ch17_yag_asidi_oksidasyonu_yonca_duman

Upload: sezer-kurtuldu

Post on 06-Apr-2018

228 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    1/100

    FATTY ACIDCATABOLISM

    or

    FATTY ACID

    1

    or

    -OXIDATIONof FATTY

    ACIDS

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    2/100

    2

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    3/100

    In some species and in some tissues,

    the acetyl-CoA has alternative fates.

    3

    n ver , ace y - o may n g er p an s , ace y - obe converted to ketone serves primarily as abodies-water-soluble fuels biosynthetic precursor,exported to the brain and only secondarily as fuel.other tissues when glucoseis not available.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    4/100

    4

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    5/100

    5

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    6/100

    6

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    7/100

    7

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    8/100

    To overcome the relative stability of the C C bonds in a fatty acid,

    the carboxyl group at C-1 is activated by attachment to coenzymeA, which allows stepwise oxidation of the fatty acyl group at theC-3, or/ , position hence the name oxidation .

    8

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    9/100

    Cells can obtain fatty acid fuels from three sources:

    Fats consumed in the diet, Fats stored in cells as Fats synthesized in onelipid droplets, organ for export to another.

    Digest fats obtained Mobilize fats stored in specia- Convert excessin the diet lized tissue (adipose tissue, con- dietaw carbohydrates

    sisting of cells called adipo- to fats for export cytes) (transport) to other

    tissues

    9

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    10/100

    Triacylglycerols provide more than half the energyrequirements of some organs, particularly the liver , heart ,and resting skeletal muscle .

    Stored triacylglycerols are virtually the sole source of energy in hibernating animals and migrating birds .

    10

    Protists obtain fats by consuming organisms lower in thefood chain, and some also store fats as cytosolic lipiddroplets.

    Vascular plants mobilize fats stored in seeds duringgermination.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    11/100

    11

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    12/100

    12

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    13/100

    Various combi-nations of lipidand protein pro-duce particles of different densities,

    ranging fromchylomicrons and

    very-low-density

    13

    (VLDL)tovery-high-density

    lipoproteins(VHDL) ,

    which can be sepa-rated by ultra-centrifugation.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    14/100

    14

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    15/100

    15

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    16/100

    Mobilization of triacylglycerolsstored in adipose tissue. When lowlevels of glucose in the blood trigger

    the release of glucagon, (1) the hormo-ne binds its receptor in the adipocytemembrane and thus (2) stimulatesadenylyl cyclase, via a G protein, toproduce cAMP. This activates proteinkinase A (PKA), which phosphorylates(3) the hormone-sensitive lipase and(4) perilipin molecules on the surfaceof the lipid droplet. Phosphorylation of perilipin permits hormone-sensitive

    16

    droplet, where (5) it hydrolyzes tri-acylglycerols to free fatty acids. (6)Fatty acids leave the adipocyte, bindserum albumin in the blood, and arecarried in the blood; they are releasedfrom the albumin and (7) enter amyocyte via a specific fatty acidtransporter. (8) In the myocyte, fattyacids are oxidized to CO 2, and theenergy of oxidation is conserved inATP, which fuels muscle contraction

    and other energy requiring metabolismin the myocyte.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    17/100

    17

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    18/100

    18

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    19/100

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    20/100

    Ail-CoAsentetazlar

    i Ya asidi + CoA + ATP Ya ail-CoA + AMP + PP

    membran

    20

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    21/100

    21

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    22/100

    Ail-CoAsentetazlar

    iD mitokondriyelYa asidi + CoA + ATP Ya ail-CoA + AMP + 2 P

    membran

    oG 134 kJ mol =

    22

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    23/100

    Fatty acid entry into mitochondria via the acyl-carnitine/carnitine transporter

    [ ] [ ]

    [ ]

    Karnitinail transferaz-I

    Membranlar membran membranaras bo luk d yzeyid yzeyi

    Kolayla trlm d

    membrand yzeyi

    Ya ail-CoA + Karnitin Ya ail-karnitin + CoA

    Ya ail-karnitin

    [ ]

