ch250 nm part 2

26
CH250 Intermediate Analysis  Part 2 Materials & Nanotechnology Dr Raymond Whitby C407

Upload: hafidh-syifaunnur

Post on 14-Apr-2018

219 views

Category:

Documents


0 download

TRANSCRIPT

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 1/26

CH250 Intermediate Analysis  – Part 2Materials & Nanotechnology 

Dr Raymond WhitbyC407

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 2/26

Overview

1. Defining nano 

2. Formation of nanocarbon

3. Viewing the nanoscale; direct analysis

4. Indirect analysis of the nanoscale

5. Adsorption experiment

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 3/26

2. Formation of nanocarbon

Carbon sp3 hybridisation

Carbon sp2 hybridisation

i.e. diamond

i.e. graphite

Difference in bonding geometry?

© Fessenden & Fessenden, Organic Chemistry, 5 th Edition

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 4/26

© Fessenden & Fessenden, Organic Chemistry, 5 th Edition

© invsee.asu.edu

Benzene to graphite

Properties:

Good electrical conductance in-plane

Good lubricant in air 

Good thermal & acoustic properties

Poor strength

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 5/26

Graphite to nanotube

© Youtube 2010

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 6/26

Graphite to nanotube

 

22nmnma

m and n are integer lattice points

a is the lattice constant of graphite = 0.246nm

nm

n

2

3arctan 

Diameter:

Chiral angle:

Ch = n a1 + m a2 = (n,m)

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 7/26

Graphite to nanotube

SWNTs:

• Zig-zag nanotubes (n,0) → Metallic when n is divisible by three

• Armchair nanotubes (n,n) → All are metallic.

• Chiral nanotubes (n,m) → Metallic when n-m = 3q, where q is an integer.

© M. Terrones, et al. Top. Curr. Chem. 199, 189 (1999)

Properties:

Good electrical conductance

Good thermal & acoustic properties

High strengthPoor lubricant

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 8/26

Graphite bonding defects

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 9/26

5-membered ring

© Google images

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 10/26

Five 5-membered rings

Nanohorn 

© theor.jinr.ru/disorder/nano.html

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 11/26

Twelve 5-membered rings

C60

© www.omicron.de

© www.nanocenter.umd.edu

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 12/26

Metallofullerene peapods

© J.H. Warner, et al., Nano Lett., Vol. 8, No. 4, 2008

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 13/26

C 60  C 240  C 540  C 960 

© McKay Nature 331, 328 (1988)

Giant fullerenes

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 14/26

Russian doll

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 15/26© Florian Banhart, Max Planck Institute in Stuttgart, Germany

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 16/26

7-membered ring

© Hirsch, Angew Chem Ed, 2002, 41, 1853-9

© theor.jinr.ru/disorder/nano.html

7-membered and 5-membered ringpairing 

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 17/26

Carbon nanotube growth

© Y. Ando & M. Ohkohchi, J. Cryst. Growth, 60(1982), 147

 Arc-discharge

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 18/26

Carbon nanotube growth

Chemical Vapour Deposition

© http://www.ifw-dresden.de

© M. Terrones, et al., Top. Curr. Chem., 199, 189-234 (1999)

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 19/26

Nanocarbon in history

1985 and 1991 C60 and carbon nanotube

© H.W. Kroto, et al., (1985). Nature 318: 162 –163

© S. Iijima, Nature 354, 56 - 58 (1991)

© S. Iijima, Nature 363, 603 - 605 (1993)

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 20/26

Nanocarbon in history

© Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through

benzene decomposition. J Cryst Growth 1976;32:335-49.

1976 unknown recognition

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 21/26

Nanocarbon in history

1952 completely missed recognition

© Radushkevich LV, Lukyanovich VM. O strukture ugleroda, obrazujucegosja pri

termiceskom razlozenii okisi ugleroda na zeleznom kontakte. Zurn Fisic Chim

1952;26:88-95.

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 22/26

Nanocarbon in history

“The first mention of the possibility of forming carbon filaments from the thermaldecomposition of gaseous hydrocarbon (methane) was reported in 1889 - i.e.

literally two centuries ago! – in a patent that proposed the use of such filaments

in the light bulbs that had just been presented by Edison at the Paris Universal

Exposition the same year.” 

1889 totally unknown recognition

© M. Monthioux, et al., CARBON 44 (2006) 1621

This refers to details contained within: Hughes TV,

Chambers CR. US Patent 405480, 1889

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 23/26

Nanocarbon in history

17th Century Damascus Steel

© K. Sanderson (2006). "Sharpest cut from nanotube sword". Nature 444: 286

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 24/26

Nanocarbon in history

“The Permian-Triassic boundary (PTB) event, which occurred about 251.4

million years ago, is marked by the most severe mass extinction in the

geologic record. Recent studies of some PTB sites indicate that the

extinctions occurred very abruptly, consistent with a catastrophic, possibly

extraterrestrial, cause. Fullerenes (C60 to C200) from sediments at the PTB

contain trapped helium and argon with isotope ratios similar to the

planetary component of carbonaceous chondrites. These data imply that

an impact event (asteroidal or cometary) accompanied the extinction, as was

the case for the Cretaceous-Tertiary extinction event about 65 million years

ago. ” 

© Luann Becker, et al., Science, 291, 1530 - 1533 (2001)

 A really long time ago… 

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 25/26

Questions on formation

1. If the smallest diameter single-walled carbon nanotube is 0.4nm (N.

Wang, et al., Nature 408, 50-51 (2000)) for a zig-zag configuration, whatis n and m?

2. What prevents this value from being smaller?

3. Is this carbon nanotube metallic?

4. What changes to a single sheet of graphite will cause enclosure to form

a C60 molecule? Which ones are needed to form a spiral nanotube?

7/30/2019 CH250 NM Part 2

http://slidepdf.com/reader/full/ch250-nm-part-2 26/26

 All material under copyright wasscanned under a CLA licence