chapt_07 structural vibration and dynamicsb 7

7
  Lecture Not es: Introdu ction to Fini te Element Met hod Chapter 7. Structu ral Vibra tion and Dynami cs © 1999 Yijun Liu, University of Cincinnati 157 C ha p te r 7. S t r uct ural V i b r a t i o n a nd Dy na m i cs  Natur al freque ncies an d modes Frequency response (  F (t )=  F o si nω t ) Transient response (  F (t ) arbitrary) I . B a si c E q ua t i ons  A . Si ngle DOF Sys tem From Newton’s law of motion ( ma =  F ), we have u c u k  f(t) u m  & & &  = , i.e.  f(t) u k u c u m  = + +  & & & , (1) where u is the displacement, dt du u / = &  and . / 2 2 dt u d u = & &   F ( t ) m m  f=f(t) k c  f(t) u c ku & force - ) ( damping - stiffness - mass - t  f c k m  x, u

Upload: nimakhodabandelou

Post on 04-Nov-2015

225 views

Category:

Documents


0 download

DESCRIPTION

Chapter 7. Structural Vibration and Dynamics· Natural frequencies and modes· Frequency response (F(t)=Fo sinwt)· Transient response (F(t) arbitrary

TRANSCRIPT

  • Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

    1999 Yijun Liu, University of Cincinnati 157

    Chapter 7. Structural Vibration and Dynamics

    Natural frequencies and modes

    Frequency response (F(t)=Fo sinwt)

    Transient response (F(t) arbitrary)

    I. Basic Equations

    A. Single DOF System

    From Newtons law of motion (ma = F), we have

    ucukf(t)um &&& --= , i.e.

    f(t)ukucum =++ &&& , (1)

    where u is the displacement, dtduu / =& and ./ 22 dtudu =&&

    F(t)

    m

    m

    f=f(t)k

    c

    f(t)uc

    ku

    &

    force -)(

    damping -

    stiffness -

    mass -

    tf

    c

    k

    m

    x, u

  • Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

    1999 Yijun Liu, University of Cincinnati 158

    Free Vibration: f(t) = 0 and no damping (c = 0)

    Eq. (1) becomes

    0=+ ukum && . (2) (meaning: inertia force + stiffness force = 0)

    Assume:

    t)(Uu(t) wsin= ,

    where w is the frequency of oscillation, U the amplitude.

    Eq. (2) yields

    0sinsin2 =+- t)(Ukt)(mU

    i.e.,

    [ ] 02 =+- Ukmw . For nontrivial solutions for U, we must have

    [ ] 02 =+- kmw , which yields

    mk=w . (3)

    This is the circular natural frequency of the single DOF system (rad/s). The cyclic frequency (1/s = Hz) is

    pw2

    =f , (4)

  • Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

    1999 Yijun Liu, University of Cincinnati 159

    With non-zero damping c, where

    mkmcc c 220 ==

  • Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

    1999 Yijun Liu, University of Cincinnati 160

    B. Multiple DOF System

    Equation of Motion

    Equation of motion for the whole structure is

    )(tfKuuCuM =++ &&& , (8)

    in which: u nodal displacement vector, M mass matrix, C damping matrix, K stiffness matrix, f forcing vector.

    Physical meaning of Eq. (8):

    Inertia forces + Damping forces + Elastic forces

    = Applied forces

    Mass Matrices

    Lumped mass matrix (1-D bar element):

    1 r,A,L 2

    u1 u2

    Element mass matrix is found to be

    44 344 21matrix diagonal

    20

    02

    =AL

    AL

    r

    r

    m

    21AL

    mr

    = 22AL

    mr

    =

  • Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

    1999 Yijun Liu, University of Cincinnati 161

    In general, we have the consistent mass matrix given by

    dVVT= NNm r (9)

    where N is the same shape function matrix as used for the displacement field.

    This is obtained by considering the kinetic energy:

    ( )

    ( ) ( )

    uNNu

    uNuN

    umu

    m

    &43421

    &

    &&

    &&&

    &&

    =

    =

    ==

    =K

    V

    TT

    V

    T

    V

    T

    V

    T

    dV

    dV

    dVuudVu

    mv

    r

    r

    rr

    2

    12

    1

    2

    1

    2

    1

    )2

    1 (cf.

    2

    1

    2

    2

    Bar Element (linear shape function):

    [ ]

    3/16/1

    6/13/1

    11

    2

    1

    u

    uAL

    ALdV

    &&

    &&

    =

    -

    -=

    r

    xxxx

    xrm

    (10)

  • Lecture Notes: Introduction to Finite Element Method Chapter 7. Structural Vibration and Dynamics

    1999 Yijun Liu, University of Cincinnati 162

    Element mass matrices:

    local coordinates to global coordinates

    assembly of the global structure mass matrix M.

    Simple Beam Element:

    422313

    221561354

    313422

    135422156

    420

    2

    2

    1

    1

    22

    22

    q

    qr

    r

    &&&&

    &&&&

    v

    v

    LLLL

    LL

    LLLL

    LL

    AL

    dVT

    ------

    =

    = V NNm

    (11)

    Units in dynamic analysis (make sure they are consistent):

    Choice I Choice II t (time)

    L (length) m (mass) a (accel.) f (force)

    r (density)

    s m kg

    m/s2 N

    kg/m3

    s mm Mg

    mm/s2

    N Mg/mm3

    1

    1

    qv

    2

    2

    q

    vr, A, L