ch3 modeling

Upload: santhosh-kumar

Post on 14-Feb-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/23/2019 Ch3 Modeling

    1/26

    Lamar U.Lamar U.

    Chapter 3Chapter 3

    MODELING OFMODELING OF

    DYNAMIC SYSTEMDYNAMIC SYSTEM

  • 7/23/2019 Ch3 Modeling

    2/26

    Lamar U.Lamar U.

  • 7/23/2019 Ch3 Modeling

    3/26

    Lamar U.Lamar U.

  • 7/23/2019 Ch3 Modeling

    4/26

    Lamar U.Lamar U.

  • 7/23/2019 Ch3 Modeling

    5/26

    Lamar U.Lamar U.

  • 7/23/2019 Ch3 Modeling

    6/26

    Lamar U.Lamar U. Transfer Function

    Ratio of Laplace transform of the output to theLaplace transform of input under the assumptionthat all I.C. = 0

    Used to describe forced response of system

    initially in equilibrium (I.C.=0) roperty of the system! same for any input"

    #ummari$es all information about %&' (model)

  • 7/23/2019 Ch3 Modeling

    7/26

    Lamar U.Lamar U. Transfer Function

    ransfer function completely characteri$essystems performance.

    he transfer function can be represented as a bloc*

    dia+ram ,ith input- output- and the system transferfunction inside the bloc*.

    he Laplace transform of the output (response) is

    equal to the product of the transfer function and

    the Laplace transform of the input-

  • 7/23/2019 Ch3 Modeling

    8/26

    Lamar U.Lamar U.

  • 7/23/2019 Ch3 Modeling

    9/26

    Lamar U.Lamar U. Impulse

    .he notion of an impulse function ( or function) rather theoretical-ho,e/er- its role in the system analysis is in/aluable.

    . Definition: he impulse function (function) is a real /alued function of

    real ar+ument ,ith the follo,in+ properties

    . Consider a rectan+ular pulse ,ith base c > 0 and hei+ht 12c sho,n in fi+ure.

    . If c 0 then the pulse becomes to be /ery tall and /ery thin- ,hile its area

    remains equal to 1.

    . 3rom practical point of /ie,- for /ery small c > 0 such a pulse +i/es +ooda ro4imation of the im ulse function.

  • 7/23/2019 Ch3 Modeling

    10/26

    Lamar U.Lamar U. Impulse Response Function

  • 7/23/2019 Ch3 Modeling

    11/26

    Lamar U.Lamar U. BLOCK DIAGRAMBLOCK DIAGRAM

    5loc* dia+ram pictorial representation of the functions performed bycomponents and flo, of si+nals.

    5loc*

    #ummin+ point

    5ranch point

    %penloop transfer function 52' = 67

    3eed for,ard transfer function C2' = 6Closedloop transfer function C2R = 62(1867)

    E(s)

    B(s)

  • 7/23/2019 Ch3 Modeling

    12/26

    Lamar U.Lamar U. Com!inin" !loc#s in casca$e

  • 7/23/2019 Ch3 Modeling

    13/26

    Lamar U.Lamar U. %arallel u!s&stem

  • 7/23/2019 Ch3 Modeling

    14/26

    Lamar U.Lamar U.Mo'in" a summin" point !e(in$ a !loc#

  • 7/23/2019 Ch3 Modeling

    15/26

    Lamar U.Lamar U.Mo'in" a summin" point a(ea$ of a !loc#

  • 7/23/2019 Ch3 Modeling

    16/26

    Lamar U.Lamar U.

    BLOCK DIAGRAM R)DUCTIO*BLOCK DIAGRAM R)DUCTIO*

    1. he product of the 3 in the feedfor,ard direction remains the same.9. he product of the 3 around the loop remains the same.

  • 7/23/2019 Ch3 Modeling

    17/26

    Lamar U.Lamar U.

  • 7/23/2019 Ch3 Modeling

    18/26

    Lamar U.Lamar U. AUTOMATIC CO*TROLL)RAUTOMATIC CO*TROLL)R

    :n automatic controllerautomatic controllercompares the actual /alue the plantoutput ,ith the reference input (desired /alue)- determines

    the de/iation- and produces a control si+nal that ,ill reduce

    the de/iation to $ero or to a small /alue. he manner in

    ,hich the automatic controller produces the control si+nal is

    called the control action.

  • 7/23/2019 Ch3 Modeling

    19/26

    Lamar U.Lamar U. AUTOMATIC CO*TROLL)RAUTOMATIC CO*TROLL)R

    ,oposition (onoff) control action

    roportional control action

    Inte+ral control action

    &eri/ati/e control action

    I control action

    & control action

    I& control action

  • 7/23/2019 Ch3 Modeling

    20/26

    Lamar U.Lamar U. Close$+Loop &stem u!,ecte$ to a Distur!anceClose$+Loop &stem u!,ecte$ to a Distur!ance

    ,o inputs (the reference input and disturbance) in a linear system each input can be treated

    independently of the other! and the outputs correspondin+ to each input alone can be

    added to +i/e the complete output.

