chap4 sampling fda lecture

77
April 6, 2012 Digital Signal Processing 1 EEE & ECE Department BITS-Pilani, Hyderabad campus Sampling & Reconstruction Digital Signal Processing

Upload: arun-kumar

Post on 21-Apr-2015

145 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 1

EEE & ECE Department

BITS-Pilani, Hyderabad campus

Sampling &

Reconstruction

Digital Signal Processing

Page 2: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 2

Page 3: Chap4 Sampling FDA Lecture

April 6, 2012 3 Digital Signal Processing

Page 4: Chap4 Sampling FDA Lecture

April 6, 2012 4 Digital Signal Processing

Page 5: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 5

Page 6: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 6

Page 7: Chap4 Sampling FDA Lecture

April 6, 2012 7 Digital Signal Processing

Page 8: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 8

Page 9: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 9

nT)-(t(nT)g(t)p(t)g(t)gn

-n

aap

Since impulse is a periodic signal of period T, it

can be expressed as trigonometric Fourier series.

............2cos32cos22cos1T

1)()( ooo tttnTttp

n

Page 10: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 10

............(t)cos32g

(t)cos22g(t)cos2g(t)g

T

1)()()(

oa

oaoaa

t

tttptgtg ap

The FT of gp(t) is Gp(jω)

............)cos3(j2G

)cos2(j2G)cos(j2G)(jG

T

1)(

oa

oaoaa

t

ttjGp

Page 11: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 11

Page 12: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 12

Page 13: Chap4 Sampling FDA Lecture

April 6, 2012 13 Digital Signal Processing

Page 14: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 14

Page 15: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 15

Page 16: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 16

Page 17: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 17

Recovery of The Signal

The discrete time signal must pass through

an analog lowpass filter.

Page 18: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 18

Recovery of The Signal

Page 19: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 19

Page 20: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 20

Aliasing

Page 21: Chap4 Sampling FDA Lecture

Digital Signal Processing 21

Page 22: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 22

Page 23: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 23

Page 24: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 24

Critical Sampling

Page 25: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 25

Under Sampling

Page 26: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 26

Over Sampling

Page 27: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 27

Page 28: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 28

Page 29: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 29

Page 30: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 30

Page 31: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 31

Page 32: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 32

Page 33: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 33

Page 34: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 34

Page 35: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 35

Page 36: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 36

Page 37: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 37

Page 38: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 38

Page 39: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 39

Page 40: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 40

Page 41: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 41

Page 42: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 42

Page 43: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 43

Page 44: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 44

Page 45: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 45

Problem

(1) A continuous time signal xa(t) is composed of a linear combination of sinusoidal signals of frequencies 300 Hz, 500 Hz, 1.2 kHz, 2.15 kHz and 3.5 kHz. The signal xa(t) is sampled at a 2.0 kHz rate and the sampled sequence is passed through an ideal low pass filter with a cut-off frequency of 900 Hz, genearting a continuos time signal of ya(t)

What are the frequency components present in the output signal ?

Page 46: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 46

Page 47: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 47

Page 48: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 48

Page 49: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 49

Page 50: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 50

Page 51: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 51

Page 52: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 52

Page 53: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 53

Page 54: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 54

Page 55: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 55

Page 56: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 56

Page 57: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 57

Page 58: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 58

Page 59: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 59

Page 60: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 60

Filtering Using FDA tool

M4.2 (SK. Mitra)

Determine the lowest order of a lowpass Chebyshev Type I filter with a 0.25 dB passband frequency at 1.5 kHz and minimum attenuation 0f 25 dB at 6.0 kHz.

Page 61: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 61

Filtering Using FDA tool

Butterworth

M4.2 (SK. Mitra)

Page 62: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 62

Page 63: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 63

M4.2 (SK. Mitra)

Page 64: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 64

Page 65: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 65

M4.2 (SK. Mitra)

Page 66: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 66

Page 67: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 67

M4.5 (SK. Mitra)

Determine the lowest order of a highpass Butterworth filter with a 0.5 dB passband frequency at 6.5 kHz and minimum attenuation 0f 40 dB at 1.5 kHz.

Filtering Using FDA tool

Page 68: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 68

Page 69: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 69

Page 70: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 70

Page 71: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 71

Page 72: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 72

Page 73: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 73

Page 74: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 74

(1) A Butterworth analog highpass filter is to be designed with the following specifications : Fp = 6.5 kHz and Fs = 1.5 kHz, peak passband ripple of 0.5 dB, and minimum stopband attenuation of 40 dB. What are the band edges and the order of the corresponding analog lowpass filter ? What is the order of the highpass filter ?

Problems

Page 75: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 75

% Designing of analog Butterworth High-pass filter

% Given specifications : wp = 6500 Hz, ws = 1500 Hz

% Given Specifications : alphap =0.5 dB, alphas = 40 dB

% Initially design analog prototype butterworth lowpass filter

% Then design highpass filter using frequency transformation

% Prototype Lowpass filter specifications : wp = 1,

% ws = wp(cap)/ws(cap)= 2*pi*6500 / 2*pi*1500 = 4.333

[n,wn]=buttord(1,4.333,0.5,40,'s')

[num,den]=butter(n,wn,'s')

[num1,den1]=lp2hp(num,den,2*pi*6500)

tf(num1,den1)

%Directly designing High-pass filters

[n2,wn2]=buttord(2*pi*6500,2*pi*1500,0.5,40,'s')

[num2,den2]=butter(n2,wn2,'high','s')

tf(num2,den2)

Matlab-coding

Page 76: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 76

(2) A Butterworth analog highpass filter is to be designed with the following specifications : Fp = 4 kHz and Fs = 1 kHz, peak passband ripple of 0.1 dB, and minimum stopband attenuation of 40 dB. What are the band edges and the order of the corresponding analog lowpass filter ? What is the order of the highpass filter ?

Problems

Page 77: Chap4 Sampling FDA Lecture

April 6, 2012 Digital Signal Processing 77

Matlab-coding

% Designing of analog Butterworth High-pass filter

% Given specifications : wp = 4000 Hz, ws = 1000 Hz

% Given Specifications : alphap =0.1 dB, alphas = 40 dB

% Initially design analog prototype butterworth lowpass filter

% Then design highpass filter using frequency transformation

% Prototype Lowpass filter specifications : wp = 1

% ws = wp(cap)/ws(cap)= 2*pi*4000 / 2*pi*1000 = 4

[n,wn]=buttord(1,4,0.1,40,'s')

[num,den]=butter(n,wn,'s')

tf(num,den)

[num1,den1]=lp2hp(num,den,2*pi*4000)

tf(num1,den1)

%Directly designing High-pass filters

[n2,wn2]=buttord(2*pi*4000,2*pi*1000,0.1,40,'s')

[num2,den2]=butter(n2,wn2,'high','s')

tf(num2,den2)