chapter 1: hyperbolic, inverse hyperbolic, inverse trigonometric

Upload: rodziah-nasir

Post on 03-Apr-2018

393 views

Category:

Documents


15 download

TRANSCRIPT

  • 7/28/2019 CHAPTER 1: HYPERBOLIC, INVERSE HYPERBOLIC, INVERSE TRIGONOMETRIC

    1/10

    1

    1.1: COMPREHEND HYPERBOLIC FUNCTIONS

    1.1.1: Define Hyperbolic Functions

    Combinations of exponential functions (ex) Form of: sinh, cosh, tanh, cosech, sech and coth

    1.1.2: Calculate Values of Hyperbolic Functions

    Example (a)Find the value of:

    i. sinh (1.275)ii. cosh (2.156)

    iii. tanh (ln 3)Solution:

    i. sinh (1.275)Step 1: Identify the formula

    2 xx eexsinh

    Step 2: Replace the value ofx into the formula

    x = 1.275 2

    1.275275.1275.1

    ee

    sinh = 1.65

    HYPERBOLIC, INVERSE HYPERBOLIC &

    INVERSE TRIGONOMETRIC FUNCTIONS

    FORMULA:

  • 7/28/2019 CHAPTER 1: HYPERBOLIC, INVERSE HYPERBOLIC, INVERSE TRIGONOMETRIC

    2/10

    ii. cosh (2.156)2

    xxee

    xcosh

    2156.2cosh

    156.2156.2

    ee= 4.376

    iii. tanh (ln 3)

    xx

    xx

    ee

    eextanh

    3ln3ln

    3ln3ln

    )3tanh(ln

    ee

    ee= 0.8

    1.1.3: Sketch Graphs of Hyperbolic Functions

    HYPERBOLIC FUNCTIONS GRAPH

    sinh

    cosh

    tanh

    Tr y this!

    Find to 4 decimal places for:

    a) cosech (-2.5)

    b) sech (-ln 2)

    c) coth (0.38)

    d)

    HYPERBOLIC FUNCTIONS GRAPH

    cosech

    sech

    coth

    HYPERBOLIC IDENTITIES:

    cosech = 1n

    sech

    =1

    coth = 1n =n

  • 7/28/2019 CHAPTER 1: HYPERBOLIC, INVERSE HYPERBOLIC, INVERSE TRIGONOMETRIC

    3/10

    Example (b)Sketch the graph of y = coshx from point x = -5 to x = 5

    Solution:

    Step 1: Create table from start point to end point (using calculator)

    x -5 -3 0 3 5

    y 74 10 1 10 74

    Step 2: Sketch graph by referring to the table

    1.1.4: Prove Identities of Hyperbolic Functions

    Example (c)Prove that:

    i. 2 sinh (x +y) cosh (xy) = sinh 2x + sinh 2yii. coshxsinhx = e-x

    iii. 1tanh2x = sech2x

    FORMULA:

    74

    10

    3 5-5 -3

    Try this!

    a) A curve line is based on . If c = 50, Calculate the value of y when x = 109.

    b) Fill in the table below using . Then sketch a graph.

    x 2.5 2.9 3.3 3.7 4.1 4.5

    y

  • 7/28/2019 CHAPTER 1: HYPERBOLIC, INVERSE HYPERBOLIC, INVERSE TRIGONOMETRIC

    4/10

    Solution:

    i. 2 sinh (x +y) cosh (xy) = sinh 2x + sinh 2y

    Step 1: Expand the equation based on formula.

    2 sinh (x +y) cosh (xy) =

    Step 2: Simplify the calculations until proven.

    2 sinh (x +y) cosh (xy) =

    =

    =

    = sinh 2x + sinh 2y

    ii. coshxsinhx= e-x

    =

    =

    =

    = e-x

    iii. 1tanh2x = sech2x=

    =

    =

    =

    =

    = sech2x

    Try this!

    Verify that:

    a) sinh2xsinh2y = cosh2xcosh2y

    b) cosh 2x = 1 + 2 sinh2x

  • 7/28/2019 CHAPTER 1: HYPERBOLIC, INVERSE HYPERBOLIC, INVERSE TRIGONOMETRIC

    5/10

    1.2: KNOW INVERSE HYPERBOLIC FUNCTIONS

    1.2.1: Define Inverse Hyperbolic Function

    The inverses of the hyperbolic functions are the area hyperbolic functions. Form of sinh-1, cosh-1, tanh-1, cosech-1, sech-1 and coth-1 The inverse hyperbolic functions are given by:

    i. y = tanh-1x x = tanhyii. y = sinh

    -1

    x x = sinhyiii. y = cosh-1x x = coshyiv. y = coth-1x x = cothyv. y = cosech-1x x = cosechy

    vi. y = sech-1x x = sechy

    1.2.2: CalculateValues of Inverse Hyperbolic Functions

    Example (d)Find to 4 decimal places:

    i. cosh-1 (2.364)ii. tanh-1 (-0.322)

    iii. sinh-1x = ln 2

    Solution:

    i. cosh-1 (2.364)Step 1: Identify the formula

    1ln 21 xxxcosh

    Step 2: Replace the value ofx into the formula

    x = 2.364

    1364.2364.2ln364.2 21cosh

    = = 1.5054

    FORMULA:

