chap 12 (2) [compatibility mode]

Upload: drnasi

Post on 07-Apr-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/6/2019 Chap 12 (2) [Compatibility Mode]

    1/7

    /07/1432

    Assumption:

    Surface is a diffuse e mitter.

    Exam ple 12.5

    Find:

    1) Hemispherica l total emissivity, 2) Total e missive po wer, E

    3) Wavelength a t which spec tral emissive pow er willbe a max

    1) Hemispherica l total e missivity

    e

    e

    e

    dA

    n

    de

    , ,

    , ,

    cos

    cos

    e e e

    b e e b e

    I I

    I I

    ,

    ,

    cos

    cos

    e e e

    b e e e

    I d

    I d

    ,

    cos b e e e

    b

    I d

    E

    0

    0

    1cos b e e

    b

    E d d

    E d

    0

    4

    bE d

    T

    2 5

    1 , 2 ,0 2

    4 4

    b bE d E d

    T T

    2) Tota l emissive p owe r

    From Tab le 12.1

    2 5

    1 , 2 ,0 2

    4 4

    b bE d E d

    T T

    1 (0 2 m) 2 (0 5 m) (0 2 m) F F F

    1 2 m 1600K 3200 m KT ( 0 2 m ) 0.318102F 2 5 m 1600K 8000 m KT ( 0 5 m) 0.856288F

    0.4 0.318102 0.8 0.856282 0.318102 0.4 0.318102 0.8 0.53818 0.558

    bE E 4T 4 20.558 5.67 16 207 kW/m

    Maximum E may occurin 0 < 2 m or 2 < 5 m.

    3) Wavelength a t which spectral

    emissive powe r will be a max

    Thus, maximum may oc cur at = 1.81 m or = 2 m

    From Wiens law

    First c hec k w here ma ximum Eboccurs.

    ,

    ,

    cos

    cos

    e e e

    b e e e

    I d

    I d

    bEE

    bE E

    max 2898 m K 1.81 m < 2 m1600K

    = 1.81 m

    at = 1.81 mFrom Tab le 12.1, T= 2898 m.K

    at = 2 mFrom Tab le 12.1, T= 3200 m.K

    Maximum spec tral emissive pow er oc curs at = 2 m.

    bE E bI 55bI TT 4

    50.722 10b

    I

    T

    4 8 5(1.81 m,1600 K) 0.4 0.722 10 5.67 10 1600E

    254 kW/m m4

    50.706 10b

    I

    T

    4 8 5(2 m,1600 K) 0.8 0.706 10 5.67 10 1600E

    2105.5 kW/m mPea k em ission

  • 8/6/2019 Chap 12 (2) [Compatibility Mode]

    2/7

    /07/1432

    dA

    Absorptivity

    Direc tional spec tral ab sorptivity

    depe ndence on the direc tional and spectraldistributions of the inc ident rad iation, thusnot a m aterial prope rty except

    ( , , , )i i T

    ii

    , i iI n

    ,

    ( , )

    cos

    i i

    i iI

    ab sorbed energy at and

    Kirchhoffs law

    absorbed energy

    emitted energy

    in eq uilibrium

    dA at T

    dIb

    I

    blackbodyat T

    : no restriction

    ( , , , ) ( , , , )T T cos

    b I dA d d

    cosb I dA d d

    Direc tional tota l absorptivity

    directional-gray surface

    ( , , )i i

    T ,

    cosi iI absorbed energy at and (i, i)

    ,0,0

    cos

    cos

    i i

    i i

    I d

    I d

    ,0

    ,0

    i

    i

    I d

    I d

    ,0

    ,0

    i

    i

    I d

    I d

    0

    4

    bE d

    T

    0

    0

    b

    b

    I d

    I d

    i) when , ,( , , ) ( , ) ( , )i i i i i b i I C I T

    ii) when not function of

    Hemispherical spectral absorptivity

    diffuse-spec tral surfac e

    ( , )T

    ,

    ,

    cos

    cos

    i i i

    i i i

    I d

    I d

    ,,cos

    cos

    i i i

    i i i

    I d

    I d

    ,

    cosi i i

    I d

    G

    1

    cose ed

    i) when only:, ,( , , ) ( )

    i i i iI I

    ii) when independent of direction

    diffuse irradia tion

    Hem isphe rical tota l absorptivity

    : diffuse-gray surfac e

    iii) when ( , , , ) ( , , )e e e eT T , ,( , , ) ( )i i i iI I andiv) when ( , , , ) ( , )e e T T , ,( , , ) ( , ) ( , )i i i i i b i I C I T andii) when

