chapter 11. statistical analysis and...

62
Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent Belgium mail: [email protected] 1 Chapter 11. Statistical analysis and phytosociology by Guy BOUXIN° Contents Introduction ............................................................................................................................................................. 2 The data .............................................................................................................................................................. 2 The phytosociological analysis .......................................................................................................................... 3 The character-species of the associations ...................................................................................................... 3 Data analysis ...................................................................................................................................................... 6 The covariance matrices and the choice of a technique ................................................................................. 6 Correspondence analysis of presence data..................................................................................................... 8 Non-symmetric analysis of presence data ................................................................................................... 11 Non-symmetric correspondence analysis of the simple disjunctive table ................................................... 15 Non-symmetric correspondence analysis of the simplified disjunctive table .............................................. 20 Conclusions about the analysis of the ROYER’s table .................................................................................... 21 The BAILLY’s file................................................................................................................................................ 21 The data ............................................................................................................................................................ 21 The phytosociological analysis ........................................................................................................................ 22 The character-species of the associations .................................................................................................... 23 Data analysis of the complete file .................................................................................................................... 34 Covariance matrix and the choice of a technique ........................................................................................ 34 Multiple factor analysis based on non-symmetric correspondence analysis of the presence table .............. 36 Classification and ranking of the relevés set ............................................................................................... 39 Data analysis of the fern Alder file................................................................................................................... 42 Multiple factor analysis of the simplified disjunctive table ......................................................................... 42 Classification and ranking of the fern Alders .............................................................................................. 45 Data analysis of the sedge Alder file ................................................................................................................ 51 Multiple factor analysis of the simplified disjunctive table ......................................................................... 51 Classification and ranking of the Alders with Sedge ................................................................................... 55 Conclusions on the analysis of the BAILLY’s table ........................................................................................ 60 General conclusions .............................................................................................................................................. 61 References ............................................................................................................................................................. 61

Upload: others

Post on 24-Sep-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

Statistical analysis of relevés tatbles 2020

° rue des Sorbiers 33 B-5101 Erpent Belgium mail: [email protected] 1

Chapter 11. Statistical analysis and

phytosociology

by Guy BOUXIN°

Contents

Introduction ............................................................................................................................................................. 2

The data .............................................................................................................................................................. 2

The phytosociological analysis .......................................................................................................................... 3

The character-species of the associations ...................................................................................................... 3

Data analysis ...................................................................................................................................................... 6

The covariance matrices and the choice of a technique ................................................................................. 6

Correspondence analysis of presence data..................................................................................................... 8

Non-symmetric analysis of presence data ................................................................................................... 11

Non-symmetric correspondence analysis of the simple disjunctive table ................................................... 15

Non-symmetric correspondence analysis of the simplified disjunctive table .............................................. 20

Conclusions about the analysis of the ROYER’s table .................................................................................... 21

The BAILLY’s file................................................................................................................................................ 21

The data ............................................................................................................................................................ 21

The phytosociological analysis ........................................................................................................................ 22

The character-species of the associations .................................................................................................... 23

Data analysis of the complete file .................................................................................................................... 34

Covariance matrix and the choice of a technique ........................................................................................ 34

Multiple factor analysis based on non-symmetric correspondence analysis of the presence table .............. 36

Classification and ranking of the relevés set ............................................................................................... 39

Data analysis of the fern Alder file................................................................................................................... 42

Multiple factor analysis of the simplified disjunctive table ......................................................................... 42

Classification and ranking of the fern Alders .............................................................................................. 45

Data analysis of the sedge Alder file ................................................................................................................ 51

Multiple factor analysis of the simplified disjunctive table ......................................................................... 51

Classification and ranking of the Alders with Sedge ................................................................................... 55

Conclusions on the analysis of the BAILLY’s table ........................................................................................ 60

General conclusions .............................................................................................................................................. 61

References ............................................................................................................................................................. 61

Page 2: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

2

Introduction

The statistical analysis of the tables of phytosociological relevés has long raised a lot of skepticism among

the proponents of the sigmatist school. However, increasingly, relevé tables are submitted to multivariate

analyses, usually on the basis of abundance-dominance coefficients or on presences. Among the many examples,

GUYONNEAU (2005) uses correspondence analysis alone, BAILLY (2012) correspondence analysis and the

hierarchical ascending classification with presence-absence data (agglomerative grouping with complete links

with the Bray-Curtis distance) or abundance-dominance (Ward method with chord distance), COLLAUD and

collaborators (2010) correspondence analysis and hierarchical ascending classification in abundance-dominance

(Ward method with the chord distance) and FERREY (2007, 2009 and 2011) the hierarchical ascending

classification in abundance-dominance (Ward's method on the chord distance). As we have already explained in

Chapter 5, abundance-dominance data are poorly adapted to multivariate analyses. The objective of this chapter

is to compare the results provided by phytosociologists and those proposed by multivariate analyses used in a

biometrician approach, in a spirit of data analysis. Do these two approaches produce consistent results? To what

extent can data analysis help the phytosociologist?

To develop our argument, we first chose two files published and analysed by phytosociologists: the file

ROYER (2009) and the file BAILLY (2012). In order to ensure an easy comparison between the two texts and

ours, we have reproduced the botanical nomenclature adopted by the authors.

The data

These are relevés of limestone walls (table 1).

Species/Relevés 1 2 3 4 5 6 7 8 9

1

0

1

1

1

2

1

3

1

4

1

5

1

6

1

7

1

8

1

9

2

0

2

1

2

2

2

3

2

4

2

5

2

6

2

7

Asplenium trichomanes subsp.

quadrivalens + . 1 . 2 + 1 + 1 + 3 . 1 + . . + . 1 1 + 1 . . 1 1 .

Potentilla neumanniana 1 . . . . . . . . . . . . . + . . . . . . + . . . . +

Ceterach officinarum 2 . . . . . . . . . . . . . . . . . . . . 1 . . . . .

Helleborus foetidus + . . . . . . . . . . . . . . . . . . . . . . . . . .

Sanguisorba minor + . . . . . . . . . . . . . . . . . . . . . . . . . .

Bromus erectus 1 . . . . . . . . . . . . . . . . . . . . . . . . . .

Asplenium trichomanes subsp. hastatum . 2 . . . 2 + . . . . 1 . . . 1 . 1 . . . . 1 . . . .

Poa nemoralis . + . . + + 1 . + . 2 . 1 . . . . . . . . . . + . . .

Geranium robertianum . + + . . . . + . 1 1 . 1 + . + . . . 1 1 . . . . . .

Phyllitis scolopendrium . . 2 . . . . 1 . 2 . . 1 1 . . . . . . 1 . . + 1 . .

Cystopteris fragilis . . 1 . . + . + . . . . 1 2 . + . + . + + . . 1 + . .

Cardamine impatiens . . + . . . . . . + . . 1 . . . . . . . . . . . + . .

Hedera helix . . + . . . 1 + . + . 1 . . . . . + . . . + 1 . . + .

Moehringia trinervia . . + . . . . . . . . . + . . . . . . . + . . . + . .

Vinca minor . . + . . . . . . . . . . . . . . . . . . . . . . . .

Asplenium trichomanes subsp.

pachyrachis . . . 1 . . . . . . . . . . 1 . . . . . . . . . . . 1

Asplenium ruta-muraria . . . + 1 . + . . . + + . . + . + . + 1 . 1 + 1 . 1 +

Mycelis muralis . . . . + . . . 1 . . . + . . . . . . . . . . . . . .

Cardaminopsis arenosa subsp. borbasii . . . . 1 . 2 . . . . . . . . . . . + + 1 . . 1 + . .

Page 3: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

3

Campanula rotundifolia . . . . + . + . . . . . . . + . + . + . 1 . . . . + .

Sesleria caerulea . . . . + . . . . . . . . . . . + . . . . . . . . . .

Lamium galeobdolon . . . . . . . 1 . 1 . . . . . . . . . . . . . + . . .

Mercurialis perennis . . . . . . . 2 . . . . . . . . . . . . . . . . . . .

Oxalis acetosella . . . . . . . 1 . . . . . . . . . . . . 1 . . + + . .

Campanula trachelium . . . . . . . + . . . . . . . . . . . . . . . . . . .

Galium aparine . . . . . . . . . + . . . . . . . . . . . . . . . . .

Chrysosplenium alternifolium . . . . . . . . . + . . . . . . . . . . . . . . . . .

Arabis hirsuta . . . . . . . . . . + . . . . . . . . . . . . . . . .

Origanum vulgare . . . . . . . . . . + . . . . . . . . . . . . . . . .

Thymus praecox . . . . . . . . . . + . . . . . . . . . . . . . . . .

Ribes uva-crispa . . . . . . . . . . + . . . . . . . . . . . . . . + .

Polypodium interjectum . . . . . . . . . . . . 1 . . . . . . 1 + . . . . . .

Fragaria vesca . . . . . . . . . . . . . . . . + . . . . . . . . . .

Viola alba . . . . . . . . . . . . . . . . . . 1 . . . . . . . .

Silene nutans . . . . . . . . . . . . . . . . . . + . . . . . . . .

Potentilla micrantha . . . . . . . . . . . . . . . . . . + . . . . . . . .

Poa compressa . . . . . . . . . . . . . . . . . . . + . . . . . . .

Melica uniflora . . . . . . . . . . . . . . . . . . . . . . + . . . .

Clematis vitalba . . . . . . . . . . . . . . . . . . . . . . + . . . .

Sedum spurium . . . . . . . . . . . . . . . . . . . . . . . + . . .

Ribes alpinum . . . . . . . . . . . . . . . . . . . . . . . . + . .

Sedum album . . . . . . . . . . . . . . . . . . . . . . . . . + .

Table 1. Table of the 27 phytosociological relevés with the abundance-dominance coefficients +, 1, 2, 3. « . » =

absent species.

.

This table is relatively simple, with a majority of empty cells and mainly coefficients +, 1, 2 and 3.

The phytosociological analysis

The character-species of the associations

The methodological approach is based on the concept of elementary syntaxon (Sy-E) developed by de

FOUCAULT (1982). The elementary syntaxon groups together a set of relevés in a homotone table. The

elementary syntaxa constitute the elementary element for the elaboration of the phytosociological typology and

must not be confused with the associations. SY-E often correspond to syntaxons of sub-association rank

(variants, sub-associations).

Five elementary syntaxa (A to K) have been identified. The constant species of the syntaxon Asplenietum

pachyrachidis (relevés 4, 15, 27) are Asplenium trichomanes subsp. pachyrachis and Asplenium ruta-muraria,

the positive differential species are Asplenium trichomanes subsp. pachyrachis, Potentilla neumanniana (the

latter only with respect to the syntaxa C, D and E) and the negative differential species Asplenium trichomanes

subsp. quadrivalens and Hedera helix. Syntaxon D has more constant species : Phyllitis scolopendrium,

Cystopteris fragilis, Geranium robertianum, Asplenium trichomanes subsp. quadrivalens. Its positive differential

species are Cardamine impatiens, Polypodium interjectum, Moehringia trinervia, Lamium galeobdolon, Oxalis

Page 4: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

4

acetosella, Cystopteris fragilis (the latter with respect to A-B-C but not with respect to E), its negative

differential, Asplenium trichomanes subsp. pachyrachys (with respect to A), Asplenium trichomanes subsp.

hastatum (with respect to E)… The syntaxon B corresponds to the Asplenietum trichomano-rutae-murariae

ceterachetosum officinarum (relevés 1, 22), the syntaxon C to the Asplenietum trichomano-rutae-murariae

cardaminopsietosum borbasii (relevés 5, 7, 9, 11, 17, 19, 26), the syntaxon D to the Cystopterido fragilis-

Phyllitidetum scolopendrii (relevés 3, 8, 10, 13, 14, 20, 21, 24, 25) and the syntaxon E to the Asplenietum

hastati (relevés 2, 6, 12, 16, 18, 23).

In each defined grouping, we subject the frequency of the floristic variables to a test by permutation. Let us

recall the technique. The frequency of a variable in a group is compared with those obtained in the same set of

relevés when all the columns in the table are randomly permuted. The tests are built with 100,000 permutations.

There is thus a statistical basis for defining character-species. Each grouping is characterized by all the character-

species (exclusive, preferential), companions or accidental. Character-species are frequent species whose

frequency is statistically greater than that of all relevés; exclusive species are rare. It is necessary to specify that

it is sometimes either the presence of the species that is characteristic or the abundance, starting from a certain

threshold. Companions are frequent species but whose frequency is not greater than that of all the relevés.

