

rval

103

≤N

≤10

6cy

cles

, de

velo

p an

exp

ress

ion

for

the

axia

l fa

tigue

str

engt

h(S

′ f) a

xfo

r th

e po

lishe

d sp

ecim

ens

of 4

130

used

to

obta

in F

ig.

6–10

. T

he u

ltim

ate

stre

ngth

is

S ut=

125

kpsi

and

the

endu

ranc

e lim

it is

(S′ e)

ax

=50

kpsi

.

6–6

Est

imat

e th

e en

dura

nce

stre

ngth

of

a 32

-mm

-dia

met

er r

od o

f AIS

I 10

35 s

teel

hav

ing

a m

achi

ned

finis

h an

d he

at-t

reat

ed to

a te

nsile

str

engt

h of

710

MPa

.

6–7

Two

stee

lsar

ebe

ing

cons

ider

edfo

rm

anuf

actu

reof

as-f

orge

dco

nnec

ting

rods

.One

isA

ISI

4340

Cr-

Mo-

Nis

teel

capa

ble

ofbe

ing

heat

-tre

ated

toa

tens

ilest

reng

thof

260

kpsi

.The

othe

ris

apl

ain

car-

bon

stee

lAIS

I104

0w

ithan

atta

inab

leS u

tof

113

kpsi

.Ife

ach

rod

isto

have

asi

zegi

ving

aneq

uiva

-le

ntdi

amet

erd e

of0.

75in

,is

ther

ean

yad

vant

age

tous

ing

the

allo

yst

eelf

orth

isfa

tigue

appl

icat

ion?

6–8

A s

olid

rou

nd b

ar, 2

5 m

m in

dia

met

er, h

as a

gro

ove

2.5-

mm

dee

p w

ith a

2.5

-mm

rad

ius

mac

hine

din

to i

t. T

he b

ar i

s m

ade

of A

ISI

1018

CD

ste

el a

nd i

s su

bjec

ted

to a

pur

ely

reve

rsin

g to

rque

of

200

N ·

m. F

or th

e S-

Ncu

rve

of th

is m

ater

ial,

let

f=

0.9 .

(a)

Est

imat

e th

e nu

mbe

r of

cyc

les

to f

ailu

re.

(b)

If th

e ba

r is

als

o pl

aced

in a

n en

viro

nmen

t with

a te

mpe

ratu

re o

f 45

0◦ C, e

stim

ate

the

num

ber

of c

ycle

s to

fai

lure

.

6–9

A s

olid

squ

are

rod

is c

antil

ever

ed a

t on

e en

d. T

he r

od i

s 0.

8 m

lon

g an

d su

ppor

ts a

com

plet

ely

reve

rsin

g tr

ansv

erse

loa

d at

the

oth

er e

nd o

f ±1

kN. T

he m

ater

ial

is A

ISI

1045

hot

-rol

led

stee

l.If

the

rod

mus

t su

ppor

t th

is l

oad

for

104

cycl

es w

ith a

fac

tor

of s

afet

y of

1.5

, w

hat

dim

ensi

onsh

ould

the

squ

are

cros

s se

ctio

n ha

ve?

Neg

lect

any

str

ess

conc

entr

atio

ns a

t th

e su

ppor

t en

d an

das

sum

e th

at f

=0.

9 .

6–1

0A

rec

tang

ular

bar

is

cut

from

an

AIS

I 10

18 c

old-

draw

n st

eel

flat.

The

bar

is

60 m

m w

ide

by10

mm

thi

ck a

nd h

as a

12-

mm

hol

e dr

illed

thr

ough

the

cen

ter

as d

epic

ted

in T

able

A–1

5–1.

The

bar

isco

ncen

tric

ally

load

ed in

pus

h-pu

ll fa

tigue

by

axia

l for

ces

Fa, u

nifo

rmly

dis

trib

uted

acr

oss

the

wid

th.

Usi

ng a

des

ign

fact

or o

f n d

=1.

8 , e

stim

ate

the

larg

est

forc

e F

ath

at c

an b

e ap

plie

dig

nori

ng c

olum

n ac

tion.

