chap. 4: work and energy - bits pilani · 2012-09-25 · chap. 4: work and energy r i s h i k e s h...

75
Chap. 4: Work and Energy Rishikesh Vaidya Theoretical Particle Physics Office: 3265 [email protected] Physics Group, B I T S Pilani September 7, 2012

Upload: others

Post on 19-Mar-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Chap. 4: Work and Energy

R i s h i k e s h V a i d y a

Theoretical Particle Physics

Office: 3265

[email protected]

Physics Group, B I T S Pilani

September 7, 2012

Page 2: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Outline

1 Work Energy Theorem

2 Potential Energy

3 Non Conservative Force

4 Conservation Laws and Particle Collisions

Page 3: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

The Fundamental Problem of Mechanics

Given all forces, solve

~F = m~a

to find ~r(t).

Problem!

What we know is F(x) and not F(t).

Solve half the problem!

md~v

dt= ~F(~r)

Page 4: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Equation of Motion in One Dimension

md2x

dt2= F(x) or m

dv

dt= F(x)

Integrate with respect to x

m

∫ xb

xa

dv

dtdx =

∫ xb

xa

F(x)dx

Change variable from x to t using

differentials:

dx =

(dx

dt

)

dt = vdt

Page 5: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Equation of Motion in One Dimension

md2x

dt2= F(x) or m

dv

dt= F(x)

Integrate with respect to x

m

∫ xb

xa

dv

dtdx=m

∫ tb

ta

dv

dtvdt

=m

∫ tb

ta

d

dt

(1

2v2)

dt =1

2mv2

∣∣∣∣

ta

tb

=1

2mv2b −

1

2mv2a

Page 6: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Equation of Motion in One Dimension

md2x

dt2= F(x) or m

dv

dt= F(x)

Work-Energy Theorem:

1

2mv2b −

1

2mv2a =

∫ xb

xa

F(x)dx

Page 7: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Equation of Motion in One Dimension

md2x

dt2= F(x) or m

dv

dt= F(x)

Work-Energy Theorem: Motion in 3-D

1

2mv2b −

1

2mv2a =

∫ b

a

~F · d~r

Page 8: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

How Useful is Work-Energy Theorem

Evaluation of∫ b

a~F · d~r is tentamount to

knowing the trajectory beforehand !Two cases where Work-EnergyTheorem is useful.

◮ Conservative Forces: For many

interesting forces∫ b

a~F · d~r depends

only on end-points !◮ Constrained Motion: External

Constraints pre-determine the

trajectory.

Page 9: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

How Useful is Work-Energy Theorem

Regardless of whether forces are

conservative or not the Work-

Energy theorem is always true

Page 10: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Prob.4.5 Mass m whirls on a frictionless

table, held to circular motion by a string

which passes through a hole in the table.

The string is slowly pulled through the

hole so that the radius of the circle

changes from l1 to l2. Show that the work

done in pulling the string equals the

increase in kinetic energy of the mass.

Page 11: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Prob.4.5 Mass m whirls on a frictionless

table, held to circular motion by a string

which passes through a hole in the table.

The string is slowly pulled through the

hole so that the radius of the circle

changes from l1 to l2. Show that the work

done in pulling the string equals the

increase in kinetic energy of the mass.

The fundamental mystery here is ... how can

you pull radially and still end up changing the

angular velocity of the mass.

Page 12: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Solution 4.5 For cicular motion:

Fr = mv21l1

= m l1ω21

If Fr is increased, m will move to smaller r:

Fr(r) = mv2(r)

r= mrω2(r)

Evaluate:

W = −∫

l2

l1

Fr(r)dr = −∫

l2

l1

mrω2(r)dr

Page 13: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

~a = (r − rθ2)r + (rθ + 2rθ)︸ ︷︷ ︸

=0

θ

rω + 2rω=0 [θ = ω]1

ω

dt=−2

1

r

dr

dt∫ ω(r)

ω1

ω=−2

∫ r

l1

dr

r⇒ ω(r) = l

21

ω1

r2

W = −∫

l2

l1

Fr(r)dr = −∫

l2

l1

mrω2(r)dr

Page 14: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

W=−ml41ω

21

∫l2

l1

dr

r3=

1

2ml

41ω

21

(

1

l22

− 1

l21

)