    [ ] [ ]

    ifzyon membran

    Ail karnitin/Karnitin i yzeyitranspoter

    Karnitinail transferaz-II

    membran membrani yzeyi

    i yzeyi

    Ya ail-karnitin

    Ya ail-karnitin Ya ail-CoA

    Mitokondriyelmatrix

    + Karnitin

    23

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    24/100

    24

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    25/100

    25

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    26/100

    26

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    27/100

    27

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    28/100

    Three isozymes of acyl-CoA dehydrogenase,each specific for a range of fatty-acyl chain lengths

    Very-long-chain Medium-chain Short-chain(VLCAD) (MCAD) (SCAD) acyl-CoA acyl-CoA acyl-CoA

    28

    dehydrogenase dehydrogenase dehydrogenaseacting on fatty acting on fatty acting on fattyacids of 12 to 18 acids of 4 to 14 acids of 4 to 8 carbons carbons carbons

    All three isozymes are flavoproteins with FAD as a prosthetic group.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    29/100

    29

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    30/100

    30

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    31/100

    31

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    32/100

    32

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    33/100

    33

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    34/100

    +

    3 2 n-1 2 3 2 n-3 3

    + +2

    Bir turluk -oksidasyonu iin toplam denklem:CH -(CH ) -CoA + CoA + FAD + NAD + H CH -(CH ) -CoA + CH CO S-CoA

    + FADH + NADH + H

    O

    34

    +n-2 n-2 n-2 n-2 n3 2 n-1 2 32 2 2 2 2

    n-22

    (n-2/2) turluk -oksidasyonu iin toplam denklem:

    CH -(CH ) -CoA + CoA + FAD + NAD + H CH CO S-CoA +O

    + +n-2 n-2

    2 2 2FADH + NADH + H

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    35/100

    + +12 2 2

    122 2 2

    Bir turluk -oksidasyonu sonunda:

    NADH + H + O NAD + H O

    FADH + O FAD + H O

    +2

    turluk -oksidasyonu sonunda:

    NADH + H + O

    n 22

    n 2 n 2 n 2 n 2

    2 2 4 2

    + 2

    2 2 2

    NAD + H O

    FADH + O FAD + H

    n 2

    2

    n 2 n 2 n 2 n 22 4 2 2

    O

    35

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    36/100

    Asetil-CoA'nn oksidasyonu iin elektron transferleri ve

    oksidatif fosforilenmeler dahil toplam denklem:

    n- n-3 2 n-1 2 i2 2

    n2

    CH -(CH ) -CoA + + O + (2n-4) ADP + (2n-4) PCo

    n-222

    -CO S-CoA + (2n-4) ATP + H3CH O

    36

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    37/100

    2

    Ya asidi oksidasyonunda olu an asetil-CoA lar sitrik asit dngsndeCO ve suya kadar oksitlendi inde toplam tepkime:

    n n2 i2 2Asetil-CoA + n O +5n P + 5n ADP CoA + 5n ATP + n H

    2 2O + n CO

    37

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    38/100

    2Ya ail-CoA mitokondrilerde CO ve suya kadar

    komple oksitlendi inde toplam tepkime:

    3n-23 2 n-1 2 i2

    3n-22 22

    CH -(CH ) -CoA + O + (7n-4) P + (7n-4) ADP

    CoA + (7n-4) ATP + H O + n CO

    38

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    39/100

    16 karbonlu doymu ya asidi palmitik asit iin 1 turluk -oksidasyonu:

    Palmitoil-CoA + CoA + FAD + NAD + + H 2O Miristoil-CoA +Asetil-CoA + FADH 2 + NADH + H +

    16 karbonlu doymu ya asidi palmitik asit iin 7 turluk -oksidasyonu:

    Palmitoil-CoA + 7 CoA + 7 FAD + 7 NAD + + 7 H 2O 8 Asetil-CoA +

    7 FADH 2 + 7NADH + 7 H+

    Palmitoil-CoAnn Asetil-CoA ya oksitlenmesi iin, elektron transferlerive oksidatif fosforillenmeler dahil toplam denklem:

    Palmitoil-CoA + 7 CoA + 7O 2 + 28 P i + 28 ADP 8 Asetil-CoA + 28ATP + 7 H 2O

    39

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    40/100

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    41/100

    In hibernatinganimals , fattyacid oxidationprovidesmetabolicenergy, heat,and water allessential forsurvival of ananimal thatneither eatsnor drinks for

    41

    long periods.