6–1

1B

eari

ng r

eact

ions

R1

and

R2

are

exer

ted

on t

he s

haft

sho

wn

in t

he fi

gure

, w

hich

rot

ates

at

1150

rev/

min

and

sup

port

s a

10-k

ip b

endi

ng f

orce

. U

se a

109

5 H

R s

teel

. Sp

ecif

y a

diam

eter

dus

ing

a de

sign

fac

tor

of n

d=

1.6

for

a lif

e of

3 m

in. T

he s

urfa

ces

are

mac

hine

d.

340

Mec

hani

cal E

ngin

eerin

g D

esig

n

Page 43: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

344

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g341

6–1

2A

bar

of

stee

l ha

s th

e m

inim

um p

rope

rtie

s S e

=27

6M

Pa,

S y=

413

MPa

, and

Su

t=

551

MPa

.T

he b

ar is

sub

ject

ed to

a s

tead

y to

rsio

nal s

tres

s of

103

MPa

and

an

alte

rnat

ing

bend

ing

stre

ss o

f17

2 M

Pa. F

ind

the

fact

or o

f sa

fety

gua

rdin

g ag

ains

t a s

tatic

fai

lure

, and

eith

er th

e fa

ctor

of

safe

-ty

gua

rdin

g ag

ains

t a f

atig

ue f

ailu

re o

r th

e ex

pect

ed li

fe o

f th

e pa

rt. F

or th

e fa

tigue

ana

lysi

s us

e:(a

) M

odifi

ed G

oodm

an c

rite

rion

.(b

) G

erbe

r cr

iteri

on.

(c) A

SME

-elli

ptic

cri

teri

on.

6–1

3R

epea

t Pro

b. 6

–12

but w

ith a

ste

ady

tors

iona

l str

ess

of 1

38 M

Pa a

nd a

n al

tern

atin

g be

ndin

g st

ress

of 6

9 M

Pa.

6–1

4R

epea

t Pr

ob.

6–12

but

with

a s

tead

y to

rsio

nal

stre

ss o

f 10

3 M

Pa,

an a

ltern

atin

g to

rsio

nal

stre

ssof

69

MPa

, and

an

alte

rnat

ing

bend

ing

stre

ss o

f 83

MPa

.

6–1

5R

epea

t Pro

b. 6

–12

but w

ith a

n al

tern

atin

g to

rsio

nal s

tres

s of

207

MPa

.

6–1

6R

epea

t Pro

b. 6

–12

but w

ith a

n al

tern

atin

g to

rsio

nal s

tres

s of

103

MPa

and

a s

tead

y be

ndin

g st

ress

of 1

03 M

Pa.

6–1

7T

he c

old-

draw

n A

ISI

1018

ste

el b

ar s

how

n in

the

figu

re i

s su

bjec

ted

to a

n ax

ial

load

fluc

tuat

ing

betw

een

800

and

3000

lbf

. E

stim

ate

the

fact

ors

of s

afet

y n

yan

dn

fus

ing

(a)

a G

erbe

r fa

tigue

failu

re c

rite

rion

as

part

of

the

desi

gner

’s f

atig

ue d

iagr

am, a

nd (

b) a

n A

SME

-elli

ptic

fat

igue

fai

l-ur

e cr

iteri

on a

s pa

rt o

f th

e de

sign

er’s

fat

igue

dia

gram

.

Prob

lem

6–1

7

1 4in

D.

3 81 in in

Prob

lem

6–2

0

16 in

3 8in

D.

Fm

ax =

30

lbf

Fm

in =

15

lbf

6–1

8R

epea

t Pro

b. 6

–17,

with

the

load

fluc

tuat

ing

betw

een

−800

and

3000

lbf.

Ass

ume

no b

uckl

ing.

6–1

9R

epea

t Pro

b. 6

–17,

with

the

load

fluc

tuat

ing

betw

een

800

and

−300

0lb

f. A

ssum

e no

buc

klin

g.

6–2

0T

he fi

gure

sho

ws

a fo

rmed

rou

nd-w

ire

cant

ileve

r sp

ring

sub

ject

ed t

o a

vary

ing

forc

e. T

he h

ard-

ness

tes

ts m

ade

on 2

5 sp

ring

s ga

ve a

min

imum

har

dnes

s of

380

Bri

nell.