=1

2m

(

l41ω

21

l22

− l21ω

21

)

W=1

2m[(l2ω2)

2 − (l1ω1)2] [

ω2l22 = ω1l

21

]

=K2 − K1

Page 15: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Prob. 4.7 A ring of mass M, hangs from a

thread, and two beads of mass m slide on

it without friction. The beads are released

simultaneously from the top of the ring

and slide down opposite side. Show that

the ring will start to rise if m > 3M/2, and

find the angle at which this occurs.

Page 16: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics
Page 17: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Forces are different for cosθ > 2/3 and

cos θ < 2/3

Page 18: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Forces are different for cosθ > 2/3 and

cos θ < 2/3

Page 19: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

cos θ, N and T vs. θ (m = 2M)

Page 20: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

N and T vs. θ: Magnified view

Page 21: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

2N cos θ vs. θ

Page 22: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Accelaration of the ring vs. θ

Page 23: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Prob. 4.10

A block of mass M on a horizontal

frictionless table is connected to a spring

(spring constant k). The block is set in

motion so that it oscillates about its

equilibrium position with a certain

amplitude A0. The period of motion is

T0 = 2π√

M/k.

Page 24: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Prob. 4.10

(a) A lump of sticky putty of mass m is

dropped onto the block. the putty

sticks without bouncing. The putty hits

M at the instant when the velocity of

M is zero. Find1 The new period

2 The new amplitude3 The change in mechanical energy of thesystem

(b) Repeat part a, assuming that the sticky

putty hits M at the instant when M has

its maximum velocity.

Page 25: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Potential Energy

For a conservative Force Field:

∫ ~rb

~ra

~F · d~r= func. of (~rb) − func. of (~ra)

Wba=−U(~rb) + U(~ra)

Wba=Kb − Ka [Work − energyTh.]

Wba=−Ub + Ua = Kb − Ka

Ua + Ka = Ub + Kb = E

Page 26: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

What Does Potential Energy Tell us About Force?

Ub − Ua = −∫ xb

xa

F(x)dx

U(x + ∆x) − U(x) = ∆U

∆U=−∫ x+∆x

x

F(x)dx

∆U≈−F(x)(x + ∆x − x) = −F(x)∆x

F(x)≈−∆U

∆xor F(x)

lim∆x→0= −dU

dx

Page 27: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Potential Energy Determins Stability of a System

Harmonic Oscillator: U = kx2/2

Page 28: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Potential Energy Determins Stability of a System

Simple Pendulum:

U(θ) = mgl(1 − cos θ) and dUdθ

= mgl sin θ

Page 29: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Potential Energy Determins Stability of a System

Simple Pendulum:

U(θ) = mgl(1 − cos θ) and dUdθ

= mgl sin θ

Page 30: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Potential Energy Determins Stability of a System

General Stability Criteria:

Page 31: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Potential Energy Determins Stability of a System

General Stability Criteria:

Page 32: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Potential Energy Determins Stability of a System

General Stability Criteria:

Page 33: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Rock me Spin me yet I Stand Tall:

The Amazingly Stable Teeter-Toy

Page 34: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Rock me Spin me yet I Stand Tall:

The Amazingly Stable Teeter-Toy

Page 35: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Rock me Spin me yet I Stand Tall:

The Amazingly Stable Teeter-Toy

Page 36: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Rock me Spin me yet I Stand Tall:

The Amazingly Stable Teeter-Toy

Page 37: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

A Sports Car

Stability requires low center of mass and

hence the peculiar design of a sports car.