    Camels obtainwater tosupplement themeager supplyavailable intheir naturalenvironmentby oxidation of fats stored intheir hump.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    42/100

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    43/100

    43

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    44/100

    44

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    45/100

    1 mol palmitatn CO 2 ve H 2O ya kadar oksitlenmesiyle retilen enerji 108 ATP1 mol palmitatn palmitolil-CoA ya aktifle mesinde harcanan enerji e deeri 2 ATP1 mol palmitatn komple oksitlenmesinin net enerji kazanc 106 ATP

    Palmitoil-CoA + 23 O 2 + 108 P i + 108 ADP CoA + 108 ATP + 16 CO 2 + 23 H 2O

    reaksiyonu iin standart sebest enerji de iimi G = 9800 kJ/mol

    ADP + Pi ATP reaksiyonu iin G = 30.5 kJ/mol

    106 30.5 = 3230 kJ/mol

    3230100 %33

    9800 9800 kJ/moln %33 ATP nin fosfat ba enerjisi olarak korunur.

    Hcre ii gerek ko ullarda korunan serbest enerji %60 n zerindedir.

    45

    P i

    Oxidation of mono-unsaturated fatty acids

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    46/100

    Oxidation of mono unsaturated fatty acids

    46

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    47/100

    47

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    48/100

    Ail-CoA-sentetaz

    Karnitin ail transferaz-I mitokondriyelmembarn

    Karnitin ail transferaz-II

    Oleat + CoA Oleil-CoA

    Oleil-CoA + Karnitin Oleil-karnitin + CoA

    Oleil-karnitin + CoA

    Mitokondriyelmatriks

    Oleil-CoA + Karnitin

    3 tur -oksidasyonu 3

    Enoil-CoA izomeraz3 2

    Oleil-CoA 3 Asetil-CoA + cis- -dodekenoil-CoA

    cis- -dodekenoil-CoA trans- -dodekenoil-CoA

    tra

    5 tur -oksidasyonu2ns- -dodekenoil-CoA 6 Asetil-CoA

    48

    Oxidation of poly-unsaturated fatty acids

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    49/100

    49

    Oxidation of poly-unsaturated fatty acids

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    50/100

    50

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    51/100

    Ail-CoA-sentetaz

    Karnitin ail transferaz-I mitokondriyelmembarn

    Karnitin ail t

    Linoleat + CoA Linoleil-CoA

    Linoleil-CoA + Karnitin Linoleil-karnitin + CoA

    Linoleil-karnitin + CoA

    ransferaz-II

    Mitokondriyelmatriks

    3 tur -oksidasyonu 3,6

    Enoil-CoA izomera3,6

    Linoleil-CoA + Karnitin

    Linoleil-CoA 3 Asetil-CoA + cis,cis- -dodekedinoil-CoA

    ci cis- -dodekedinoil-CoA

    z 2 6trans- cis -dodekedinoil-CoA 1 tur -oksidasyonu2 6 4

    Ail-CoA dehidrojenaz4 2

    trans- ,cis- -dodekedinoil-CoA Asetil-CoA + cis- -dekenoil-CoAcis- -dekenoil-CoA + FAD trans- ,c

    4 2

    2,4-dienoil-CoAredktaz2 4 + 3 +

    Enoil-CoA-izomeraz3 2

    is- -dekedienoil-CoA + FADH

    trans- ,cis- -dekedienoil-CoA + NADPH + H trans- -dekenoil-CoA + NADP

    trans- -dekenoil-CoA trans- -dekenoil

    4 tur -oksidasyonu2

    -CoAtrans- -dekenoil-CoA 5 Asetil-CoA

    51

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    52/100

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    53/100

    53

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    54/100

    54

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    55/100

    The propionyl-CoA carboxylase reaction.55

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    56/100

    56

    Methylmalonyl-CoA epimerase reaction.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    57/100