It

is a

ppar

ent

from

the

mou

ntin

g de

tails

that

ther

e is

no

stre

ss c

once

ntra

tion.

A v

isua

l ins

pect

ion

of th

e sp

ring

s in

dica

tes

dd

d/1

0 R

.

d/5

R.

1.5d 1

in

R1

R2

F =

10

kip

12 in

6 in

6 in

Prob

lem

6–1

1

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

345

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

that

the

sur

face

fini

sh c

orre

spon

ds c

lose

ly t

o a

hot-

rolle

d fin

ish.

Wha

t nu

mbe

r of

app

licat

ions

is

likel

y to

cau

se f

ailu

re?

Solv

e us

ing:

(a)

Mod

ified

Goo

dman

cri

teri

on.

(b)

Ger

ber

crite

rion

.

6–2

1T

he f

igur

e is

a d

raw

ing

of a

3-

by 1

8-m

m la

tchi

ng s

prin

g. A

pre

load

is o

btai

ned

duri

ng a

ssem

-bl

y by

shi

mm

ing

unde

r th

e bo

lts

to o

btai

n an

est

imat

ed i

niti

al d

efle

ctio

n of

2 m

m. T

he l

atch

-in

g op

erat

ion

itse

lf r

equi

res

an a

ddit

iona

l de

flec

tion

of

exac

tly

4 m

m. T

he m

ater

ial

is g

roun

dhi

gh-c

arbo

n st

eel,

bent

the

n ha

rden

ed a

nd t

empe

red

to a

min

imum

har

dnes

s of

490

Bhn

. The

radi

us o

f th

e be

nd i

s 3

mm

. E

stim

ate

the

yiel

d st

reng

th t

o be

90

perc

ent

of t

he u

ltim

ate

stre

ngth

.(a

) Fi

nd th

e m

axim

um a

nd m

inim

um la

tchi

ng f

orce

s.(b

) Is

it li

kely

the

spri

ng w

ill f

ail i

n fa

tigue

? U

se th

e G

erbe

r cr

iteri

on.

342

Mec

hani

cal E

ngin

eerin

g D

esig

n

Prob

lem

6–2

1D

imen

sions

in m

illim

eter

s

100

3

18

Sect

ion

A–A

AA

F

6–2

2R

epea

t Pro

b. 6

–21,

par

t b, u

sing

the

mod

ified

Goo

dman

cri

teri

on.

6–2

3T

hefig

ure

show

sth

efr

ee-b

ody

diag

ram

ofa

conn

ectin

g-lin

kpo

rtio

nha

ving

stre

ssco

ncen

trat

ion

atth

ree

sect

ions

.The

dim

ensi

ons

are

r=

0.25

in,d

=0.

75in

,h=

0.50

in,w

1=

3.75

in,a

ndw

2=

2.5

in.

The

forc

esF

fluct

uate

betw

een

ate

nsio

nof

4ki

pan

da

com

pres

sion

of16

kip.

Neg

lect

colu

mn

actio

nan

dfin

dth

ele

astf

acto

rof

safe

tyif

the

mat

eria

lis

cold

-dra

wn

AIS

I10

18st

eel.

Prob

lem

6–2

3F

F

h

w1

w2r

A Ad

Sect

ionA–A

6–2

4T

he to

rsio

nal c

oupl

ing

in th

e fig

ure

is c

ompo

sed

of a

cur

ved

beam

of

squa

re c

ross

sec

tion

that

isw

elde

d to

an

inpu

t sha

ft a

nd o

utpu

t pla

te. A

torq

ue is

app

lied

to th

e sh

aft a

nd c

ycle

s fr

om z

ero

toT

. T

he c

ross

sec

tion

of t

he b

eam

has

dim

ensi

ons

of 5

by

5 m

m,

and

the

cent

roid

al a

xis

of t

hebe

am d

escr

ibes

a c

urve

of

the

form

r=

20+

10θ/π

, w

here

ran

are

in m

m a

nd r

adia

ns,

resp

ectiv

ely

(0≤

θ≤

4π).