Page 38: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Non-Conservative Forces

~F = ~Fc + ~Fnc

Wtotalba =

∫ b

a

~F · d~r

Wtotalba =

∫ b

a

~Fc · d~r +∫ b

a

~Fnc · d~rKb − Ka=−Ub + Ua + Wnc

ba

Kb + Ub − (Ka + Ua) = Wncba

Eb − Ea = Wncba

Page 39: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Power: Time rate of doing Work

P =dW

dt= ~F · d

~r

dt= ~F ·~v

Units:

[S.I.] 1 W=1J/s [CGS]1 erg/s = 10−7W

[English] 1 hp=550 lb ft/s ≈ 746W

Page 40: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Power: Time rate of doing Work

Typical Power Consumption

Man running upstairs: 1/2 to 1 hp for

30 s

A husky man can do work over a period

of 8 hours only at a rate of

0.2 hp ≈ 1000 Kcal

Per person energy use: India (0.7 kW),

Germany (6 kW), USA (11.4 kW)

Page 41: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Prob. 4.18 A 160 lb man leaps into the

air from a crouching position. His center

of gravity rises 1.5 ft before he leaves the

ground, and it then rises 3 ft to the top of

his leap. What power does he develop

assuming that he pushes the ground with

constant force?

Page 42: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics
Page 43: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sol.4.18

P=W/T (W = work done by N)

W=N · 1.5 (c.g. rises by 1.5ft)

N=mg + ma or N = 160 +160

32a

a=v2

2s= 64

[

v =√

2gs′ =√2 · 32 · 3 = 8

√3]

N=480 lb W = 720 lb.ft T = v/a =√3/8

P = W/T = 3325lb.ft/s ≈ 6hp

Page 44: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Prob. 4.19

In the preceeding problem take

F = F0 cosωt where F0 is the peak force,

and the contact with ground ends at

ωt = π/2. Find the peak power that the

man develops during the jump.

Page 45: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sol.4.19

P(t)=N(t)v(t) [N(t) = −F(t)]

N(t) − mg=ma(t)

m

∫ v(t)

0

dv=

∫ t

0

(F0 cosωt − mg) dt

v(t)=F0

mωsinωt − gt [F0, ω?]

x(t)=F0

mω2(1 − cosωt) − 1

2gt2

Page 46: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sol.4.19

Boundary conditions:

v(t = π/2ω)=8√3 =

F0

mω− gπ

x(t = π/2ω)=1.5 ft =F0

mω2− gπ2

8ω2

Page 47: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sol.4.19

ω = 9.96s−1 F0 = 832 lb t =π

2ω= 0.16s

P(t)=F(t)v(t)

F0

2mω

F0 sin 2ωt︸ ︷︷ ︸

1

− 2mgωt cosωt︸ ︷︷ ︸

2

A reasonable approximation: F0 >> mg

then 1st >> 2nd

Page 48: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sol.4.19

P(t)≈ F20

2mωsin 2ωt

For Pmax. :dP

dt=0

dP

dt=

F20

mcos 2ωt = 0

Pmax. = P|t= π4ω

=F20

2mωsin

(

2ωπ

)

=F20

2mω

Page 49: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sol.4.19

Check:

d2P

dt2

∣∣∣∣∣t= π

=−F2

0

m2ω sin 2ωt

∣∣∣∣∣t= π

< 0

Page 50: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sol.4.19

Page 51: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sol.4.19

Page 52: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

What do collisions teach us?

~F = m~a is a double-edge sword

Collisions studies gave most profound

knowledge about fundamental Physics

Constraints from energy and

momentum conservation severe enough

to extract vital information about

scattering

Page 53: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

LHC@CERN Geneva

Page 54: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Fermilab@Illinois USA

Page 55: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Classical Collisions

A + B → C + D

Mass is conserved:

mA + mB → mC + mD

Momentum is conserved:

pA + pB = pC + pD

K.E. may or may not be conserved

Page 56: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Classical Collisions

A + B → C + D

Types of Collisionssticky: K.E. decreases

KA + KB > KC + KD

Explosive: K.E. increases

KA + KB < KC + KD

Elastic: K.E. is conserved

KA + KB = KC + KD

Page 57: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Prob. 4.23 A small ball of

mass m is placed on top of the

a “superball” of mass M, and

the two balls are dropped to

the floor from height h.How

high does the small ball rise

after the collision? Assume

that the collision is perfecly

elastic, and that m << M.