    , ,( , , ) ( , )i i i b i I CI T

    ( )T

    ,0,0

    cos

    cos

    i i i

    i i i

    I d d

    I d d

    0

    G d

    G

    ,

    ,

    cos

    cos

    i i i

    i i i

    I d

    I d

    ,0

    ,0

    cos,

    cos

    i i i

    i i i

    I d d

    I d d

    0 0cos

    cos

    b e e

    b e e

    I d d

    I d d

    i) when ( , , , ) ( )

    e eT T

    Rela tions amo ngreflectivity, absorptivity, and emissivity

    Kirchhoffs law

    for a d irec tional-gray surface,

    a) ( , , , ) ( , , , ) 1T T ( , , , ) ( , , , )T T

    ( , , , ) ( , , , ) 1T T b) ( , , ) ( , , ) 1T T

    ( , , ) ( , , )T T ( , , ) ( , , ) 1T T

  • 8/6/2019 Chap 12 (2) [Compatibility Mode]

    3/7

    /07/1432

    for a d iffuse-spec tral surfac e,

    for a diffuse-gray surfac e,

    c ) ( , ) ( , ) 1T T ( , ) ( , )T T ( , ) ( , ) 1T T

    d) ( ) ( ) 1T T

    ( ) ( ) 1T T ( ) ( )T T

    Exam ple 12.7

    Find:

    1) Spe c tral distribution of reflec tivity

    2) Hemispherical total a bsorptivity

    3) Nature of surfac e temp erature cha nge

    bE E G500 K

    0.8

    sT

    1) Spec tral reflectivity

    1 2) Hemispherica l total a bsorptivity

    , cosi iI , cosi iI

    incident radiation in at :absorbed energy:

    Why is the va lue of (= 0.76) closer to unity ?

    ,

    ,

    cos

    cos

    i i i

    i i i

    I d

    I d

    ,cosi i iI d

    G

    ,0

    ,0

    cos

    cos

    i i i

    i i i

    I d d

    I d d

    0G d

    G

    6 8 16

    2 6 8

    6 12 16

    2 6 12

    0.2 500 1.0

    0.76

    G d d G d

    G d G d G d

    = 5000 W/m2

    3) Nature of surface temperature change

    Does the surface tempe rature inc rease o r dec rease?

    bE E G500 K

    0.8

    sT

    st in out g E E E E 4

    b sG E G T 8 40.76 5000 0.8 5.67 10 500

    23800 2835 965 W/m Since , the surface tem pe rature will increa se

    with time.st 0E

    Exam ple 12.9

    Coals

    Brickwall

    (diffuse)

    Find:

    1) Hemispherica l total emissivity of the fire brick w all 2) Total em issive po wer of the brick w all 3) Absorptivity of the w all to irradia tion from the c oals

    Assumptions:

    Spectral distribution of irradiation at the brick wall

    ap proximates that due to e mission from a b lack bod yat 2000 K

    spectral emissivity of brick wall

    500 KsT 2000 KcT

  • 8/6/2019 Chap 12 (2) [Compatibility Mode]

    4/7

  • 8/6/2019 Chap 12 (2) [Compatibility Mode]

    5/7

    /07/1432

    Spec tral distribution of sola r radia tion Direc tional distribution of sola r radia tionat earths surface

    ac tual diffuse

    Scattering of solar radiationin the earths atmosphere

    Assumptions:

    steady-state

    ab sorbe r surface diffuse

    Example 12.11

    : useful heat removal

    flat-plate solar

    collector

    sky 10 CT skyG 1/ 330 C, 0.22 sT h T T

    120 CsT 2750W/mSG

    0.1

    0.95

    uq

    Find:

    1) Useful heat removal rate p er unit area,

    2) Efficiency of the collector.u

    2[W/m ]q

    sky skyGconv

    q

    uq

    1) Useful heat removal rate

    S SG E

    skyG

    S0.95 0.1

    uq : useful heat remova l

    1/ 3, 0.22 sT h T T 120 CsT

    sky10 CT 2

    S750W/mG

    in outE E

    S S sky s c uky onvqG G q E

    S S sky sky co vu nG G qq E

    4

    sky sky,G T sky 0.1

    4/ 3conv 0.22s sq h T T T T 4

    sE T 4/ 34 4S su S ky 0.22 s sG T Tq T T

    2712.5 27.1 88.7 135.2 516 W/m

    2) The collector efficiency

    2

    u

    2

    S

    516W/m0.69

    750W/m

    q

    G

    skyG

    S0.95 0.1

    uq : useful heat remova l

    120 CsT sky

    10 CT 2S

    750W/mG

    Comments:

    1) Since the spec tral range of Gsky is entirely differentfrom that of GS, it would be incorrect to a ssume thatsky = S .