The

cur

ved

beam

has

a m

achi

ned

surf

ace

with

yie

ld a

nd u

ltim

ate

stre

ngth

val

ues

of 4

20 a

nd 7

70 M

Pa, r

espe

ctiv

ely.

(a)

Det

erm

ine

the

max

imum

allo

wab

le v

alue

of

Tsu

ch th

at th

e co

uplin

g w

ill h

ave

an in

finite

life

with

a f

acto

r of

saf

ety,

n=

3 , u

sing

the

mod

ified

Goo

dman

cri

teri

on.

(b)

Rep

eat p

art (

a) u

sing

the

Ger

ber

crite

rion

.(c

) U

sing

Tfo

und

in p

art (

b), d

eter

min

e th

e fa

ctor

of

safe

ty g

uard

ing

agai

nst y

ield

.

Page 44: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

346

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g343

6–2

5R

epea

t Pro

b. 6

–24

igno

ring

cur

vatu

re e

ffec

ts o

n th

e be

ndin

g st

ress

.

6–2

6In

the

figur

esh

own,

shaf

tA,m

ade

ofA

ISI1

010

hot-

rolle

dst

eel,

isw

elde

dto

afix

edsu

ppor

tand

issu

bjec

ted

tolo

adin

gby

equa

land

oppo

site

forc

esF

via

shaf

tB.A

theo

retic

alst

ress

conc

entr

atio

nK

tsof

1.6

isin

duce

dby

the

3-m

mfil

let.

The

leng

thof

shaf

tAfr

omth

efix

edsu

ppor

tto

the

con-

nect

ion

atsh

aftB

is1

m.T

helo

adF

cycl

esfr

om0.

5to

2kN

.(a

) Fo

r sh

aft A

, find

the

fact

or o

f sa

fety

for

infin

ite li

fe u

sing

the

mod

ified

Goo

dman

fat

igue

fai

l-ur

e cr

iteri

on.

(b)

Rep

eat p

art (

a) u

sing

the

Ger

ber

fatig

ue f

ailu

re c

rite

rion

.

Prob

lem

6–2

4

T

T

20

5

60

(Dim

ensi

ons

in m

m)

Prob

lem

6–2

6

F

F

25 m

m

Shaf

tBSh

aftA

10 m

m

20 m

m

25 m

m

3 m

mfi

llet

6–2

7A

sch

emat

ic o

f a

clut

ch-t

estin

g m

achi

ne i

s sh

own.

The

ste

el s

haft

rot

ates

at

a co

nsta

nt s

peed

ω.

An

axia

l lo

ad i

s ap

plie

d to

the

sha

ft a

nd i

s cy

cled

fro

m z

ero

to P

. The

tor

que

Tin

duce

d by

the

clut

ch f

ace

onto

the

shaf

t is

give

n by

T=

fP

(D

+d)

4w

here

Dan

dd

are

defin

ed in

the

figur

e an

d f

is th

e co

effic

ient

of

fric

tion

of th

e cl

utch

fac

e. T

hesh

aft i

s m

achi

ned

with

Sy

=80

0M

Pa a

nd S

ut=

1000

MPa

. The

theo

retic

al s

tres

s co

ncen

trat

ion

fact

ors

for

the

fille

t are

3.0

and

1.8

for

the

axia

l and

tors

iona

l loa

ding

, res

pect

ivel

y.(a

) Ass

ume

the

load

var

iatio

n P

is s

ynch

rono

us w

ith s

haft

rot

atio

n. W

ith f

=0.

3 , fi

nd th

e m

ax-

imum

allo

wab

le lo

ad P

such

that

the

shaf

t will

sur

vive

a m

inim

um o

f 10

6cy

cles

with

a f

acto

rof

saf

ety

of 3

. U

se t

he m

odifi

ed G

oodm

an c

rite

rion

. D

eter

min

e th

e co

rres

pond

ing

fact

or o

fsa

fety

gua

rdin

g ag

ains

t yie

ldin

g.

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

347

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

(b)

Supp

ose

the

shaf

t is

not

rot

atin

g, b

ut t

he l

oad

Pis

cyc

led

as s

how

n. W

ith f

=0.