Within a species, it happens that it is a simple companion by its presence and a characteristic by its local

abundance. The so-called accidental species are infrequent in relevés. A species may be characteristic only a the

scale of a table and have another status at another scale.

The results of the phytosociological study are the references for evaluating the statistical analyses.

The character-species of the Asplenietum pachyrachidis

Species/Relevés 4 15 27 Fr Pr

Potentilla neumanniana 0 1 1 2 0,67 0,04889

Asplenium trichomanes subsp. pachyrachis 1 1 1 3 1 0,00031

Table2. Character-species of the Asplenietum pachyrachidis. = frequence, Fr = relative frequence, Pr =

probability computed with the test.

With the permutation test, we find (table 2) as character-species, the two ones cited as positive differentials

by ROYER (2009)

The character-species of the Asplenietum trichomanes-rutae-murariae ceterachetosum

officinarum

Species/Relevés 1 22 Fr Pr

Potentilla neumanniana 1 1 2 1 0,01754

Ceterach officinarum 1 1 2 1 0,00306

Table 3. Character-species of the Asplenietum trichomanes-rutae-murariae ceterachetosum officinarum. =

frequence, Fr = relative frequence, Pr = probability computed with the test.

Page 5: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

5

The two species highlighted in the final table of ROYER (2009) are found here as character-species (Table

3).

The character-species of the Asplenietum trichomano-rutae-murariae cardaminopsietosum

borbasii

Here, the differences are notorious since only Campanula rotundifolia is common to statistical analysis

(table 4) and to that of ROYER (2009), which also highlights Seseleria caerulea and Cardaminopsis arenosa

subsp. borbasii.

Species/Relevés 19 26 5 17 7 9 11 Fr Pr

Asplenium trichomanes subsp. quadrivalens 1 1 1 1 1 1 1 7 1 0,03507

Asplenium ruta-muraria 1 1 1 1 1 0 1 6 0,86 0,04802

Campanula rotundifolia 1 1 1 1 1 0 0 5 0,71 0,00471

Table 4. Character-species of the Asplenietum trichomano-rutae-murariae cardaminopsietosum borbasii. =

frequence, Fr = relative frequence, Pr = probability computed with the test.

The character-species of the Cystopterido fragilis-Phyllitidetum scolopendrii

Almost all positive differentiated species differentiated from the ROYER’s table, with the exception of

Cardaminopsis arenosa subsp. borbasii, are considered with significant frequency by statistical analysis (table

5).

Species/Relevés 21 14 8 24 25 13 20 10 3 Fr Pr

Geranium robertianum 1 1 1 0 0 1 1 1 1 7 0,78 0,00349

Phyllitis scolopendrium 1 1 1 1 1 1 0 1 1 8 0,89 0

Cystopteris fragilis 1 1 1 1 1 1 1 0 1 8 0,89 0,00058

Cardamine impatiens 0 0 0 0 1 1 0 1 1 4 0,44 0,00722

Moehringia trinervia 1 0 0 0 1 1 0 0 1 4 0,44 0,00726

Lamium galeobdolon 0 0 1 1 0 0 0 1 0 3 0,33 0,02872

Oxalis acetosella 1 0 1 1 1 0 0 0 0 4 0,44 0,00694

Polypodium interjectum 1 0 0 0 0 1 1 0 0 3 0,33 0,02853

Table 5. Character-species of the Cystopterido fragilis-Phyllitidetum scolopendrii. = frequence, Fr = relative

frequence, Pr = probability computed with the test.

The character-species of the Asplenietum hastati

Espèces/Relevés 6 16 18 2 12 23 Fr Pr

Asplenium trichomanes subsp. hastatum 1 1 1 1 1 1 6 1 0,00003

Table 6. Character-species of the Asplenietum hastati. = frequence, Fr = relative frequence, Pr = probability

computed with the test.

A single species is characteristic here (table 6) versus three by ROYER (2009).

Page 6: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

6

Data analysis

This analysis of the data is a consequence of numerous studies presented in this website in chapters 5 to 10.

The techniques are therefore presented succinctly.

The phytosociologists' files include coefficients that can not be used as they are in calculations (+, r, i, s)

and that it is impossible to add to the other coefficients 1, 2, 3, 4 and 5 of the same row or column; these latter

coefficients also belong to an ordinal variable. It is possible to replace each + or r or i or s by a coefficient 1 or

0.1 for example but this choice retains a large part of arbitrary and this does not change the fact that the variable

is ordinal. Mathematical operations such as additions or averaging are illicit. It is therefore necessary to adapt the

original file and several transformations are possible by:

- a presence table, with a single line per species, with 0 and 1,

- a complete disjunctive table with, for each species, a line for absences with 1 for absence and 0 for presence,

regardless of the abundance coefficients and as many lines as there are different coefficients of abundance -

dominance,

- a simple disjunctive table with as many lines as there are different coefficients of abundance-dominance,

without line for absences,

- a "simplified" disjunctive table obtained by grouping, for example, the lines +, r, i or s and 1 into one,

abundances> 1 in a single line (there are a few abundance-dominances '3' and no higher than 3).

The latter kind of table is purely empirical but it has been the basis of interesting results on several

occasions. So we continue to evaluate it.

The relevance of the analyses and the final choice is made after examining the covariance matrices of the

correspondence analyses and the non-symmetric correspondence analyses, single or in a multiple factor analysis.

This greatly reduces the arbitrariness of the transformations.Either simplification is still possible by applying

multivariate analyses only to some of the columns in the table when a group of relevés is readily isolated from

view. Classification and ranking techniques (see chapter 12) are then calculated on the basis of the variables

transformed by correspondence analyses.

The covariance matrices and the choice of a technique

The covariance matrices of six analyses are compared (figure 1). The non-symmetric correspondence

analysis of the complete disjunctive table is not presented, as it focuses on absences that are more numerous than

presences. There are 61.11% empty cells in the presence table.

Page 7: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

7

Figure 1. Covariance distributions in the multivariate analyses of the ROYER’s file, in three transformed tables

and two correspondence analyses.

From the six analyzes, it appears that, in correspondence analysis of the three types of tables, the spread of

the covariances is much less than in the non-symmetric analyzes. We deduce once again that the correspondence

analyzes misuse the significant variability of this type of table. Non-symmetric analyzes provide a better basis

for interpretation. In this specific case, the presence data and the disjunctive table with the presence and

abundance lines > 1 are a good basis for analysis.

Page 8: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

8

Correspondence analysis of presence data

Certain phytosociologists attach great importance to the presence data alone. This is why it is important to

compare the previous results with those obtained with the presence data only, regardless of the abundance-

dominance coefficients.

The decrease in the eigenvalues is progressive (figure 2) and none of the eigenvalues of the axes is

significant.

Figure 2. The firdt twelve eigenvalues of correspondence analysis of the presence table.

On the first two axes, only two species have a significant relative contributions: Potentilla neumanniana for

the first axis and Asplenium ruta-muraria for the second. The main results appear in table 7 and figures 3 and 4.

coord 1 Cr% 1 P 1 coord 2 Cr% 2 P 2

Vp.Vp% et P 0.717008468 12.37844497 8.837113825 0.597730061 10.31922076 6.343015498

Asplenium trichomanes subsp. quadrivalens 0.015173238 0.003753047 97.03376783 0.120783744 0.285274966 64.3538951

Potentilla neumanniana 2.225138464 17.93614341 1.108488145 0.010974809 0.000523393 98.70676383

Ceterach officinarum 2.580943347 12.06540581 6.014574566 1.444740688 4.535069898 16.53494817

Helleborus foetidus 3.702816373 12.41707617 8.139176845 2.68852666 7.85240835 9.801909063

Sanguisorba minor 3.702816373 12.41707617 8.07759417 2.68852666 7.85240835 9.411885456

Bromus erectus 3.702816373 12.41707617 8.241814636 2.68852666 7.85240835 10.03797598

Asplenium trichomanes subsp. hastatum -0.265642707 0.447351429 51.56522632 -0.33093055 0.832810022 50.77491532

Poa nemoralis -0.317207514 0.729007361 42.12254952 -0.150722902 0.197434327 75.70563481

Geranium robertianum -0.54867835 2.726406709 15.84727497 0.389726184 1.650035741 32.9877861

Phyllitis scolopendrium -0.640465952 2.971919732 16.13466078 0.69695132 4.221522016 14.34876321

Cystopteris fragilis -0.567929466 3.213190562 12.13178692 0.461392824 2.543949805 21.64631017

Cardamine impatiens -0.682160702 1.68573141 24.60227856 0.809597182 2.848210925 24.46884943

Hedera helix -0.072229824 0.042523658 87.14974854 -0.08873732 0.076989112 84.21430771

Moehringia trinervia -0.647046031 1.5166499 25.61839269 0.678586709 2.000989786 31.19162476

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

Page 9: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

9

Vinca minor -0.663701884 0.398934041 39.45396695 0.811324712 0.715094751 41.8864826

Asplenium trichomanes subsp. pachyrachis 1.769541422 8.507416896 7.667043005 -1.658286065 8.962193964 8.098121728

Asplenium ruta-muraria 0.481803655 2.943223281 9.996920866 -0.887178547 11.97083046 0

Mycelis muralis -0.307795491 0.257395384 55.16781279 -0.052765384 0.009073893 93.59540183

Cardaminopsis arenosa subsp. borbasii -0.277593521 0.488508007 50.51832085 -0.15849306 0.191026107 75.62352458

Campanula rotundifolia 0.277495792 0.488164101 50.49779329 -0.889750401 6.020167934 8.950015396

Sesleria caerulea 0.193837336 0.068054971 73.84789079 -1.04529101 2.373988481 25.89551473

Lamium galeobdolon -0.642731146 1.122367133 28.95412091 0.721089059 1.694623592 33.88073489

Mercurialis perennis -0.692721551 0.434582659 39.28974648 0.86540119 0.81359666 40.23401416

Oxalis acetosella -0.627880361 1.428133427 26.08026275 0.62347856 1.689185015 34.19891204

Campanula trachelium -0.692721551 0.434582659 38.66365596 0.86540119 0.81359666 40.53166376

Galium aparine -0.688181508 0.428904884 39.24869137 0.952394712 0.985389959 37.23699066

Chrysosplenium alternifolium -0.688181508 0.428904884 39.17684491 0.952394712 0.985389959 36.95986862

Arabis hirsuta -0.113468821 0.011660256 87.10869342 -0.813716807 0.719317712 42.6254747

Origanum vulgare -0.113468821 0.011660256 87.5602997 -0.813716807 0.719317712 42.10202196

Thymus praecox -0.113468821 0.011660256 86.86236272 -0.813716807 0.719317712 41.2501283

Ribes uva-crispa 0.058450591 0.006188178 93.40039002 -0.922522029 1.849088376 29.95997126

Polypodium interjectum -0.517572487 0.727810998 36.25166786 0.381678355 0.474777906 57.14872216

Fragaria vesca 0.37458188 0.127071608 59.67361182 -1.358426974 2.004687925 25.70050293

Viola alba 0.246094391 0.054847701 73.1088987 -1.532490742 2.551349181 22.36477471

Silene nutans 0.246094391 0.054847701 73.32443806 -1.532490742 2.551349181 21.34866058

Potentilla micrantha 0.246094391 0.054847701 72.21594991 -1.532490742 2.551349181 21.56419994

Poa compressa -0.352021912 0.112226234 61.91111567 0.096701891 0.01015884 90.91655548

Melica uniflora 0.090805854 0.007467628 89.81833111 -1.321849001 1.898182111 25.87498717

Clematis vitalba 0.090805854 0.007467628 90.32125629 -1.321849001 1.898182111 26.6960895

Sedum spurium -0.547290378 0.271263037 46.70019501 0.345471275 0.129657626 69.99897362

Ribes alpinum -0.72378669 0.474434409 36.85723083 0.854688951 0.793579355 40.09032126

Sedum album 0.230370002 0.048062554 74.26870574 -1.031327252 1.155492601 34.31181361