    57

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    58/100

    58

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    59/100

    59

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    60/100

    60

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    61/100

    61

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    62/100

    62

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    63/100

    63

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    64/100

    64

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    65/100

    In the liver

    fatty acyl-CoA formed in the cytosol hastwo major pathways open to it:

    65

    -

    by enzymes in or triacylglycerols andmitochondria phospholipids by enzymes

    in the cytosol

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    66/100

    Inhibition byMalonyl-CoA

    66

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    67/100

    ACC: Acetyl-CoA carboxylase

    67

    Coordinated regulation of fatty acid synthesis and breakdown . When the diet provides a ready source of carbohydrate as fuel, oxidation of fattyacids is unnecessary and is therefore down-regulated. Two enzymes are key to the coordination of fatty acid metabolism: acetyl-CoA carboxylase(ACC) , the first enzyme in the synthesis of fatty acids, and carnitine acyl transferase I , which limits the transport of fatty acids into the mitochon-drial matrix for oxidation.

    Ingestion of a high-carbohydrate meal raises the blood glucose level and thus (1) triggers the release of insulin. (2) Insulin-dependent protein phos-phatase dephosphorylates ACC, activating it. (3) ACC catalyzes the formation of malonyI-CoA (the first intermediate of fatty acid synthesis), and (4)malonyl-CoA inhibits carnitine acyltransferase I, thereby preventing fatty acid entry into the mitochondrial matrix.

    When blood glucose levels drop between meals, (5) glucagon release activates cAMP-dependent protein kinase (PKA), which (6) phosphorylates andinactivates ACC. The concentration of malonyl-CoA falls, the inhibition of fatty acid entry into mitochondria is relieved, and (7) fatty acids enter themitochondrial matrix and (8) become the major fuel. Because glucagon also triggers the mobilization of fatty acids in adipose tissue, a supply of fattyacids begins arriving in the blood.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    68/100

    68

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    69/100

    69

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    70/100

    70

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    71/100

    Yksek [NADH] ile inhibisyon

    Yksek [Asetil-CoA] ile inhibisyon

    71

    Peroxisomal oxidation in mammals

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    72/100

    Peroxisomal oxidation in mammals

    In mammals , high concentrations of fats in the dietresult in increased synthesis of the enzymes o

    peroxisomal oxidation in the liver.

    Liver peroxisomes do not contain the enzymes o

    72

    the citric acid cycle and cannot catalyze theoxidation of acetyl-CoA to CO 2.

    Instead, long-chain or branched fatty acids are

    catabolized to shorter-chain products , such ashexanoyl-CoA, which are exported to mitochondriand completely oxidized.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    73/100

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    74/100

    74

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    75/100

    Memelilerde peroksizomal ya asidioksidasyonu

    hekzakosanoik asit (26:0) gibi ok uzun zincirli ya asitleri

    ve

    fitanik asit ya da pristanik asit gibi dallanm ya asitlerinin (st rnlerinden elde edilir)

    oksidasyonunda ilevseldir.

    75

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    76/100

    Zellweger Sendromu

    Peroksizom yetersizlii sonucu kandahekzakosaoik asit (26:0) birikimi,

    10 yandan kk ocuklarda krlk,davran bozukluklar,

    Birka yl iinde lm.

    76

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    77/100

    The oxidation of a

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    78/100

    branched-chain fattyacid (phytanic acid) inperoxisomes . Phytanicacid has a methyl-substituted carbon and

    therefore cannot undergo oxidation. Thecombined action of theenzymes shown here

    78

    removes the carboxyl

    carbon of phytanic acid,to produce pristanicacid , in which the carbon is unsubstituted ,allowing oxidation.

    Notice that oxidation of pristanic acid releasespropionyl-CoA , not

    acetyl-CoA .

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    79/100

    Refsum Sendromu

    Phytanoyl-CoA hydroxylase enzimindeki birgenetik bozukluk sonucu oluan yetersizlik,

    Kanda ok yksek phytanic acid birikimi,Krlk, sarlk.