Page 58: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics
Page 59: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sol. 4.23 Let v1 and v2 be the initial

velocities of m and M before collision and

v′1 and v′2, after collision. In a two body

one dimensional collision:

v′1=(m − M)v1 + 2Mv2

m + M

v′2=(M − m)v2 + 2mv1

m + M

Here: v1 = −√2gh, v2 =

√2gh, and

M >> m

Page 60: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sol. 4.23

v′1 =3M · √2gh

M= 3

2gh

If m rises to height h′ after collision:

1

2m1v

′21 = m1gh

h′ =v′21

2g= 9h

Page 61: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Problem 4.9 A “superball” of mass m bounces

back and forth between two surfaces with speed v0.Gravity is neglected and collisions are perfectly

elastic.

(a) Find the average force F on each wall.

(b) If one surface is moving uniformly toward the

other with speed V << v0, the bounce rate willincrease due to shorter distance between

collisions, and because the ball’s speed increaseswhen it bounces from the moving surface. Find

the F in terms of separation of surfaces, x.

(c) Show that work needed to push the surface

from l to x equals gain in kinetic energy of theball.

Page 62: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Problem 4.29

Page 63: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sol. 4.29

(a) Momentum transfer to wall in 1

bounce: m(2v0)

No. of bounce per unit time: v0/2l

F = 2mv0v0

2l=

mv20l

(b) F(x) = mv(x)2

x

Integrate a(x) = dv(x)dt

to find v(x).

Page 64: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sol. 4.29

(b) ∆v after each bounce ∆v = 2V

(Sling-shot effect)

This change happens in time ∆t = 2x/v

dv

dt=

Vv

x∫ v

v0

dv′

v′=

∫ t

0

Vdt

x= −

∫ x

l

dx′

x′

v(x) =v0l

x⇒ F =

mv(x)2

x=

ml2v20x3

Page 65: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sol. 4.29

(c) Work done in moving the surface:

W=−∫ x

l

F(x′) dx′ = −ml2v20

∫ x

l

dx′

x′3

=ml

2v202

[1

x2− 1

l2

]

=ml

2v202x2

− 1

2mv20

=1

2mv(x)2 − 1

2mv20

=Change in K.E. of ball

Page 66: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Sling-Shot (Gravity-Assist) and NASA’s Cassini

Page 67: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Collisions and Center of Mass Coordinates

How does it help?

Total momentum in C-system is zero

Initial and final velocities lie in the

same plane

Each particle is scattered through the

same angle θ in the plane of scattering.

For elastic collisions, the speed of each

particle is same before & after the

collision

Page 68: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Collisions and Center of Mass Coordinates

m1 & m2 having velocity

v1 & v2.

V =m1v1 + m2v2

m1 + m2

Page 69: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Collisions and Center of Mass Coordinates

v1c=v1 − V

=m2

m1 + m2

(v1 − v2)

v2c=v2 − V

=− m1

m1 + m2

(v1 − v2)

Page 70: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

Collisions and Center of Mass Coordinates

The momenta in

C-system:

p1c=m1v1c

=m1m2

m1 + m2

(v1 − v2)

=µv

p2c=−µv

0=p1c + p2c

Page 71: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

C-System Plane of Scattering

m1 and m2 striking with

v1 & v2.

Initial velocities in L &

C-system.

Page 72: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

C-System Plane of Scattering

m1 and m2 striking with

v1 & v2. Final velocities in L &

C-system (The plane in

general is different)

Page 73: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

C-System Plane of Scattering

C-system plane of

scattering.

For elastic scattering,

v1c = v′1c and v2c = v′2c.

Velocity vectors simple

rotate.

Page 74: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

If m2 is at rest

V=m1

m1 + m2

v1

v1c=v1 − V

=m2

m1 + m2

v1

v2c=−V

=− m1

m1 + m2

v1

Page 75: Chap. 4: Work and Energy - BITS Pilani · 2012-09-25 · Chap. 4: Work and Energy R i s h i k e s h V a i d y a Theoretical Particle Physics Office: 3265 rishidilip@gmail.com Physics

If m2 is at rest

V=m1

m1 + m2

v1

v1c=v1 − V

=m2

m1 + m2

v1

v2c=−V

=− m1

m1 + m2

v1