X1 3.135409846 53.41889256 2.22724007 2.078580727 28.16172312 3.212562866

X2 -0.445432732 0.539064216 42.88206918 -0.039634241 0.005119606 94.99127579

X3 -0.561998547 2.288312682 18.74166068 0.627259508 3.419469031 19.77830237

X4 1.329382413 3.200993909 13.70214513 -1.646207285 5.888073404 12.78866879

X5 0.011086498 0.000779187 98.20383865 -0.566051061 2.436595504 24.40726676

X6 -0.335278509 0.407217486 48.37319101 0.032505242 0.004591356 95.22734271

X7 -0.026690009 0.004515964 95.01180335 -0.440700032 1.476924806 33.20332546

X8 -0.586571343 2.804395016 15.01590886 0.669067657 4.37680063 16.11413322

X9 -0.240062996 0.15657654 68.40808786 -0.035657883 0.004143874 95.66868521

X10 -0.582727 2.460227471 17.24314893 0.736324963 4.711977599 15.59068049

X11 -0.096081259 0.066884017 78.51791029 -0.629108908 3.439662555 18.9777276

X12 0.056659315 0.008722056 93.59540183 -0.563443986 1.034658266 41.08590783

X13 -0.552913486 2.491792473 17.3560505 0.479325434 2.246351113 25.85445961

X14 -0.514281874 0.958114517 31.23267987 0.539642099 1.265452412 35.42030176

X15 1.403573486 7.136500442 8.026275275 -1.107265279 5.327672699 14.03058606

X16 -0.54413087 0.804420223 35.23555373 0.224278121 0.163934082 72.35964282

X17 0.317182274 0.455557095 46.51544699 -1.050240702 5.991311177 12.47049164

X18 -0.356574167 0.345442686 51.5754901 0.017989623 0.001054726 97.8343426

Page 10: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

10

X19 0.208383754 0.275283861 56.9331828 -1.184814631 10.67512671 8.016011495

X20 -0.298079315 0.563270121 42.07123063 0.074763137 0.042505708 85.70255568

X21 -0.463791711 1.753248471 21.48208971 0.331172436 1.072321608 40.30586062

X22 1.235487529 6.911968194 8.344452427 0.155364128 0.131112981 75.32587499

X23 0.076891085 0.026771764 87.18053987 -1.021961173 5.673002541 13.77399158

X24 -0.46342553 1.555983157 23.2064046 0.267094221 0.620002087 51.00071846

X25 -0.612876169 2.721387908 15.69331828 0.660785704 3.794769889 18.20794417

X26 0.195068915 0.20676755 62.4858873 -0.797350081 4.144035975 17.43816073

X27 1.7621935 8.436910437 7.513086318 -1.092739758 3.891606549 17.75633788

Table 7. Complete results, for the first two axes of the correspondence analysis of the ROYER presence file. Vp,

Vp% and P = eigenvalues, percentages of contribution and associated probabilities, coordi. = coordinates of the

floristic variables or relevés on the axes, CR% = relative contributions of the species or relevés on the axes, Pi:

probabilities associated with the relative contributions on the axes. Signicicant eigenvalues and relative

contributions are in bold red.

Figure 3. Correspondence analysis of the presence table. Distribution of species in the in the plane of axes 1 and

2. In red, the species with a significant relative contribution.

The three species Bromus erectus, Helleborus foetidus and Sanguisorba minor are present only once in the

same relevé 1. Ceterach officinarum is present in relevés 1 and 22, Potentilla neumanniana in relevés 1,15,22,27

and Asplenium trichomanes subsp. pachyrachis in relevés 4, 15 and 27. These relevés 1, 4, 15, 22 and 27 are

highlighted in figure 4.

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

-1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4

Royerpres-ca Bromus erectus, Helleborus

foetidus & Sanguisorba

minor

Ceterach officinarum

Potentilla neumanniana

Asplenium trichomanes subsp.

pachyrachis

axe 1

axe

2

Page 11: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

11

Figure 4. Correspondence analysis of the presence table. Distribution of relevés in the in the plane of axes 1 and

2. In red, the relevés with a significant relative contribution.

It appears once again that dual correspondence analysis is not suitable for the analysis of this kind of table,

since only a small part of the variability of the relevé table is highlighted. Only relevés with a rare species

combination are revealed. The results obtained for simple or simplified disjunctive tables suffer from the same

characteristics and are not presented here. This kind of analysis is not useful for phytosociology.

Only the non-symmetric analyzes are now used.

Non-symmetric analysis of presence data

Only the first two eigenvalues are significant (in red in table 8). The decrease of the eigenvalues is rapid.

However, there are still relative contributions of relevés and significant floristic variables in several other axes,

which is a result of local variations.

Figure 5. The firt twelve eigenvalues of non-symmetric analysis of the presence table.

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

-1 -0,5 0 0,5 1 1,5 2 2,5 3 3,5

Royerpres-ca 1

4

15

22

27

axe 1

axe

2

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10 11 12

Page 12: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

12

coord 1 Cr% 1 P 1 coord 2 Cr% 2 P 2

Vp.Vp% et P 1.09144854 21.0486547 0 0.72758032 14.0314328 0.64661808

Asplenium trichomanes subsp.

quadrivalens 0.08914813 0.7947389 89.7567484 -0.27979555 7.82855511 47.2647029

Potentilla neumanniana -0.24211429 5.86193297 4.38263369 -0.06209137 0.38553387 66.8069383

Ceterach officinarum -0.05849024 0.34211078 41.3835574 -0.03449984 0.11902391 66.6735092

Helleborus foetidus -0.01197869 0.01434891 79.8624654 -0.03844786 0.14782377 46.6591399

Sanguisorba minor -0.01197869 0.01434891 80.0369496 -0.03844786 0.14782377 46.7823052

Bromus erectus -0.01197869 0.01434891 80.1395874 -0.03844786 0.14782377 47.2236477

Asplenium trichomanes subsp.

hastatum 0.03103875 0.0963404 88.8843272 0.71646164 51.3317279 0.03079134

Poa nemoralis 0.06773469 0.45879885 80.3653905 0.04305575 0.18537972 88.1453351

Geranium robertianum 0.32982986 10.8787738 32.669609 0.11197835 1.25391499 75.4798317

Phyllitis scolopendrium 0.27727817 7.68831832 27.4658729 -0.13332445 1.77754081 64.6002258

Cystopteris fragilis 0.37938207 14.3930754 29.1491327 0.19456748 3.78565026 61.2850251

Cardamine impatiens 0.14074062 1.98079223 25.5773376 -0.07104359 0.50471919 61.0900133

Hedera helix -0.0855527 0.73192642 79.1850559 0.43665265 19.0665539 11.7930822

Moehringia trinervia 0.14631812 2.14089909 23.3808888 -0.10109397 1.02199918 48.8453248

Vinca minor 0.03944738 0.15560961 39.7516165 -0.00034345 1.18E-05 99.4662835

Asplenium trichomanes subsp.

pachyrachis -0.29744353 8.84726548 0.28738582 -0.02144408 0.04598485 84.8096069

Asplenium ruta-muraria -0.60014978 36.0179759 9.01159807 0.09547621 0.91157067 82.5926306

Mycelis muralis 0.02737224 0.07492393 78.8874063 -0.12130007 1.47137082 26.9424202

Cardaminopsis arenosa subsp. borbasii -0.00468343 0.00219345 98.4296418 -0.15407184 2.37381318 53.8437853

Campanula rotundifolia -0.2264688 5.1288116 30.1549831 -0.15736851 2.47648487 53.3100688

Sesleria caerulea -0.07165865 0.51349619 31.7048137 -0.08609897 0.74130323 28.8001642

Lamium galeobdolon 0.06544166 0.42826111 50.5388484 -0.01451566 0.02107045 89.9414965

Mercurialis perennis 0.03236606 0.10475617 48.7016319 0.00211077 0.00044554 96.838756

Oxalis acetosella 0.10585251 1.12047529 39.0844709 -0.08356106 0.69824503 56.5123679

Campanula trachelium 0.03236606 0.10475617 49.4508878 0.00211077 0.00044554 96.46926

Galium aparine 0.02542774 0.064657 59.2117418 -0.00594424 0.0035334 91.2142051

Chrysosplenium alternifolium 0.02542774 0.064657 59.1296315 -0.00594424 0.0035334 90.7420712

Arabis hirsuta -0.00737588 0.00544036 88.0324335 -0.01136381 0.01291361 83.2187211

Origanum vulgare -0.00737588 0.00544036 87.2318588 -0.01136381 0.01291361 83.3726778

Thymus praecox -0.00737588 0.00544036 88.0734887 -0.01136381 0.01291361 82.6747408

Ribes uva-crispa -0.04692897 0.22023281 52.0886791 -0.01422632 0.02023882 86.8110438

Polypodium interjectum 0.08044135 0.64708104 39.6181874 -0.0760235 0.57795728 49.0300729

Fragaria vesca -0.04432751 0.1964928 34.6094632 -0.04302355 0.18510262 40.7779945

Viola alba -0.03154647 0.099518 50.4156831 -0.04083503 0.16674996 43.3336755

Silene nutans -0.03154647 0.099518 49.2866674 -0.04083503 0.16674996 42.3175613

Potentilla micrantha -0.03154647 0.099518 50.5901673 -0.04083503 0.16674996 42.9025967

Poa compressa 0.00840397 0.00706266 86.2362722 -0.01426798 0.02035753 78.4255363

Melica uniflora -0.0382121 0.14601645 41.773581 0.10102422 1.02058935 4.75212973

Clematis vitalba -0.0382121 0.14601645 41.3732936 0.10102422 1.02058935 4.76239351

Sedum spurium 0.00764786 0.00584898 87.7758391 -0.01068219 0.01141093 84.2861542

Ribes alpinum 0.03483335 0.12133622 46.094632 -0.03899501 0.15206109 45.2427384

Sedum album -0.03955309 0.15644469 39.7105614 -0.00286251 0.0008194 95.5044647

X1 -0.29737689 0.34454421 80.8785795 -0.7793072 2.36618068 46.0433131

Page 13: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

13

X2 0.8446503 1.38980675 60.9155291 2.05049702 8.19065851 14.2769168

X3 0.97930037 4.98196994 28.5846249 -0.00696137 0.00025174 99.4457559

X4 -2.82562355 10.3690239 7.99548394 0.12460393 0.02016382 95.1144411

X5 -0.67850876 2.09260969 50.7954429 -0.87310406 3.46504864 37.6167505

X6 0.83818734 1.82482602 53.8848404 1.12413362 3.28227633 38.8586678

X7 -0.68757226 2.14888913 50.3643642 0.60358459 1.65597436 54.9317459

X8 0.80350303 3.7730871 37.45253 0.04278367 0.01069739 96.2434568

X9 0.33939488 0.22439393 83.7934928 -1.06339846 2.20288888 47.8292107

X10 0.63125596 2.07004719 51.9449861 -0.12048503 0.07541112 89.9414965

X11 -0.18310976 0.17417758 85.4664888 -0.23033522 0.27560683 81.1967566

X12 -1.39529433 3.79255769 36.5185261 3.00551914 17.5970363 1.36508262

X13 1.01864284 6.06409039 22.724007 -0.52215261 1.59337019 55.9273324

X14 1.62652574 6.87165193 19.4395977 -0.35906495 0.33487699 79.369804

X15 -2.16030342 12.1218464 5.3576927 -0.43286476 0.48668025 75.2848199

X16 1.4890647 4.31944221 33.2033255 2.43421237 11.5429673 6.75356666

X17 -1.10045182 3.93179935 35.4716207 -0.8720529 2.46907876 46.1151596

X18 0.63015003 0.77355013 70.0913476 3.25647555 20.658376 0.57477163

X19 -0.78315644 2.78788189 44.7090219 -0.82769325 3.11398236 40.0184748

X20 0.20863252 0.1978524 85.03541 -0.28920056 0.38016801 77.6762804

X21 0.76971995 3.46248003 39.5873961 -0.72958217 3.11078659 40.6035102

X22 -1.1546715 4.32878664 32.6798727 0.0800231 0.02079122 94.7141538

X23 -0.94863381 2.92177308 43.4055219 2.04767988 13.6136132 4.21841322

X24 0.18986187 0.1872599 84.9122447 -0.21651948 0.24353603 82.0281228

X25 0.86475473 3.88467919 35.6050498 -0.79039756 3.24534183 38.7252386

X26 -0.98192455 3.75652921 36.8367033 -0.05802085 0.01311592 95.6892128

X27 -2.39825242 11.2044441 6.37380684 -0.12639344 0.03112072 93.7596223

Tableau 8. Complete results, for the first three axes of non-symmetric correspondence analysis of the ROYER’s

presence file. Vp, V% and P== : eigenvalues, contribution percentages, and associated probabimities, coordi. =

coordinates of the floristic variables or the relevés on axes, Cr% = relative contributions of species or relevés on

the respective axes, Pi : probabilities associated to relative contributions on the respective axes. The eigenvalues

and the significant relative contributions are in bold red.