    79

    Plant peroxisomes and glyoxysomes use acetyl-CoA from -oxidation as a biosynthetic precursor

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    80/100

    80

    E 1: Acyl-CoA dehydrogenase

    E 2: Enoyl-CoA hydratase

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    81/100

    2 y y

    E 3: L- -hydroxyacyl-CoA dehydrogenase

    E 4: Thiolase

    81

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    82/100

    82

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    83/100

    83

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    84/100

    84

    E 1: Acyl-CoA dehydrogenase

    E 2: Enoyl-CoA hydratase

    E 3: L- -hydroxyacyl-CoA dehydrogenase

    E 4: Thiolase

    E 1: Acyl-CoA dehydrogenase

    E 2: Enoyl-CoA hydratase

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    85/100

    Multi Functional Protein

    E 3: L- -hydroxyacyl-CoA dehydrogenase

    E 4: Thiolase

    E 5: D-3-hydroxacyl-CoA epimerase

    E6: 3,2-enoyl-CoA isomerase

    85

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    86/100

    Cyt-P 450 ,The oxidation of fatty acids in theendoplasmic reticulum .This alternative to oxidation begins withoxidation of the carbonmost distant from the acarbon the (omega)

    86

    carbon. The substrate is

    usually a medium-chainfatty acid; shown here islauric acid (laurate). Thispathway is generally notthe major route foroxidative catabolism of fatty acids.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    87/100

    87

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    88/100

    88

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    89/100

    KetoneBodies,

    Formedin theLiver, Are

    89

    Exportedto OtherOrgans asFuel.

    Formation of ketone bodiesfrom acetyl-CoA. Healthy,well-nourished individualsproduce ketone bodies at a

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    90/100

    relatively low rate. Whenacetyl-CoA accumulates (as instarvation or untreated diabetes , for example), thiolase

    catalyzes the condensation of two acetyl-CoA molecules toacetoacetyl-CoA, the parentcompound of the three ketone

    90

    bodies. The reactions of ketone

    body formation occur in thematrix of liver mitochondria.The six-carbon compound -hydroxy- -methylglutaryI-CoA(HMG-CoA) is also an

    intermediate of sterolbiosynthesis, but the enzymethat forms HMG-CoA in thatpathway is cytosolic. HMG-CoA lyase is present only in the

    mitochondrial matrix.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    91/100

    91

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    92/100

    92

    D- -Hydroxy-buty-

    rate as a fuel D

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    93/100

    rate as a fuel. D--Hydroxy-butyrate,synthesized in theliver, passes into theblood and thus toother tissues, where itis converted in threesteps to acetyl-CoA.

    93

    It is first oxidized to

    acetoacetate, which isactivated withcoenzyme A donatedfrom succinyl-CoA,then split by thiolase.The acetyl-CoA thusformed is used forenergy production.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    94/100

    94

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    95/100

    95

    Ketone bodyformation and

    export from the

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    96/100

    export from theliver. Conditionsthat promotegluconeogenesis(untreated diabetes,severely reducedfood intake) slowthe citric acid cycle

    96

    (by drawing off

    oxaloacetate) andenhance theconversion of acetyl-CoA toacetoacetate. Thereleased coenzymeA allows continued oxidation of fattyacids.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    97/100

    97

    Active pathways:1. Fatty acid oxidation,2. Formation of keton bodies,3. Gluconeogenesis,4. Keton bodies Acetyl-CoA,5. Citric acid cycle,6. Oxidative phosphorylation.

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    98/100

    98

    Diabetic ketosis results when insulin absent. In the absence of insulin, fats are released fromaddipose tissue, and glucose cannot be absorbed by the liver or addipose tissue. The liverdegrades the fatty acids by oxidation cannot process the acetyl CoA, because of a lack of glucose-derived oxaloacetate (OAA). Excess ketone bodies are formed and released into the

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    99/100

    g ( )blood.

    99

  • 8/3/2019 ch17_yag_asidi_oksidasyonu_Yonca_Duman

    100/100

    100