3 , fi

nd t

hem

axim

um a

llow

able

load

Pso

that

the

shaf

t will

sur

vive

a m

inim

um o

f 10

6cy

cles

with

a f

ac-

tor

of s

afet

y of

3. U

se t

he m

odifi

ed G

oodm

an c

rite

rion

. Det

erm

ine

the

corr

espo

ndin

g fa

ctor

of s

afet

y gu

ardi

ng a

gain

st y

ield

ing.

344

Mec

hani

cal E

ngin

eerin

g D

esig

n

Prob

lem

6–2

7P

Fric

tion

pad

D =

150

mm

d =

30

mm

R=

3�

6–2

8Fo

r th

e cl

utch

of

Prob

. 6–2

7, th

e ex

tern

al lo

ad P

is c

ycle

d be

twee

n 20

kN

and

80

kN. A

ssum

ing

that

the

shaf

t is

rota

ting

sync

hron

ous

with

the

exte

rnal

load

cyc

le, e

stim

ate

the

num

ber

of c

ycle

sto

fai

lure

. Use

the

mod

ified

Goo

dman

fat

igue

fai

lure

cri

teri

a.

6–2

9A

flat

lea

f sp

ring

has

fluc

tuat

ing

stre

ss o

f σ

max

=42

0M

Pa a

nd σ

min

=14

0M

Pa a

pplie

d fo

r5

(104 )

cycl

es. I

f th

e lo

ad c

hang

es to

σm

ax=

350

MPa

and

σm

in=

−200

MPa

, how

man

y cy

cles

shou

ld t

he s

prin

g su

rviv

e? T

he m

ater

ial

is A

ISI

1040

CD

and

has

a f

ully

cor

rect

ed e

ndur

ance

stre

ngth

of

S e=

200

MPa

. Ass

ume

that

f=

0.9 .

(a)

Use

Min

er’s

met

hod.

(b)

Use

Man

son’

s m

etho

d.

6–3

0A

mac

hine

par

t w

ill b

e cy

cled

at ±4

8kp

si f

or 4

(10

3 ) cy

cles

. The

n th

e lo

adin

g w

ill b

e ch

ange

dto

±38

kpsi

for

6 (

104 )

cycl

es. F

inal

ly, t

he l

oad

will

be

chan

ged

to ±

32kp

si. H

ow m

any

cycl

esof

ope

ratio

n ca

n be

exp

ecte

d at

this

str

ess

leve

l? F

or th

e pa

rt,

S ut=

76kp

si,

f=

0.9 ,

and

has

afu

lly c

orre

cted

end

uran

ce s

tren

gth

of S

e=

30kp

si.

(a)

Use

Min

er’s

met

hod.

(b)

Use

Man

son’

s m

etho

d.

6–3

1A

rota

ting-

beam

spe

cim

en w

ith a

n en

dura

nce

limit

of 5

0 kp

si a

nd a

n ul

timat

e st

reng

th o

f 100

kps

iis

cyc

led

20 p

erce

nt o

f th

e tim

e at

70

kpsi

, 50

perc

ent

at 5

5 kp

si, a

nd 3

0 pe

rcen

t at

40

kpsi

. Let

f=

0.9

and

estim

ate

the

num

ber

of c

ycle

s to

fai

lure

.

Stoch

ast

ic P

roble

ms

6–3

2So

lve

Prob

. 6–

1 if

the

ulti

mat

e st

reng

th o

f pr

oduc

tion

piec

es i

s fo

und

to b

e S u

t=

245L

N(1

,0.

0508

) kps

i.

6–3

3T

he s

ituat

ion

is s

imila

r to

that

of

Prob

. 6–1

0 w

here

in th

e im

pose

d co

mpl

etel

y re

vers

ed a

xial

load

Fa

=15

LN

(1,0.

20)

kN i

s to

be

carr

ied

by t

he l

ink

with

a t

hick

ness

to

be s

peci

fied

by y

ou, t

hede

sign

er.

Use

the

101

8 co

ld-d

raw

n st

eel

of P

rob.

6–1

0 w

ith S

ut=

440L

N(1

,0.