On the first axis (figures 6 and 7), no relevé has a significant relative contribution. Two species have

significant contributions : Potentilla tabernaemontani and Asplenium trichomanes subsp. pachyrachis.

On the second axis, three relevés have significant relative contributions: 12, 18 and 23 as well as two

species: Asplenium trichomanes subsp. hastatum and Melica uniflora.

On the third axis, only the relevé 9 has a significant relative contribution, but on the other hand three

species are highlighted: Poa nemoralis, Asplenium trichomanes subsp. pachyrachis and Mycelis muralis.

Page 14: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

14

Figure 6. Non-symmetric correspondence analysis of the simple disjunctive table. Distribution of species in the

plans of axes 1 and 2. The species with a significant relative contribution are in red.

Figure 7 is instructive because it is easy to find the phytosociological classification of ROYER (2009), with

the exception of relevés 1 and 2 of the Asplenietum trichomanes-rutae-murariae ceterachetosum officinarum.

At this step of the analysis, it is not necessary to go further, because the utility of a multivariate analysis is well

demonstrated, provided that the data are adapted to the statistical technique. As for the difficulty of

discriminating an association represented by only two relevés, this is easily understandable because a small

number of relevés are certainly not favorable to statistical analysis.

-0,4

-0,2

0

0,2

0,4

0,6

0,8

-0,8 -0,6 -0,4 -0,2 0 0,2 0,4

Royerpres-nscaAsplenium trichomanes subsp,

hastatum

Hedera helix

Asplenium trichomanes subsp. quadrivalens

Phyllitis scolopendrium

Cardaminopsis arenosa subsp. borbasiiCampanula rotundifolia

Asplenium ruta-muraria

Asplenium trichomanes subsp. pachyrachis

Potentilla neumanniana

Cystopteris fragilis

Geranium robertianum

axe 1

axe

2

Page 15: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

15

Figure 7. Non-symmetric correspondence analysis of the simple disjunctif table. Distribution of relevés in the

plane of axes 1 and 2. Relevés 4, 15, 27 : Asplenietum pachyrachidis ; Relevés 1, 22 : Asplenietum

trichomano-rutae-murariae ceterachetosum officinarum ; Relevés 5, 7, 9, 11, 17, 19, 26 : Asplenietum

trichomano-rutae-murariae cardaminopsietosum borbasii ; Relevés 3, 8, 10, 13, 14, 20, 21, 24, 25 :

Cystopterido fragilis-Phyllitidetum scolopendrii et les relevés 2, 6, 12, 16, 18, 23 : Asplenietum hastati .

No classification attempt is made in this paragraph because the results are sufficiently explicit. In addition,

the environmental data provided are very general.

Non-symmetric correspondence analysis of the simple disjunctive table

Only the first two eigenvalues are significant (figure 10 and table 11). However, on the other axes, several

floristic variables and relevés have significant relative contributions.

-1,5

-1

-0,5

0

0,5

1

1,5

2

2,5

3

3,5

-3 -2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5 2

Royerpres-nsca

axe 1

axe

2

14

16

13

3

252

2

6

8

10

18

9

20

24

12

23

4

27

15

22

1

11

7

519

26

17

Page 16: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

16

Figure 8. The first twelve eigenvalues of non-symmetric correspondence analysis of the simple disjunctive table.

coord 1 Cr% 1 P 1 coord 2 Cr% 2 P 2

Vp.Vp% et P 1.477602818 15.04113161 0.021074816 1.021554466 10.39882639 1.412012645

Asplenium trichomanes subsp. quadrivalens+ 0.151665837 2.300252609 65.45837724

-

0.288959192 8.349741447 33.84615385

Asplenium trichomanes subsp. quadrivalens1 0.04425427 0.195844042 94.49947313 0.449350775 20.19161188 18.1032666

Asplenium trichomanes subsp. quadrivalens2 0.002195412 0.000481983 96.6280295 0.049401349 0.244049331 35.08956797

Asplenium trichomanes subsp. quadrivalens3 -0.023650463 0.055934442 64.23603793 0.000524841 2.75E-05 99.34668072

Potentilla neumanniana+ -0.222092707 4.932517046 3.371970495 0.058438387 0.341504508 63.19283456

Potentilla neumanniana1 0.013629061 0.018575131 78.83034773

-

0.026435708 0.069884664 62.62381454

Ceterach officinarum1 0.002705703 0.000732083 95.93256059 0.078057935 0.609304125 12.20231823

Ceterach officinarum2 0.013629061 0.018575131 79.11485774

-

0.026435708 0.069884664 61.94942044

Helleborus foetidus+ 0.013629061 0.018575131 79.03055848 -

0.026435708 0.069884664 62.14963119

Sanguisorba minor+ 0.013629061 0.018575131 79.71548999

-

0.026435708 0.069884664 63.20337197

Bromus erectus1 0.013629061 0.018575131 79.4625922 -

0.026435708 0.069884664 62.58166491

Asplenium trichomanes subsp. hastatum+ -0.045210431 0.204398308 34.03582719 0.030673827 0.094088366 57.20758693

Asplenium trichomanes subsp. hastatum1 -0.081377255 0.66222577 59.22023182

-

0.405896044 16.47515983 1.138040042

Asplenium trichomanes subsp. hastatum2 0.08905569 0.793091599 24.3308746 -0.11334328 1.284669914 17.79768177

Poa nemoralis+ 0.130481091 1.702531519 50.03161222 0.062018131 0.384624861 77.71338251

Poa nemoralis1 -0.02565586 0.065822315 74.56269758 0.072951791 0.532196384 39.50474183

Poa nemoralis2 -0.023650463 0.055934442 64.07797682 0.000524841 2.75E-05 99.09378293

Geranium robertianum+ 0.185228218 3.430949287 32.21285564

-

0.298300787 8.898335967 14.09905163

Geranium robertianum1 0.076205814 0.580732603 69.85247629 0.045639893 0.208299987 83.42465753

Phyllitis scolopendrium+ 0.017203517 0.0295961 73.5194942 0.039322206 0.15462359 45.93256059

Phyllitis scolopendrium1 0.160750362 2.584067878 40.01053741

-

0.104570659 1.093502271 61.79135933

Phyllitis scolopendrium2 0.052667819 0.27738992 50.28451001 0.012057468 0.014538253 89.28345627

Cystopteris fragilis+ 0.234440006 5.496211663 46.22760801 -

0.331634219 10.9981255 25.58482613

Cystopteris fragilis1 0.064770556 0.419522496 55.10010537 0.105112112 1.104855611 38.96733404

Cystopteris fragilis2 0.042143944 0.177611202 38.9251844

-

0.077699101 0.603715029 12.51844046

Cardamine impatiens+ 0.081853432 0.669998427 45.06849315 0.029640176 0.087854006 80.85353003

Cardamine impatiens1 0.019554571 0.038238126 70.05268704 0.042277964 0.178742626 42.82402529

Hedera helix+ 0.123623329 1.528272745 62.32876712 0.016534508 0.027338995 95.17386723

Hedera helix1 -0.192051118 3.688363186 5.974710221

-

0.135564163 1.837764228 25.90094837

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9 10 11 12

Page 17: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

17

Moehringia trinervia+ 0.109393397 1.196691541 45.32139094 0.053029392 0.281211638 74.93150685

Vinca minor+ 0.028012468 0.078469836 57.00737619 0.023511942 0.05528114 65.75342466

Asplenium trichomanes subsp. pachyrachis1 -0.373187156 13.92686535 0.052687039

-0.067952949 0.461760325 57.57639621

Asplenium ruta-muraria+ -0.67073298 44.98827304 4.004214963

-

0.176818163 3.126466288 63.93045311

Asplenium ruta-muraria1 0.046380876 0.215118565 81.35932561 0.292039675 8.528717148 14.25711275

Mycelis muralis+ 0.021749983 0.047306178 78.57744995 0.091679313 0.840509652 27.26027397

Mycelis muralis1 0.022026472 0.048516545 66.80716544 0.086637856 0.750611808 8.682824025

Cardaminopsis arenosa subsp. borbasii+ 0.015894852 0.025264632 88.67228662 0.107567852 1.157084282 37.49209694

Cardaminopsis arenosa subsp. borbasii1 0.052039675 0.270812781 64.29926238 0.058380333 0.340826323 63.75131718

Cardaminopsis arenosa subsp. borbasii2 -0.045210431 0.204398308 34.67860906 0.030673827 0.094088366 57.67123288

Campanula rotundifolia+ -0.228989976 5.243640894 34.1938883 0.19029959 3.621393393 47.2918862

Campanula rotundifolia1 0.032640746 0.10654183 51.60168599

-

0.030343223 0.092071118 57.8398314

Seseleria caerulea+ -0.043352462 0.187943595 58.12434141 0.030225099 0.091355658 73.14014752

Lamium galeobdolon+ 0.017203517 0.0295961 74.01475237 0.039322206 0.15462359 46.29083246

Lamium galeobdolon1 0.06188084 0.38292383 43.29820864 -

0.067843482 0.460273801 43.16122234

Mercurialis perennis2 0.037225488 0.138573697 45.04741834

-

0.056389008 0.317972021 28.59852476

Oxalis acetosella+ 0.046389129 0.215195132 55.30031612 0.056904915 0.323816933 51.67544784

Oxalis acetosella1 0.069866234 0.488129068 36.38566913

-

0.086732231 0.752247986 31.14857745

Campanula trachelium+ 0.037225488 0.138573697 44.83667018

-

0.056389008 0.317972021 28.19810327

Galium aparine+ 0.024655351 0.060788635 62.93993678

-

0.011454474 0.013120497 83.53003161

Chrysosplenium alternifolium+ 0.024655351 0.060788635 63.27713383

-

0.011454474 0.013120497 83.57218124

Arabis hirsuta+ -0.023650463 0.055934442 64.29926238 0.000524841 2.75E-05 99.27291886

Origanum vulgare+ -0.023650463 0.055934442 63.45626976 0.000524841 2.75E-05 99.34668072

Thymus praecox+ -0.023650463 0.055934442 64.51001054 0.000524841 2.75E-05 99.07270811

Ribes uva-crispa+ -0.022379829 0.050085673 78.47207587 0.081148239 0.658503676 33.44573235

Polypodium interjectum+ 0.032640746 0.10654183 51.87565859 -

0.030343223 0.092071118 57.44994731

Polypodium interjectum1 0.04256018 0.181136889 58.60906217 0.086912749 0.755382601 31.11696523

Fragaria vesca+ -0.045547874 0.207460884 34.61538462

-

0.019176251 0.036772859 72.10748156

Viola alba1 -0.036296368 0.131742636 46.4910432 0.045350358 0.205665501 39.65226554

Silene nutans+ -0.036296368 0.131742636 46.50158061 0.045350358 0.205665501 39.83140148

Potentilla micrantha+ -0.036296368 0.131742636 46.10115911 0.045350358 0.205665501 38.56691254

Poa compressa+ 0.023005608 0.052925802 64.81559536 0.044634785 0.199226405 40.4004215

Melica uniflora+ -0.058560772 0.342936407 20.72708114

-

0.068802711 0.473381303 17.86090622

Clematis vitalba+ -0.058560772 0.342936407 20.65331928 -

0.068802711 0.473381303 18.08219178

Sedum spurium+ 0.017203517 0.0295961 73.56164384 0.039322206 0.15462359 45.48998946

Ribes alpinum+ 0.029185612 0.085179996 55.52160169 0.017582709 0.030915164 74.84720759

Sedum album+ 0.001270635 0.000161451 98.13487882 0.080623399 0.650013242 11.19072708