    :d/anta+e of the closedloop system1. Consider 6171; 1 and G1G2H1; 1. In this case- C&2 & becomes almost $ero-

    and the effect of the disturbance is suppressed.

    9. If G1G2H1; 1then CR2Rbecomes independent of 61and G2and becomes

    in/ersely proportional toH so that the /ariations of 61and G2do not affect the

    CR2R. It can easily be seen that any closedloop system ,ith unity

  • 7/23/2019 Ch3 Modeling

    21/26

    Lamar U.Lamar U. MOD)LI*G I* TAT) %AC)MOD)LI*G I* TAT) %AC)

    Comple4 system in/ol/es multiple inputs and multiple outputsand may be time /aryin+. It can be analy$ed based on theconcept of state(modern control theory).

    #tate < the smallest set of /ariables such that the *no,led+e ofthese /ariables and the input functions ,ill- ,ith the equations

    describin+ the dynamics- pro/ide the future state and output ofthe system.

    #tate ariables describe the future response of a system- +i/enthe present state (initial conditions)- the e4citation inputs- andthe e-uations describin+ the dynamics.

  • 7/23/2019 Ch3 Modeling

    22/26

    Lamar U.Lamar U. A %RI*G+MA+DAM%)R T)MA %RI*G+MA+DAM%)R T)M

    In this case the position and the 'elocit& of themass are sufficient to describe the state of the

    system.

    &efine a set of state /ariables as (x1, x2)- ,here

    x1(t) = y(t); x2(t) = dy(t)/dt

    '.%.>.

    M dx2(t)/dt !x2(t) "x1(t) = #(t)

    ,o firstorder differential equationsdx1/dt = x2

    dx2/dt = $(!/M) x2$ ("/M) x1 (1/M) #

    #

    %x

    x

    %!%"x

    x

    +

    =

    21

    0

    22

    10

    9

    1

    9

    1

    [ ]

    =

    9

    101

    x

    xy

  • 7/23/2019 Ch3 Modeling

    23/26

    Lamar U.Lamar U. TAT) DIFF)R)*TIAL )/UATIO*TAT) DIFF)R)*TIAL )/UATIO*

    he state of a system is described by a set of firstorder differential

    equations ,ritten in terms of the state /ariables ?x1, x2,&, xn@.

    In matri4 form state differential equation and output equation

    0(ere1

    2 = state /ector! & = output /ector! u = input /ector

    A = system matri4! B = input matri4! C = output matri4! D = feedfor,ard matri4

  • 7/23/2019 Ch3 Modeling

    24/26

    Lamar U.Lamar U.R:A#3'R 3UACI%A 3R%> #:' 'BU:I%AR:A#3'R 3UACI%A 3R%> #:' 'BU:I%A

    6i/en the state /ariable model- obtain the transfer function of a

    sin+leinput- sin+leoutput system.

    here- y is the sin+le output and u is the sin+le input.

    he Laplace transform of these equations are +i/en by- assume 2(0)=0

    he transfer function 6(s) = D(s)2U(s) is

  • 7/23/2019 Ch3 Modeling

    25/26

    Lamar U.Lamar U.#:' R'R'#'A:I%A %3 &DA:>IC #D#'>#:' R'R'#'A:I%A %3 &DA:>IC #D#'>

    #!#!#!yayay nnn

    n

    nn ++=+++ )1(1

    )(

    0

    )1(

    1

    )(...

    011

    0111

    00

    11

    119

    01

    nnnn

    nnn

    aa!

    a!!

    'r

    #xx

    #xx

    #yx

    =

    =

    =

    =

    =

    =

    Define state 'aria!les as tate e-uation

    Or1

    [ ] #

    x

    x

    x

    y

    #

    x

    x

    x

    aaaax

    x

    x

    n

    nnnnnn

    0

    9

    1

    9

    1

    9

    1

    191

    9

    1

    001

    0100

    0010

    +

    =

    +

    =

    R:A#3%R>:I%A %3R:A#3%R>:I%A %3

  • 7/23/2019 Ch3 Modeling

    26/26

    Lamar U.Lamar U.

    3rom ransfer 3unction to #tate #pace

    < ?:- 5- C- &@ = tf9ss(num-den)

    < '4. pEF

    3rom #tate #pace to ransfer 3unction

    < ?num- den@ = ss9tf(:- 5- C- &- iu)

    :I%A %3R:A#3%R>:I%A %3

    >:7'>:IC:L >%&'L# I7 >:L:5>:7'>:IC:L >%&'L# I7 >:L:5