30)

MPa

and

Syt

=37

0LN

(1,0.

061)

. T

he r

elia

bilit

y go

al m

ust

exce

ed 0

.999

. U

sing

the

cor

rela

tion

met

hod,

spec

ify

the

thic

knes

s t.

6–3

4A

sol

id r

ound

ste

el b

ar is

mac

hine

d to

a d

iam

eter

of

1.25

in. A

gro

ove

1 8in

dee

p w

ith a

rad

ius

of1 8

in i

s cu

t in

to t

he b

ar.

The

mat

eria

l ha

s a

mea

n te

nsile

str

engt

h of

110

kps

i. A

com

plet

ely

reve

rsed

ben

ding

mom

ent

M=

1400

lbf· i

n is

app

lied.

Est

imat

e th

e re

liabi

lity.

The

siz

e fa

ctor

shou

ld b

e ba

sed

on th

e gr

oss

diam

eter

. The

bar

rot

ates

.

Page 45: Ch 6 Fatigue

Bud

ynas

−Nis

bett:

Shi

gley

’s

Mec

hani

cal E

ngin

eeri

ng

Des

ign,

Eig

hth

Editi

on

II. F

ailu

re P

reve

ntio

n6.

Fat

igue

Fai

lure

Res

ultin

g fr

om V

aria

ble

Load

ing

348

© T

he M

cGra

w−H

ill

Com

pani

es, 2

008

Fatig

ue F

ailu

re R

esul

ting

from

Var

iabl

e Lo

adin

g345

6–3

5R

epea

t Pro

b. 6

–34,

with

a c

ompl

etel

y re

vers

ed to

rsio

nal m

omen

t of

T=

1400

lbf· in

app

lied.

6–3

6A

11 4-i

n-di

amet

er h

ot-r

olle

d st

eel b

ar h

as a

1 8-i

n di

amet

er h

ole

drill

ed tr

ansv

erse

ly th

roug

h it.

The

bar

is n

onro

tatin

g an

d is

sub

ject

to a

com

plet

ely

reve

rsed

ben

ding

mom

ent o

f M

=16

00lb

f· in

inth

e sa

me

plan

e as

the

axis

of t

he tr

ansv

erse

hol

e. T

he m

ater

ial h

as a

mea

n te

nsile

str

engt

h of

58

kpsi

.E

stim

ate

the

relia

bilit

y. T

he s

ize

fact

or s

houl

d be

bas

ed o

n th

e gr

oss

size

. Use

Tab

le A

–16

for

Kt.

6–3

7R

epea

tPro

b.6–

36,w

ithth

eba

rsub

ject

toa

com

plet

ely

reve

rsed

tors

iona

lmom

ento

f240

0lb

f·in

.

6–3

8T

he p

lan

view

of

a lin

k is

the

sam

e as

in

Prob

. 6–

23;

how

ever

, th

e fo

rces

Far

e co

mpl

etel

yre

vers

ed, t

he r

elia

bilit

y go

al is

0.9

98, a

nd th

e m

ater

ial p

rope

rtie

s ar

e S u

t=

64L

N(1

,0.

045)

kpsi

and

Sy

=54

LN

(1,0.

077)

kpsi

. Tre

at F

aas

det

erm

inis

tic, a

nd s

peci

fy th

e th

ickn

ess

h.

Com

pute

r Pro

ble

ms

6–3

9A

1 4by

11 2

-in

stee

l ba

r ha

s a

3 4-i

n dr

illed

hol

e lo

cate

d in

the

cen

ter,

muc

h as

is

show

n in

Tabl

eA

–15–

1. T

he b

ar is

sub

ject

ed to

a c

ompl

etel

y re

vers

ed a

xial

load

with

a d

eter

min

istic

load

of 1

200

lbf.

The

mat

eria

l has

a m

ean

ultim

ate

tens

ile s

tren

gth

of S̄

ut=

80kp

si.

(a)

Est

imat

e th

e re

liabi

lity.

(b)

Con

duct

a c

ompu

ter

sim

ulat

ion

to c

onfir

m y

our

answ

er to

par

t a.