X1 0.314046203 0.384253315 78.69336143 -

0.506489511 0.999473863 64.38356164

X2 0.970927471 1.836428872 55.25816649

-

0.879063926 1.505363738 56.93361433

X3 0.645474339 2.164348684 51.06427819 0.450472218 1.054156983 64.04636459

X4 -3.419232023 15.18330861 1.907270811

-

0.926033865 1.113686649 61.91780822

Page 18: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

18

X5 0.050587555 0.011632276 95.99578504 0.946495006 4.072058169 33.29820864

X6 1.081128883 3.03594717 43.54056902 -

1.292513374 4.339196942 31.66491043

X7 -1.041756591 4.932985428 27.63962065 0.587688889 1.569901045 55.92202318

X8 0.857764384 4.299894578 33.16122234

-

1.080373618 6.821340514 18.90410959

X9 0.507542648 0.501817285 76.17492097 1.659920209 5.367535913 25.11064278

X10 0.568118335 1.676667234 56.76501581

-

0.219459639 0.250194976 81.68598525

X11 -0.544963309 1.542779262 58.07165437 0.010055578 0.000525271 98.93572181

X12 -2.034180615 8.06082618 14.08851423 -1.86679122 6.788784662 19.11485774

X13 0.450584145 1.186516005 64.41517387 0.810015974 3.834501889 34.82613277

X14 0.971097385 2.449428914 48.36670179 -1.48865997 5.756125989 24.96311907

X15 -2.428699467 15.32098987 1.780821918 0.065657127 0.011197035 96.03793467

X16 0.822838106 1.318953018 62.20231823

-

2.717607383 14.38712316 3.20337197

X17 -1.049532087 3.576355847 38.66174921 -

0.367403437 0.438263914 75.71127503

X18 0.685596106 0.915666273 68.00842993

-

1.874071885 6.841841748 19.51527924

X19 -0.836355242 3.179500416 41.12750263 0.868880879 3.431609008 38.29293994

X20 0.530104304 1.277320788 62.23393045 0.855171001 3.324170185 38.81981033

X21 0.752120948 3.305956679 39.51527924

-

0.581354748 1.975168888 51.68598525

X22 0.062345886 0.012620161 96.16438356 1.49553498 7.261769083 17.34457323

X23 -1.349380422 5.911777677 23.71970495 -

1.318211411 5.641822481 24.27818757

X24 0.396410228 0.81631724 69.56796628 0.753385735 2.948519822 41.2223393

X25 0.672506392 2.349427778 48.47207587 0.336872295 0.589521782 72.48682824

X26 0.029278469 0.003339852 98.06111697 1.544687452 9.296335026 11.53846154

X27 -2.751194195 14.74494058 2.307692308 -0.44155383 0.37981127 77.76606955

Table 9. Results for the first two axes of the non-symmetric correspondence analysis of the simple disjunctive

ROYER file. Eigenvalues and significant relative contributions are in bold red.

Axis 1 (figure 10) is dominated by three variables: Asplenium ruta-muraria (abundance +), Asplenium

trichomanes subsp. pachyrachis (abundance 1) and Potentilla tabernaemontani (abundance +). These three

variables form the characteristic combination of relevés 4, 15 and 27 (figure 11), all three with significant

relative contributions, which corresponds to the association Asplenietum pachyrachidis.

Axis 2 is strongly influenced by Asplenium trichomanes subsp. hastatum (abundance1) and to a lesser

extent by Cystopteris fragilis (abundance +) and Geranium robertianum (abundance +).

Axis 3 opposes Asplenium trichomanes subsp. hastatum (abundance 1) and Asplenium trichomanes subsp.

hastatum (abundance 2).

By examining the dispersion of the relevés (figure 11) in the plans of axes 1 and 2, then 2 and 3, we note

that only one of the associations is clearly discriminated, it is the Asplenietum pachyrachidis (relevés 4, 15, 27).

The other syntaxons mix. For example, on axis 3, the Asplenietum hastati is cut in half based on the abundance

of Asplenium trichomanes subsp. hastatum., abundance 1 on one side, abundance 2 on the other.

Page 19: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

19

Figure 10. Non-symmetric correspondence analysis of the simple disjunctive table. Distribution of species in the

planes of axes 1 and 2. In red, the floristic variables with significant relative contributions.

-0,5

-0,4

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

0,4

0,5

-0,8 -0,7 -0,6 -0,5 -0,4 -0,3 -0,2 -0,1 0 0,1 0,2 0,3

Royer-disjsimple-nsca

Asplenium ruta-muraria+

Asplenium trichomanes

subsp. pachyrachis1

Campanula rotundifolia+

Potentilla neumanniana+

Hedera helix1

Asplenium trichomanes

subsp. quadrivalens1

Asplenium ruta-muraria1

Asplenium trichomanes subsp. quadrivalens+

Cystopteris fragilis+

Geranium robertianum+

Asplenium trichomanes subsp. hastatum1

Page 20: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

20

Figure 11. Non-symmetric analysis of the simple disjunctive table. Distribution of relevés in the plane of axes 1

and 2. Relevés 4, 15, 27 : Asplenietum pachyrachidis ; Relevés 1, 22 : Asplenietum trichomano-rutae-

murariae ceterachetosum officinarum ; Relevés 5, 7, 9, 11, 17, 19, 26 : Asplenietum trichomano-rutae-

murariae cardaminopsietosum borbasii ; Relevés 3, 8, 10, 13, 14, 20, 21, 24, 25 : Cystopterido fragilis-

Phyllitidetum scolopendrii et les relevés 2, 6, 12, 16, 18, 23 : Asplenietum hastati.

Only one association is clearly separated from the other relevés (Asplenietum pachyrachidis). The others

mix. This analysis does not lead to a clear phytosociological interpretation of the data table.

Non-symmetric correspondence analysis of the simplified disjunctive table

This type of analysis brings practically the same results as with the presence file and is not detailed.

-3

-2,5

-2

-1,5

-1

-0,5

0

0,5

1

1,5

2

-4 -3,5 -3 -2,5 -2 -1,5 -1 -0,5 0 0,5 1 1,5

Royerdisjsimple-nsca

1

22

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20

21

23

24

25

26

27

Page 21: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

21

The representation of the relevés again intermixes the associations. The first three axes are therefore

strongly influenced by local variations. The synthetic power of the technique is low.

Conclusions about the analysis of the ROYER’s table

We thus arrive at a good agreement between the analysis of the phytosociologist and the statistical analysis,

provided that we analyse a presence table with non-symmetric correspondence. Only the association defined by

only two relevés can not be clearly discriminated against by the others.

The BAILLY’s file

After a small file, the analysis of an important file was necessary. We have selected a pluristratal ligneous

vegetation file to better compare the robustness of the various statistical techniques.

The data

This file is the result of a study of the Franche-Comté swampy Alder woodlands (BAILLY 2012). Many

relevés (190 originally) have been described using the phytosociological method. The species are divided into

six strata called a1, b1 (woody strata), ep1 (epiphytes), h1 (herbaceous plants), hylf (hydrophyte, single species)

and m1 (mosses and liverworts). The strata were recorded separately and some species are present in two or

more strata; the latter are therefore present in two or more rows of the data table. Abundance-dominance is

expressed using the coefficients +, s, r, i, 1, 2, 3, 4 and 5. No explicit environmental or pedological data has been

published.

The tables have already been analysed by various multivariate analysis techniques such as ascending

hierarchical classification of presence data (agglomerative clustering of complete links by BRAY-CURTIS

distance) or abundance-dominance (WARD method with chord distance) and finally, a table of 112 relevés was

used to establish the typology. The correspondence analysis was also used, with no particular precision on the

type of numerical data.

The approach by elementary syntaxa was used as in the ROYER’s file.

Sufficiently discriminable syntaxa have been recognized from column reassignments and basing on syntaxa

already known in the literature and creating new ones.

Two relevés sufficiently individualized of all the others, located at the articulation of Betulion pubescentis

and Sphagno-Alnion glutinosae, do not appear in the typology.

Page 22: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

22

The phytosociological analysis

The typology includes three associations of alder woodland with ferns and four of the alder woodlands with

sedges.

- Mesohygrophilous Alder woodlands with ferns and Carex brizoides: Dryopterido carthusianae - Alnetum

glutinosae, ass. nov. hoc. loco. with two sub-associations, the subass. typicum (17 relevés named DA1 to 17) and

the subass. circaetosum (6 relevés designated DA18 to 23).

- Peaty Alder woodlands with Sphagnum : Sphagno flexuosi - Alnetum glutinosae Malcuit ex Bœuf, Cartier &

Ritz 2013 with two sub-associations, the subass. Polytrichastretosum formosi (6 relevés named SA1 to 6) and

subass. typicum (7 relevés named SA7 to 13).

- Hygrophilous Alder woodlands with Lady-fern, Club-rush and Carex brizoides : Athyrio filicis-feminae -

Alnetum glutinosae Passarge 1968 caricetosum brizoidis subass. nov. hoc. loco., with the mesoacidiphilic variant

with Molinia caerulea and Sphagnum palustre (12 relevés named Ata1 to 12), the acidicline to neutroacidicline

variant with Caltha palustris and Filipendula ulmaria (10 relevés named AtA 13-22) and the transition variant

towards Peucedano - Alnetum, Filipendula ulmaria and Iris pseudacorus (5 relevés designated AtA23-27).

- Paludal acidicline Alder woodlands with Carex elongata : Peudedano palustris – Alnetum glutinosae Noirfalise

& Sougnez 1961, with three variants and a subgroup, the typical variant with Dryopteris cristata (1 relevés

named PA1), the variant with Carex acutiformis and Phalaris arundinacea (5 relevés named PA2 to 6), the

Carex vesicaria variant (5 relevés named PA7 to 11), and the subass. Agrostietosum caninae (6 relevés named

PA12 to 17).

- Hygrophilous neutroacidiclinous Alder woodlands with Enchanter’s nightshade and Lesser Pond-sedge :

Carici acutiformis - Alnetum glutinosae Scamoni 1933, with the typical variant (12 relevés named CA1 to 12)

and the variant with Poa trivialis (4 relevés named CA13 to 16).

- Mountaineer Alder woodlands with Monk’s wood: Aconito napelli - Alnetum glutinosae ass. nov. hoc. loco.

with the alluvial sub-unit (2 relevés named AcA1 and 2), the fontinal sub-unit (2 relevés named AcA3 and 4),

and the peri-lacustrine sub-unit with Carex appropinquata (3 relevés referred to as AcA5 to 7).

- Amphibious Alder woodlands with Water Violet : Hottonio palustris - Alnetum glutinosae Hueck 1929 with a

sub-unit to Hottonia palustris (1 relevé named HA1), and a sub-unit with Glyceria fluitans and Lemna minor (4

relevés named HA2 to 5).

Finally, 108 relevés are completely described completely, which were included in our study.

Page 23: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

23

The character-species of the associations

As in the previous file, the operation consists in comparing the list of character- and differential species given by BAILLY (2012) with that provided by the permutation

technique based on the frequency of species in the phytosociological units or the elementary syntaxons obtained at multivariate analyses.

Mesohygrophilous Alder woodlands with ferns and Carex brizoides : Dryopterido carthusianae – Alnetum glutinosae

The association is represented by 23 relevés. Character- or differential species, from a statistical point of view, are shown in table 10. Only common species are

presented.

Species/relevés

DA

1

DA

2

DA

3

DA

4

DA

5

DA

6

DA

7

DA

8

DA

9

DA

10

DA

11

DA

12

DA

13

DA

14

DA

15

DA

16

DA

17

DA

18

DA

19

DA

20

DA

21

DA

22

DA

23

Fr Pr

Athyrium filix femina-h1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 23 1 0,0002

Rubus fruticosus-h1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 21 0,91 0,0250

Alnus glutinosa-b1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 1 1 1 18 0,78 0,0185

Lonicera periclymenum-h1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 18 0,78 0,0038

Thuidium tamariscinum 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 17 0,74 0,0032

Corylus avellana-b1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1 0 16 0,70 0,0047

Viburnum opulus-h1 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0 1 1 0 0 1 1 1 1 16 0,70 0,0229

Eurhynchium striatum 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 15 0,65 0,0022

Carex brizoides-h1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 14 0,61 0,0155

Quercus robur-a1 1 1 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 0 0 0 11 0,48 0,0007

Dryopteris dilatata-h1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 0 1 10 0,43 0,0425

Betula pendula-a1 1 1 1 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 9 0,39 0,0015

Polytrichastrum formosum 0 1 1 1 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 0 0 0 9 0,39 0,0047

Page 24: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

24

Lonicera periclymenum-a1 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 7 0,30 0,0253

Carpinus betulus-h1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 7 0,30 0,0058

Quercus robur-b1 0 0 0 0 0 0 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 6 0,26 0,0454

Atrichum undulatum 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 6 0,26 0,0306

Corylus avellana-h1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 4 0,17 0,0178

Stellaria holostea-h1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 3 0,13 0,0303

Calypogeia fissa 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 3 0,13 0,0286

Quercus palustris-a1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 2 0,09 0,0450

Chiloscyphus pallescens 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0,09 0,0429

Table 10. Species of the Alder woodlands with ferns and Carex brizoides with a relative frequency statistically higher than in the whole of relevés. The species names are

followed by their membership to a layer. = frequency, Fr = relative frequency, Pr = probability calculated by the test.