    2) With a co nvection co efficient , the

    useful heat flux and the efficienc y are reduc ed to

    and . A cover plate can

    co ntribute significantly to reducing c onvec tion (and

    radiation) heat loss from the absorber plate.

    2

    u161W/mq 0.21

    25W/m Kh

    1/ 3 1/ 3 20.22 0.22 120 30 0.986 W/m K s h T T

    1/ 3, 0.22 sT h T T

  • 8/6/2019 Chap 12 (2) [Compatibility Mode]

    6/7

    /07/1432

    ReflectivityDirectional-hemispherical spectral reflectivity

    dA

    I,i didI,r

    dr

    ( , , )i i

    ,

    ,

    ( , , , , )cos( , , )

    ( , , )cos

    r r r i i r r

    i i

    i i i i i

    dI d

    I d

    ,( , , , , )cos

    r r r i i r r dI d ,

    ( , , ) ( , , )cosi i i i i i i

    I d

    ,( , , )cos

    r r r r rI d ,

    ( , , ) ( , , )cosi i i i i i iI d d

    A

    d

    A

    I,r

    I,i

    d

    A

    Hemispherical-directional spectral reflectivity

    average incident intensity

    d

    A

    I,r

    I,i

    ( , , )r r

    ,

    ,

    ( , , )( , , )

    1( , , )cos

    r r r r

    r r

    i i i i i i

    I d

    I d d

    ,

    cos cos a i i i i i I d I d

    , ,

    1cos , cos

    a i i i a i i i I I d I I d

    Rec iproc ity:when is uniform ove r allincident directions

    ,( , , )

    i i iI

    ( , , ) ( , , ) r r i i

    Hemispherical spectral reflectivity

    dA

    I,i diI,rdr

    ( )

    ,

    ,

    ( , , )cos

    ( , , )cos

    r r r r r

    i i i i i

    I d

    I d

    ,( , , ) ( , , )cos

    i i i i i i iI d

    G

    , ( , , )cos r r r r rI d ,( , , ) ( , , )cosi i i i i i iI d

  • 8/6/2019 Chap 12 (2) [Compatibility Mode]

    7/7

    /07/1432

    Hemisphe rical total reflec tivity

    ,0

    0

    ( , , ) ( , , )cosi i i i i i i

    I d d

    G d

    0G d

    G

    ,

    ( , , ) ( , , )cosi i i i i i iI d

    G

    A transmitting Layer with Thickness L>

    Reflectance

    2 22 2 2 2 2 2111 1 11 1

    Transmittan c e

    22 2 2 4 4 2 211 11

    T

    1-

    (1-)

    (1-)2

    (1-)

    (1-)2

    (1-)22

    2(1-)2

    (1-)3

    2 (1-)23

    3 (1-)3

    3 (1-)4

    3 (1-)24

    (1-)(1-) (1-)(1-)

    (1-)2(1-)3 (1-)3(1-)

    4 (1-)4

    2 2 2 2 4 41 1 1R

    2 2 3 3 1 11 1 11

    A

    spectral transmittanc e 2

    2 2

    1

    1T

    22 20

    1

    1G d

    G

    ,trG T G

    total transmittance

    Absorptance

    1-

    (1-)(1-)(1-)

    (1-)2

    (1-)

    (1-)(1-) (1-)2

    (1-)22

    2(1-)2

    (1-)2(1-) (1-)3

    2 (1-)23

    3 (1-)3

    3 (1-)3(1-)3 (1-)4

    3 (1-)24

    4 (1-)4

    ,tr,

    G

    G

    0 T G d

    G

    ,tr0

    0

    G dT

    G d

    R+ T+ A =1

    the amount of radiation energy streaming out through aunit area perpendic ular to the direction of propag ation ,

    per unit solid angle around the d irec tion , per unitwavelength around , and pe r unit time about t.

    I

    2 2cosdA

    1 1cosdA

    the amount of radia tion energy intercepted b ydA2 per unit wavelength, pe r unit time [W/m]

    d 41 1cos

    d QI

    dA d d dt 4

    2

    1 1cos

    d Q d q I dA d

    d dt

    2 2

    2

    cosdAd

    r

    1dA

    2dA

    1n

    2n

    1

    2

    r

    22 21 1 2

    coscos

    dA d q I dA r