6–4

0Fr

om y

our

expe

rien

ce w

ith P

rob.

6–3

9 an

d E

x. 6

–19,

you

obs

erve

d th

at f

or c

ompl

etel

y re

vers

edax

ial a

nd b

endi

ng f

atig

ue, i

t is

poss

ible

to

•O

bser

ve th

e C

OV

s as

soci

ated

with

a p

rior

i des

ign

cons

ider

atio

ns.

•N

ote

the

relia

bilit

y go

al.

•Fi

nd t

he m

ean

desi

gn f

acto

r n̄ d

whi

ch w

ill p

erm

it m

akin

g a

geom

etri

c de

sign

dec

isio

n th

atw

ill a

ttain

the

goal

usi

ng d

eter

min

istic

met

hods

in c

onju

nctio

n w

ith n̄

d.

Form

ulat

ean

inte

ract

ive

com

pute

rpr

ogra

mth

atw

illen

able

the

user

tofin

dn̄ d

.Whi

leth

em

ater

-ia

lpro

pert

ies

S ut,

Sy,a

ndth

elo

adC

OV

mus

tbe

inpu

tby

the

user

,all

ofth

eC

OV

sas

soci

ated

with

�0.

30,k

a,k

c,k

d,a

ndK

fca

nbe

inte

rnal

,and

answ

ers

toqu

estio

nsw

illal

low

and

CS,a

sw

ell

asC

nan

dn̄ d

,to

beca

lcul

ated

.Lat

eryo

uca

nad

dim

prov

emen

ts.T

est

your

prog

ram

with

prob

-le

ms

you

have

alre

ady

solv

ed.

6–4

1W

hen

usin

gth

eG

erbe

rfa

tigue

failu

recr

iteri

onin

ast

ocha

stic

prob

lem

,Eqs

.(6–

80)

and

(6–8

1)ar

eus

eful

.The

yar

eal

soco

mpu

tatio

nally

com

plic

ated

.Iti

she

lpfu

lto

have

aco

mpu

ters

ubro

utin

eor

proc

edur

eth

atpe

rfor

ms

thes

eca

lcul

atio

ns.

Whe

nw

ritin

gan

exec

utiv

epr

ogra

m,

and

itis

appr

opri

ate

tofin

dS a

and

CS

a,a

sim

ple

call

toth

esu

brou

tine

does

this

with

am

inim

umof

effo

rt.

Als

o,on

ceth

esu

brou

tine

iste

sted

,iti

sal

way

sre

ady

tope

rfor

m.W

rite

and

test

such

apr

ogra

m.

6–4

2R

epea

t Pro

blem

. 6–4

1 fo

r th

e A

SME

-elli

ptic

fat

igue

fai

lure

locu

s, im

plem

entin

g E

qs. (

6–82

) an

d(6

–83)

.

6–4

3R

epea

tPro

b.6–

41fo

rthe

Smith

-Dol

anfa

tigue

failu

relo

cus,

impl

emen

ting

Eqs

.(6–

86)a

nd(6

–87)

.

6–4

4W

rite

and

test

com

pute

r su

brou

tines

or

proc

edur

es th

at w

ill im

plem

ent

(a)

Tabl

e 6–

2, r

etur

ning

a,b

,C, a

nd k̄

a.

(b)

Equ

atio

n (6

–20)

usi

ng T

able

6–4

, ret

urni

ng k

b.

(c)

Tabl

e 6–

11, r

etur

ning

α,β

,C, a

nd k̄

c.

(d)

Equ

atio

ns (

6–27

) an

d (6

–75)

, ret

urni

ng k̄

dan

dC

kd.

6–4

5W

rite

and

tes

t a

com

pute

r su

brou

tine

or p

roce

dure

tha

t im

plem

ents

Eqs

. (6

–76)

and

(6–

77),

retu

rnin

gq̄

,σ̂q, a

nd C

q.

6–4

6W

rite

and

tes

t a

com

pute

r su

brou

tine

or p

roce

dure

tha

t im

plem

ents

Eq.

(6–

78)

and

Tabl

e 6–

15,

retu

rnin

g√ a

,CK

f, a

nd K̄

f.