The four species with the lowest probabilities obtained with the permutation test are also fairly common species in all 108 records of the Alder woodlands. They are

Athyrium filix-femina (79 presences in the whole), Lonicera periclymenum-h1 (56 presences), Eurhynchium striatum (40 presences) and Thuidium tamariscinum (50

presences). As for Dryopteris carthusiana (75 presences), which is included in the name of the association, its frequency in relevés of mesohyrophrophilous Alder woodlands

with ferns and Carex brizoides is not statistically more frequent than in all relevés. Carex brizoides is considered to be a character-species of the association, but with a

relative frequency of only 0.61. From BAILLY’s character-species set, the test retained Athyrium filix-femina, Rubus fruticosus-h1, Carex brizoides, Dryopteris dilatata but

failed on Dryopteris carthusiana, Lysimachia vulgaris and Juncus effusus.

The typical sub-association is characterized by the combination of woody species: Corylus avellana (shrub layer), Betula pendula and Quercus robur (tree layer) and

Lonicera periclymenum (both in shrub and herbaceous layers). Next are Athyrium filix-femina, Rubus fruticosus (herbaceous layer), Thuidium tamariscinum and Molinia

caerulea. Besides Betula pendula (17 presences in the whole) and Quercus robur (22 presences in the whole), the other species are common in Alder woodlands. As for Salix

aurita, its frequency is not statistically higher in this sub-association than in the Alder woodlands, whereas it is considered as such by BAILLY (2012). With Molinia caerulea

and Lonicera periclymenum, statistical analysis confirms the differential status of sub-association of these two species.

Page 25: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

25

In the sub-association circaetosum, the combination of BAILLY (2012), we find, among the character-

species, the combination cited by BAILLY (2012), with Circaea lutetiana, Lamium galeobdolon, Stachys

sylvatica, but without Urtica dioica, the frequency of which is not significant.

Peaty Alder woodlands with Sphagnum : Sphagno flexuosi – Alnetum glutinosae and two

sub-associations

Species/relevés SA1 SA2 SA3 SA4 SA5 SA6 SA7 SA8 SA9 SA10 SA11 SA12 SA13 Fr Pr

Athyrium filix femina-h1 1 1 1 1 1 1 1 1 1 1 1 1 1 13 1 0,01246

Lonicera periclymenum-h1 1 1 1 1 1 1 1 1 1 1 1 1 1 13 1 0,0001

Rubus fruticosus-h1 1 1 1 1 1 1 1 1 1 1 1 1 1 13 1 0,01517

Salix aurita-b1 1 1 1 0 1 1 1 1 1 1 1 1 1 12 0,92 0,00312

Sphagnum palustre 1 1 1 1 1 1 0 1 1 1 1 1 1 12 0,92 0

Molinia caerulea-h1 1 1 1 0 1 1 1 1 0 1 1 1 1 11 0,85 0,00005

Thuidium tamariscinum 1 1 1 1 1 1 1 1 1 1 0 0 0 10 0,77 0,01898

Lonicera periclymenum-b1 0 1 1 1 1 1 1 1 0 1 1 0 0 9 0,69 0,01627

Rubus fruticosus-b1 0 1 0 1 1 1 1 1 0 0 1 0 0 7 0,54 0,01038

Dryopteris dilatata-h1 1 1 0 0 1 0 0 0 1 1 0 1 1 7 0,54 0,02693

Osmunda regalis-h1 0 1 0 0 0 0 1 0 1 1 0 1 0 5 0,38 0,00006

Trichocolea tomentella 0 0 0 0 0 0 1 1 1 0 1 0 1 5 0,38 0,00357

Carex echinata-h1 0 0 0 0 0 0 1 1 1 0 1 0 0 4 0,31 0,00724

Pteridium aquilinum-h1 0 1 0 0 1 0 1 0 0 0 0 0 1 4 0,31 0,01133

Teucrium scorodonia-h1 0 0 0 0 0 1 0 1 1 0 0 1 0 4 0,31 0,0018

Sorbus aucuparia-b1 0 0 1 0 1 0 0 0 0 0 0 1 0 3 0,23 0,03811

Sphagnum flexuosum 0 1 0 0 0 0 0 0 0 1 0 1 0 3 0,23 0,00152

Knautia dispacifolia-h1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0,15 0,01332

Luzula sylvatica-h1 0 0 0 0 0 0 0 0 0 0 0 1 1 2 0,15 0,01359

Sorbus aucuparia-h1 0 0 0 0 1 0 0 0 0 0 0 0 1 2 0,15 0,01366

Loeskeobryum brevirostre 0 0 0 0 0 0 0 1 1 0 0 0 0 2 0,15 0,01383

Sphagnum squarrosum 0 0 0 0 0 0 0 0 1 0 0 1 0 2 0,15 0,01404

Table 11. Species of the Alder woodlands with Sphagnum, with a relative frequency statistically higher than in

the whole of relevés. The species names are followed by their membership to a layer. = frequency, Fr =

relative frequency, Pr = probability calculated by the test.

Based on the frequency test, this syntaxon is characterized by the juxtaposition of (table 11):

- woody species: Salix aurita quite common in the Alder woodlands, Lonicera periclymenym much less frequent

on the whole in the shrub layer,

- very frequent herbaceous species (Molinia caerulea and Lonicera periclymenum here only in the herbaceous

layer, both with the lowest probabilities <0.0001 and Rubus fruticosus),

- three Sphagnum species, S. palustre quite common as well as S. flexuosum and S. squarrosum, infrequent and

exclusive of this association but also of Thuidium tamariscinum quite common in the whole.

Page 26: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

26

It should be noted that BAILLY (2012) does not put woody species in the characteristic set of the

association. It contains, with significant frequencies, Sphagnum palustre, S. flexuosum, S. squarrosum, Molinia

caerulea, Osmunda regalis, Carex echinata but not Scutellaria minor.

The sub-association polytrichastretosum formosi is characterized by the juxtaposition of several woody

species, other species already characteristic of the association, with additionally Polytrichastrum formosum as

expected.

In the typicum sub-association, in addition to the characteristic set of BAILLY (2012), there is a mixture of

differential species of the Alder woodlands with ferns and differentials of the sub-association.

Page 27: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

27

Hygrophilous Alder woodlands with Lady-fern, Club-rush and Carex brizoides: Athyrio filicis-feminae – Alnetum glutinosae caricetosum

brizoidis

Espèces/relevés

AtA

1

AtA

2

AtA

3

AtA

4

AtA

5

AtA

6

AtA

7

AtA

8

AtA

9

AtA

10

AtA

11

AtA

12

AtA

13

AtA

14

AtA

15

AtA

16

AtA

17

AtA

18

AtA

19

AtA

20

AtA

21

AtA

22

AtA

23

AtA

24

AtA

25

AtA

26

AtA

27

Fr Pr

Athyrium filix femina-h1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 26 0,96 0,0006

Lysimachia vulgaris-h1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 26 0,96 0,0114

Galium palustre-h1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 24 0,89 0,0001

Rubus fruticosus-h1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1 24 0,89 0,0343

Dryopteris carthusiana-h1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 0 23 0,85 0,0319

Juncus effusus-h1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 0 1 1 1 23 0,85 0,0013

Scirpus sylvaticus-h1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 22 0,81 0,0000

Lonicera periclymenum-h1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 0 1 1 0 1 0 0 0 0 1 19 0,70 0,0220

Plagiomnium undulatum 0 0 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 1 19 0,70 0,0000

Thuidium tamariscinum 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 0 0 0 0 1 19 0,70 0,0035

Corylus avellana-b1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 17 0,63 0,0170

Lonicera periclymenum-b1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 1 0 0 0 1 0 17 0,63 0,0024

Carex elongata-h1 0 0 0 1 0 1 1 1 1 0 0 0 1 1 0 0 0 1 0 0 1 1 1 1 0 1 1 14 0,52 0,0248

Calliergonella cuspidata 1 0 1 0 1 1 0 1 0 1 0 0 1 1 1 1 0 1 0 1 1 1 0 0 0 0 0 14 0,52 0,0181

Oxalis acetosella-h1 0 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 11 0,41 0,0002

Plagiomnium affine 1 1 0 0 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 0 0 1 0 0 0 0 0 11 0,41 0,0299

Cardamine pratensis-h1 0 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 0 0 0 0 0 1 0 0 10 0,37 0,0065

Lythrum salicaria-h1 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 9 0,33 0,0379

Rubus idaeus-h1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 1 7 0,26 0,0436

Athyrium filix-femina-ep1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 6 0,22 0,0075

Anemone nemorosa-h1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 6 0,22 0,0449

Lamium galeobdolon-h1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 1 6 0,22 0,0262

Cirriphyllum piliferum 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 6 0,22 0,0149

Lophocolea bidentata 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 5 0,19 0,0220

Lonicera periclymenum-ep 0 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 4 0,15 0,0135

Stachys officinalis-h1 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0,11 0,0478

Table 12. Species of the Alder woodlands with Lady-fern, Club-rush and Carex brizoides, with a relative frequency statistically higher than in the whole of relevés. The

species names are followed by their membership to a layer. = frequency, Fr = relative frequency, Pr = probability calculated by the test.

Page 28: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

28

Several species are distinguished with very low probabilities related to their frequencies (table 12):

Plagiomnium undulatum, Scirpus sylvaticus, Galium palustre, Oxalis acetosella and Athyrium filix-femina. Other

common species include two woody species (Corylus avellana and Lonicera periclymenun, the latter also in the

herbaceous layer), Dryopteris carthusiana, Juncus effusus, Lysimachia vulgaris, Rubus fruticosus (herbaceous

layer) and Thuidium tamariscinum. There is a mixture of species from the differential set of the Alder woodlands

with ferns, hyphrophilic differentials of the Athyrio-Alnetum and the subgroup caricetosum brizoidis. This shows

that the syntaxon is clearly defined, but curiously enough, the two most common species Plagiomnium

undulatum and Thuidium tamariscinum are not considered as character-species by BAILLY (2012). The

permutation test also indicates several other bryophytes as possible character-species.

The mesoacidiphilic variant with Molinia caerulea and Sphagnum palustre is poorly defined in relation to

the subgroup and the three species cited as differentials of the variant, i.e. Molinia caerulea, Sphagnum palustre

and Scutellaria minor, do not appear as character-species with the test by permutation.

In the acidiclinous to neutroacidiclinous variant with Caltha palustris and Filipendula ulmaria, among the

two differentials of the variant cited by BAILLY (2012), only Caltha palustris presents a statistically significant

frequency. Filipendula ulmaria is not. On the other hand, Carex brizoides and Cardamine pratensis have

significant and highly significant frequencies. Mention may also be made of Carex vesicaria, Scirpus sylvaticus,

Calliergonella cuspidata, Plagiomnium undulatum and Thuidium tamariscinum.

The transition variant to Peucedano - Alnetum, with Filipendula ulmaria and Iris pseudacorus is more

clearly defined since it is found, with significant frequencies, Filipendula ulmaria, Impatiens noli-tangere, cited

as differentials of the variant but additionally Galium aparine subsp . aparine.

Page 29: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

29

Swamp acidiclinous Alder woodlands with Elongated Sedge : Peucedano palustris –

Alnetum glutinosae

Species/relevés

PA

1

PA

2

P

A3

P

A4

P

A5

P

A6

P

A7

P

A8

P

A9

PA

10

PA

11

PA

12

PA

13

PA

14

PA

15

PA

16

PA

17 Fr Pr

Galium palustre-h1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 15

0,88

0,0025

Carex elongata-h1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 0

1

4

0,8

2

0,00

00

Iris pseudacorus-h1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 14

0,82

0,0000

Lycopus europaeus-h1 1 0 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1

1

3

0,7

6

0,00

00

Carex vesicaria-h1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 12

0,71

0,0001

Scutellaria galericulata-

h1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 8

0,4

7

0,00

01

Agrostis canina-h1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 6 0,3

5 0,00

35

Phalaris arundinacea-h1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 6

0,3

5

0,00

93

Carpinus betulus-b1 0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 1 0 5 0,2

9 0,03

14

Phragmites australis-h1 0 1 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 5

0,2

9

0,00

87

Ranunculus flammula-h1 0 0 0 0 0 0 1 1 0 0 0 1 1 0 1 0 0 5 0,2

9 0,00

01

Equisetum fluviatile-h1 1 0 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 4

0,2

4

0,01

05

Frangula dodonei subsp. dodonei-h1 0 0 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 4

0,24

0,0330

Thysselinum palustre-h1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 4

0,2

4

0,04

94

Valeriana dioica-h1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 0 0 4

0,2

4

0,04

93

Populus tremula-b1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 3

0,1

8

0,02

68

Persicaria hydropiper-h1 0 0 0 1 0 1 1 0 0 0 0 0 0 0 0 0 0 3

0,1

8

0,04

94

Ranunculus repens-h1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 3

0,1

8

0,04

86

Rumex sanguineus-h1 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 2

0,1

2

0,02

42

Table 13. Species of the Alder woodlands with Carex elongata, with a relative frequency statistically higher than

in the whole of relevés. The species names are followed by their membership to a layer. = frequency, Fr =

relative frequency, Pr = probability calculated by the test.