  • 7/28/2019 CHAPTER 1: HYPERBOLIC, INVERSE HYPERBOLIC, INVERSE TRIGONOMETRIC

    6/10

    ii. tanh-1 (-0.322)

    x

    xxtanh

    1

    1ln

    2

    11

    )322.0(1

    )322.0(1ln

    2

    1322.0

    1tanh

    = 1 = -0.3339

    iii. sinh-1x = ln 2 =

    =

    ( ) =

    x2 + 1 = 44x +x2

    x = 0.75

    1.2.3: Sketch The Graphs of Inverse Hyperbolic Functions

    INVERSE HYPERBOLIC

    FUNCTIONSGRAPH

    sinh-1

    cosh-1

    tanh-1

    Try this!

    Evaluate:

    a) cosech-13b) coth-1 (5)

    INVERSE HYPERBOLIC

    FUNCTIONSGRAPH

    cosech-1

    sech-1

    coth-1

    INVERSE HYPERBOLIC

    IDENTITIES:

    cosech1 =sih1 1

    sech1 =cosh1 1

    coth1 =tah1 1

  • 7/28/2019 CHAPTER 1: HYPERBOLIC, INVERSE HYPERBOLIC, INVERSE TRIGONOMETRIC

    7/10

    Example (e)Sketch the graph of y = sinh-1x from point x = -30 to x = 30

    Solution:

    Step 1: Create table from start point to end point (using calculator)

    x -30 -10 0 10 30

    y -4 -3 0 3 4

    Step 2: Sketch graph by referring to the table

    1.2.4: Derive The Formulae of Inverse Hyperbolic Functions

    Since the hyperbola functions are in essence exponential functions you should expect their inverses to involve the natural logarithm. Example (f)

    Prove that sinh-1x = ln( )

    Solution:

    Step 1: Switch the equationy = sinh-1x x = sinhy

    Step 2: Choose formula from page 1 (unit 1.1) and simplify

    2sinh

    yyee

    yx

    = yy ee

    -3

    -4

    4

    3

    10 30-30 -10

    Try this!

    Sketch graphs for below functions:

    a) y = sech-1x from point x = 0.1 to x = 1

    b) cosh

    -1

  • 7/28/2019 CHAPTER 1: HYPERBOLIC, INVERSE HYPERBOLIC, INVERSE TRIGONOMETRIC

    8/10

    Step 3: Multiply with ey

    = yy ee = =

    Step 4: Use the Quadratic Formula to solve this quadratic-like equation.

    =

    a =1 , b = -2x , c = -1 , x = ey

    =

    = =

    Step 5: Simplify using logarithm law

    =

    =

    = ( ) sinh-1x = ln( ) = Proved!

    1.3: RECOGNIZE INVERSE TRIGONOMETRIC FUNCTIONS

    1.3.1: Define Inverse Trigonometric Functions

    The inverse functions of the trigonometric functions Form of cos-1, cot-1, cosec-1, sec-1, sin-1, and tan-1 The inverse trigonometric functions are given by:

    i. y = tan-1xx = tanyii. y = sin-1xx = siny

    iii. y = cos-1xx = cosyiv. y = cot-1xx = cotyv. y = cosec-1xx = cosecy

    vi. y = sec-1xx = secy

    Try this!

    Verify that:

    a)

    tah1

    =

    1

    1

    1for

    <

    b)

  • 7/28/2019 CHAPTER 1: HYPERBOLIC, INVERSE HYPERBOLIC, INVERSE TRIGONOMETRIC

    9/10

    1.3.2: Find The Principal Values of Inverse Trigonometric Functions

    Example (g)Find the principal values of:

    i. tan-1 13ii. cos-1 (-0.1587)iii. cosec-1 (1.11)

    Solution:

    i. tan-1 13Step 1: Find the value using calculator (in degreeo and radian)

    tan-1 13= 30oand 0.524 rad

    ii. cos-1 (-0.1587) = 99.13oand 1.73 radiii. cosec-1 (1.11) = sin-1 1111 = 64.277oand 1.122 rad

    1.3.3: Solve Equations Involving Inverse Trigonometric Functions

    Example (h)Simplify:

    i. tasi1 ii. costa1

    Solution:

    i. tasi1 Step 1: Let inverse trigonometric (x) =y

    si1 = y

    Step 2: Then x = trigonometricy (remember that when youre putting sin-1 on the other side of the equality, you remove the -1).

    = sin y

    Step 3: Draw a triangle ABC and complete the value using the Pythagorean theorem

    Try this!

    Determine the principal value of the following functions:

    a) sin-13

    b) tan-1 (-0.45)

    x5

    A B

    C

    AC + AB = BCx2 - 52 = -AB2

    AB2 = 52 - x2

    AB =

  • 7/28/2019 CHAPTER 1: HYPERBOLIC, INVERSE HYPERBOLIC, INVERSE TRIGONOMETRIC

    10/10

    1

    Step 4: Complete the equation.

    tasi1 = tany=

    ii. ta1 = y= tan y

    costa1 = cos y=

    5

    x

    Try this!

    Simplify:

    a) cos2 si1

    b) sin 2sec1 3