With the lowest probabilities associated with frequencies (table 13), Carex elongata (characteristic of the

association), Carex vesicaria, and species of the Phragmito australis-Magnocaricetea elatae, namely Iris

pseudacorus, Lycopus europaeus, Galium palustre and Scutellaria vesiculata. Among the species of the

characteristic set, only Carex elongata and Thysselinum palustre have significant frequencies; On the other hand,

a species with only one presence can not be tested.

Carex acutiformis and Phalaris arundinacea are among the differential species of the variant with Carex

acutiformis and Phalaris arundinacea, but their significant frequencies include Phragmites australis and

Thysselinum palustre.

Page 30: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

30

In the variant with Carex vesicaria, the test defines a differential set consisting of three Carex: C. elongata,

C. remota and C. vesicaria, Iris pseudacorus, Lycopus europaeus and Valeriana dioica.

This sub-association agrostietosum caninae is well diversified and is found among the statistically most

frequent species in the sub-association, namely Salix aurita-b1, Agrostis canina-h1, Quercus robur-a1, Frangula

dodonei subsp. dodonei-b1, Carex vesicaria-h1, Carpinus betulus-h1, Iris pseudacorus-h1, Juncus effusus-h1,

Scutellaria galericulata-h1, Polytrichastrum formosum and Sphagnum auriculatum, many of the species

presented as differentials of the sub-association by BAILLY (2012 ).

Hygrophilous neutroacidiclinous Alder woodlands with Enchanter’s nightshade and Lesser

Pond-sedge : Carici acutiformis – Alnetum glutinosae

Espèces/Relevés CA1

CA2

CA3

CA4

CA5

CA6

CA7

CA8

CA9

CA10

CA11

CA12

CA13

CA14

CA15

CA16 S Fr Pr

Fraxinus excelsior-b1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

6 1 0

Carex acutiformis-h1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 1 0

Circaea lutetiana-h1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 1

1

3

0,8

1 0

Filipendula ulmaria-h1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 12

0,75

0,0004

Caltha palustris-h1 1 0 0 1 0 1 0 1 0 1 1 1 1 1 1 1

1

1

0,6

9

0,01

16

Crataegus monogyna-b1 1 1 0 0 1 0 1 0 0 0 1 1 0 0 1 1 8 0,5

0 0,00

04

Solanum dulcamara-h1 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 7

0,4

4

0,04

20

Galeopsis tetrahit-h1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 6 0,3

8 0,00

01

Poa trivialis-h1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 1 5

0,3

1

0,01

66

Humulus lupulus-b1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 4 0,2

5 0,04

03

Prunus padus subsp.

padus-b1 0 0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 4

0,2

5

0,00

43

Galium aparine subsp. aparine-h1 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 0 4

0,25

0,0087

Geranium robertianum-

h1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 4

0,2

5

0,00

18

Geum urbanum-h1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 4 0,2

5 0,00

43

Glechoma hederacea-h1 0 1 0 1 0 0 0 0 0 0 0 0 0 1 1 0 4

0,2

5

0,00

42

Phragmites australis-h1 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 4

0,2

5

0,03

95

Rubus caesius-h1 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 0 4

0,2

5

0,01

69

Dryopteris filix-mas-h1 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 3 0,1

9 0,02

27

Impatiens glandulifera-

h1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 3

0,1

9

0,02

22

Ribes nigrum-b1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2 0,1

3 0,02

13

Crataegus monogyna-h1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 2

0,1

3

0,02

09

Epilobium hirsutum-h1 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 2 0,1

3 0,02

16

Ligustrum vulgare-h1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2

0,1

3

0,02

07

Ribes nigrum-h1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2

0,1

3

0,02

06

Page 31: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

31

Table 14. Species of the neutroacidiclinous Alder woodlands with Circaea lutetiana and Carex acutiformis, with

a relative frequency statistically higher than in the whole of relevés. The species names are followed by their

membership to a layer. = frequency, Fr = relative frequency, Pr = probability calculated by the test.

The statistical analysis (table 14) reproduces three of the character-species according to BAILLY (2012),

namely Carex acutiformis, Circaea lutetiana and Filipendula ulmaria but excludes Dryopteris carthusiana and

Athyrium filix-femina. On the other hand, the analysis adds Fraxinus excelsior to the shrub layer, Caltha

palustris and Circaea lutetiana.

In the typical variant, there are naturally many species of the association but here without Caltha palustris.

The variant with Poa trivialis is distinguished mainly by the discovery of its nitrophilous species: Galium

aparine subsp. Aparine, Geranium robertianum, Geum urbanum, Glechoma hederacea, Poa trivialis, Stachys

sylvatica and Urtica dioica, which fully agrees with BAILLY's analysis (2012).

Page 32: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

32

Mountaineer Alder woodlands with Monk’s wood : Aconito napelli – Alnetum glutinosae

Species/relevés AcA1 AcA2 AcA3 AcA4 AcA5 AcA6 AcA7 Fr Pr

Caltha palustris-h1 1 1 1 1 1 1 1 7 1 0,0012

Filipendula ulmaria-h1 1 1 1 1 1 1 1 7 1 0,0004

Calliergonella cuspidata 1 1 1 1 1 1 1 7 1 0,0003

Fraxinus excelsior-b1 1 1 1 1 1 1 0 6 0,86 0,0369

Angelica sylvestris-h1 1 1 1 0 1 1 1 6 0,86 0,0026

Carex acutiformis-h1 1 1 1 1 0 1 1 6 0,86 0,0085

Euonymus europaeus-b1 1 0 1 1 1 1 0 5 0,71 0,0002

Galium mollugo subsp. mollugo-h1 1 1 1 1 0 1 0 5 0,71 0,0000

Ranunculus aconitifolius-h1 1 1 0 1 1 0 1 5 0,71 0,0000

Aconitum napellus-h1 1 1 0 1 0 0 1 4 0,57 0,0000

Cirsium oleraceum-h1 0 0 1 1 1 0 1 4 0,57 0,0001

Eupatorium cannabinum-h1 0 0 1 1 1 1 0 4 0,57 0,0023

Solanum dulcamara-h1 0 0 1 1 1 1 0 4 0,57 0,0486

Valeriana officinalis-h1 1 1 0 1 1 0 0 4 0,57 0,0008

Plagiomnium elatum 0 0 1 1 1 1 0 4 0,57 0,0000

Carex appropinquata-h1 0 0 0 0 1 1 1 3 0,43 0,0002

Carex elata-h1 0 1 0 0 1 0 1 3 0,43 0,0002

Poa trivialis-h1 0 1 0 0 1 1 0 3 0,43 0,0301

Scutellaria galericulata-h1 1 1 0 1 0 0 0 3 0,43 0,0377

Thalictrum aquilegiifolium-h1 1 0 1 1 0 0 0 3 0,43 0,0002

Valeriana dioica-h1 0 0 1 0 0 1 1 3 0,43 0,0171

Ligustrum vulgare-b1 0 0 1 1 0 0 0 2 0,29 0,0332

Ribes rubrum-b1 1 0 0 0 0 1 0 2 0,29 0,0329

Sambucus nigra-b1 0 0 1 0 0 1 0 2 0,29 0,0107

Acer campestre ep1 0 0 0 0 1 1 0 2 0,29 0,0035

Brachypodium sylvaticum-h1 1 0 1 0 0 0 0 2 0,29 0,0109

Lysimachia nummularia-h1 1 1 0 0 0 0 0 2 0,29 0,0204

Mentha aquatica-h1 0 0 0 0 1 1 0 2 0,29 0,0476

Ranunculus auricomus-h1 1 1 0 0 0 0 0 2 0,29 0,0345

Cratoneuron filicinum 0 0 1 1 0 0 0 2 0,29 0,0040

Table 15. Species of the mountainer Alder woodlands with Aconitum napellus,, with a relative frequency

statistically higher than in the whole of relevés. The species names are followed by their membership to a layer.

= frequency, Fr = relative frequency, Pr = probability calculated by the test.

The statistical analysis (table 15) is quite similar to that of BAILLY (2012), as regards both the shrub layer

and the herbaceous and muscular layer. Nine of the ten species of the characteristic set of mountaineer Alder

woodlands with Aconitum napellus are among the species with a significant frequency, namely Caltha palustris,

Filipendula ulmaria, Carex acutiformis, Angelica sylvestris, Ranunculus aconitifolius, Galium mollugo subsp.

Page 33: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

33

mollugo, Aconitum napellus, Cirsium oleraceum and Thalictrum aquilegiifolium. The same applies to the

subunits.

The subunits are not detailed due to too few relevés, which does not warrant statistical analysis.

Amphibious Alder woodlands with Water Violet : Hottonio palustris – Alnetum glutinosae

Espèces/relevés HA1 HA2 HA3 HA4 HA5 S Fr Pr

Acer pseudoplatanus-b1 1 1 1 0 1 4 0,8 0,0012

Glyceria fluitans-h1 1 0 1 1 1 4 0,8 0,0001

Quercus petraea-a1 1 1 0 0 1 3 0,6 0,0005

Lemna minor-h1 1 1 1 0 0 3 0,6 0,0001

Carex elongata-ep1 0 0 0 1 1 2 0,4 0,0096

Carex riparia-h1 1 1 0 0 0 2 0,4 0,0016

Alnus glutinosa-ep1 0 0 0 1 0 1 0,2 0,0458

Calliergonella cuspidata-ep1 0 0 0 0 1 1 0,2 0,0460

Frangula dodonei subsp. dodonei-ep1 0 0 0 1 0 1 0,2 0,0467

Lysimachia vulgaris-ep1 0 0 0 1 0 1 0,2 0,0453

Polytrichastrum formosum-ep1 0 0 0 0 1 1 0,2 0,0464

Thuidium tamariscinum-ep1 0 0 0 0 1 1 0,2 0,0474

Thysselinum palustre-ep1 0 0 0 0 1 1 0,2 0,0466

Alisma plantago-aquatica-h1 0 0 1 0 0 1 0,2 0,0457

Carex pseudocyperus-h1 1 0 0 0 0 1 0,2 0,0450

Glyceria maxima-h1 1 0 0 0 0 1 0,2 0,0465

Hottonia palustris-h1 1 0 0 0 0 1 0,2 0,0465

Rorippa amphibia-h1 1 0 0 0 0 1 0,2 0,0461

Table 16. Species of the amphibious Alder woodlands with Hottonia palustris with a relative frequency

statistically higher than in the whole of relevés. The species names are followed by their membership to a layer.

= frequency, Fr = relative frequency, Pr = probability calculated by the test.

The two species with the lowest probabilities are Glyceria fluitans and Lemna minor, which are part of the

differential hydrophytes of the association. There are also two woody species in the shrub layer, i.e. Quercus

petraea and Acer pseudoplatanus, many epiphytes and other rarer species. As BAILLY points out, this syntaxon

is well polymorphic and the subunit with Glyceria fluitans and Lemna minor is the most frequent in Franche-

Comté (table 16). The small number of relevés makes statistical analysis difficult.

This Alder woodland is clearly distinguished from other associations.

Page 34: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

34

Data analysis of the complete file

The file, consisting finally of 108 columns and 330 lines, is too important to be presented here, it is

appended. As before, we include all species, even those present only once. There are 91.51% empty cells in the

presence table, which does not facilitate analysis.

The tree layers (species names followed by a1) includes 20 species, the shrub layer 42 (species names

followed by b1), the epiphytes 31 (species names followed by ep1), the herbaceous layer 184, including the

hydrophyte Lemna minor (name followed by m1), and the moss layer 53. Some species are present in several

layers. With such data, multiple factor analyses always end up being imposed.

The analysis of the data is conducted in the same spirit as for the ROYER’s file. First, the presence table is

carried out with correspondence analysis, with all the species. We have already seen that this technique is

inadequate to relevé tables, a fortiori with data of abundance because it is then necessary to digitize all the

coefficients and the coefficients of type +, r, m for example are converted into scores1 or lower scores 1,

arbitrarily fixed. One can of course transform the presence files by removing the rare species, present once, twice

or more, but this choice remains arbitrary and not very acceptable; in addition, it sometimes makes disappear

some rare species with a located high biomass, which is then a real amputation. The presence tables are then

subjected to a non-symmetric correspondence analysis, better adapted to these data (see Chapter 5) and which

favors frequent species. Then come the multiple factor analyses since the table presents several layers; in this file

and in order to best respect BAILLY’s work, the species present in several layers are treated separately in each

layer. Finally, in order to exploit at best all the nuances of the relevé table, a simple disjunctive table is created,

that is to say without the lines corresponding to the absence of the species; for each species in each layer, there

are as many lines as there are different coefficients of abundance-dominance in each row of the original table.

This simple disjunctive table is then submitted to non-symmetric correspondence. The "simplified" disjunctive

table is also tested, with one line for presence, one for abundances 1 and 2 and one for abundances 3, 4 and 5.

Another type of simplification is tested again, with three possible lines for each species: one for presence, one

for abundances> 1 and one for abundance> 3. Classifications of the relevés then follow, on the basis of the

transformed variables coming from the non-symmetric correspondence analyses; the number of transformed

variables is fixed by the permutation technique on the basis of 1000 permutations. Classification and ranking

techniques (see also chapters 12 and 13) are used as before.

Covariance matrix and the choice of a technique

The covariance matrices of six analyses are compared (figure 12). A single correspondence is shown and

the results are sufficiently clear; we find once more that this technique is inadequate to the relevé tables and it is

useless to detail the results; the analysis presented by BAILLY (2012, in figure 2) shows well the defaults of the

technique. The non-symmetric correspondence analysis of the complete disjunctive table is no longer presented

either because it favors absences which are much more numerous than the presences.

Page 35: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

35

Figure 12. Distribution of covariances in six multivariate analyses of the BAILLY’s file.

There is a clear difference between correspondence analysis and non-symmetric analyses. On the other

hand, the four non-symmetric analyses are very similar. We favor multiple factor analyses that exploit to the best

all the nuances expressed by the phytosociologist, either with the presence data or with the disjunctive tables

constructed from the coefficients of abundance-dominance, because they place the layers on the same level,

without the variability of one crushing that of the others.

Page 36: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

36

Multiple factor analysis based on non-symmetric correspondence analysis of the presence

table

First of all, the permutation test (10,000) on eigenvalues, developed from multiple factor analysis based on

non-symmetric correspondence analysis, indicates that the first nine eigenvalues (figure 14) are significant at

level = 0.05.

Figure 14. The first 12 eigenvalues of the non-symmetric correspondence analysis of the presence file.

The coordinates of the relevés are presented axis by axis for the first three (figure 16); the relevés are

placed in the same order in which they are in the association tables in order to compare these results directly with

those of the phytosociologist.

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12

Page 37: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

37

Figure 15. Multiple factor analysis based on non symmetric correspondence analysis of the presence table.

Representation of relevés on axes 1 to 3. Dryopterido carthusianae – Alnetum glutinosae, subass. typicum (DA1

à 17) and the subass. circaetosum (DA18 à 23). Sphagno flexuosi – Alnetum glutinosae, subass.

polytrichastretosum formosi (SA1 à 6), subass. typicum (SA7 à 13). Athyrio filicis-feminae – Alnetum glutinosae

caricetosum brizoidis, mesoacidiphilous variant with Molinia caerulea and Sphagnum palustre (AtA1 à 12),

acidiclinous to neutroacidiclinous variant acidicline with Caltha palustris and Filipendula ulmaria (AtA 13 à 22)

and transition variant to the Peucedano – Alnetum, with Filipendula ulmaria and Iris pseudacorus (AtA23 à 27).

Peucedano palustris – Alnetum glutinosae, typical variant with Dryopteris cristata (PA1), variant with Carex

acutiformis and Phalaris arundinacea (PA2 à 6), variant with Carex vesicaria (PA7 à 11) and subass.

agrostietosum caninae (PA12 à 17). Carici acutiformis – Alnetum glutinosae, typical variant (CA1 à 12) and

variant with Poa trivialis (CA13 à 16). Aconito napelli – Alnetum glutinosae, alluvial sub-unit (AcA1 et 2),

fontinal sub-unit (AcA3 et 4), and peri-lacustrin sub-unit with Carex appropinquata (AcA5 à 7). Hottonio

palustris – Alnetum glutinosae, sub-unit with Hottonia palustris (HA1), sub-unit with Glyceria fluitans and

Lemna minor (HA2 à 5).

On the first axis, there is an opposition between the three associations of the Alder woodland with ferns

(left) and the four associations of the Alder woodlands with Sedges (right). There is therefore a certain

-3

-2

-1

0

1

2

3

DA

1

DA

4

DA

7

DA

10

DA

13

DA

16

DA

19

DA

22

SA

2

SA

5

SA

8

SA

11

AtA

1

AtA

4

AtA

7

AtA

10

AtA

13

AtA

16

AtA

19

AtA

22

AtA

25

PA

1

PA

4

PA

7

PA

10

PA

13

PA

16

CA

2

CA

5

CA

8

CA

11

CA

14

AcA

1

AcA

4

AcA

7

HA

3

aulnaies01-mfansca-axe 1

Dryopterido

carthusianae-

Alnetum glutinosae

Sphagno

flexuosi –

Alnetum

glutinosae

Athyrio filicis-feminae

– Alnetum glutinosae

caricetosum brizoidis

Peucedano

palustris –

Alnetum

glutinosae

Carici

acutiformis

– Alnetum

glutinosae Aco

nit

o n

ap

elli

Aln

etu

m

glu

tin

osa

e Ho

tto

nio

pa

lust

ris –

Aln

etu

m g

luti

no

sae

-4

-3

-2

-1

0

1

2

3

DA

1

DA

4

DA

7

DA

10

DA

13

DA

16

DA

19

DA

22

SA

2

SA

5

SA

8

SA

11

AtA

1

AtA

4

AtA

7

AtA

10

AtA

13

AtA

16

AtA

19

AtA

22

AtA

25

PA

1

PA

4

PA

7

PA

10

PA

13

PA

16

CA

2

CA

5

CA

8

CA

11

CA

14

AcA

1

AcA

4

AcA

7

HA

3

axe 2

-3

-2

-1

0

1

2

3

4

DA

1

DA

4

DA

7

DA

10

DA

13

DA

16

DA

19

DA

22

SA

2

SA

5

SA

8

SA

11

AtA

1

AtA

4

AtA

7

AtA

10

AtA

13

AtA

16

AtA

19

AtA

22

AtA

25

PA

1

PA

4

PA

7

PA

10

PA

13

PA

16

CA

2

CA

5

CA

8

CA

11

CA

14

AcA

1

AcA

4

AcA

7

HA

3

axe 3

Page 38: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

38

agreement between these results and the associations, but they are only partial and in the following axes, we

depart more and more from the initial model. The coordinates of the relevés on the following axes are poorly

structured and do not give any easy interpretation.

Figure 16. Multiple factor analysis based on non-symmetric correspondence analysis of the presence data.

Representation of species in the plane of axes 1 and 2. The specific names are followed by their membership to

one of the strata.

If we divide figure 16 into four parts, based on the coordinates of the species, we see:

- in the upper left part, the ferns Athyrium filix-femina (common) and Dryopteris dilatata (less common), the

woody species Corylus avellana, Betula pendula and Lonicera periclymenum in the tree layer, the same species

in the shrub and herbaceous layers, the herbaceous species Molinia caerulea and Carex brizoides, the liana

Rubus fruticosus in the herbaceous layer and the mosses Eurhynchium striatum, Kindbergia praelonga,

Plagiomnium affine, P. undulatum and Thuidium tamariscinum;

- in the lower left part, the fern Dryopteris carthusiana, the tree Quercus robur, the shrub Salix aurita, the

herbaceous species Juncus effusus and the mosses Polytrichastrum formosum and Sphagnum palustre;

- in the upper right part, Fraxinus excelsior present in the tree, shrub and herbaceous strata, and the herbaceous

species Angelica sylvestris, Caltha palustris, Carex acutiformis and Circaea lutetiana;

- on the lower right, the herbaceous species Carex elongata, C. vesicaria, Galium palustre, Iris pseudacorus and

Solanum dulcamara.

-0,45

-0,35

-0,25

-0,15

-0,05

0,05

0,15

0,25

-0,3 -0,2 -0,1 0 0,1 0,2

aulnaies01-mfanasca

axe 1

axe

Caltha palustris

Filipendula ulmaria

Carex acutiformis

Iris pseudacorus

Fraxinus excelsior-b1Angelica sylvestris

Solanum dulcamara

Lonicera periclymenum

Thuidium tamariscinum

Athyrium filix-femina

Rubus fruticosus-h1

Eurynchium striatum

Salix aurita-b1

Dryopteris carthusianaSphagnum palustre

Mc

Bp = Betula pendula, Lp =

Lonicera periclymenum, Mc =

Molinia caerulea, Ph =

Polytrichastrum formosum, Qr =

Quercus robur

Corylus avellana-b1

PhQr-a1

Carex brizoides

Lp

Juncus effusus

Plagiomnium affine

Dryopteris dilatata

Bp-

Kindbergia praelonga

Carex elongata

Carex vesicaria

Galium palustreScirpus sylvaticus

Plagiomnium undulatum

Circaea lutetiana

Fraxinus excelsior-h1

Page 39: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

39

Axis three opposes

- on one side Alnus glutinosa in the shrub layer, the ferns Athyrium filix-femina and Dryopteris carthusiana and

the herbaceous plants Carex brizoides, Impatiens noli-tangere, Rubus fruticosus (in its herb layer) and Scirpus

sylvaticus;

- on the other side, the mosses Calliergonella cuspidata and Sphagnum palustre as well as the herbaceous plants

Moninia caerulea and Angelica sylvestris.

Multiple factor analysis based on the disjunctive table brings rather poor results, putting only few floristic

variables and is not detailed here. The simplified table analysis is now presented.

The analysis is carried out with two sub-tables: a first for woody plants and epiphytes, a second for

herbaceous plants and bryophytes. The permutation test, still based on simple analysis, indicates that the first

nine eigenvalues are significant. The densities of the two sub-tables are very similar and multiple analysis

provides nothing more than a simple analysis. The results are very close to those of the previous analysis and are

not detailed.

Classification and ranking of the relevés set

Several classifications and renkings have been made, with the two programs usually used in our work. All

these analyses yield results which are sometimes very different, depending on the options chosen. Multiplying

the techniques would only bring more confusion.

First, let us consider the first steps of the hierarchical divisive classification. The first division separates a

single HA4 (Hottonio-Alnetum) relevé from the107 others. The next step creates a group of 103 relevés, the HA4

relevé and a group consisting of the other four Hottonio-Alnetum relevés. The fourth step maintains the two

groups of the Hottonio-Alnetum and divides the whole of the 103 other relevés into a group of 59 relevés and

another of 44. Finally, the division is stopped with 10 clusters because the sequence mainly produces unit

groups.

If we classify all the relevés into two groups with the mobile center program, the two groups obtained

are practically identical to the two major groups produced by the hierarchical descending classification, with the

exception of the five Hottonio-Alnetum relevés. By subjecting these two groups to tests on the frequencies of the

floristic variables (simplified disjunctive table) by means of 100,000 permutations, the characteristic variables of

each group are easily defined, based on the risk = 0.05.

The main floristic variables of each group are :

- In the first group (62 relevés),

Page 40: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

40

In the tree layer, Alnus glutinosa >3 (48 presences out of 74 in the whole of the relevés) and Fraxinus excelsior

(22 présences out of 30 in the whole of the relevés),

in the shrub layer, mainlyFraxinus excelsior (40 presences out of 50 in the whole of the relevés),

in the herbaceous layer, mainly Angelica sylvestris (28 presences out of 32 in the whole of the relevés), Caltha

palustris (37 presences out of 43 in the whole of the relevés), Filipendula ulmaria (32 presences out of 37 in the

whole of the relevés), Iris pseudacorus (27 presences out of 28 in the whole of the relevés), Carex acutiformis

(28 presences and 26 avec une abondance >1, out of 39 in the whole of the relevés), Carex elongata (28

presences out of 37 in the whole of the relevés), Circaea lutetiana (23 presences out of 27 in the whole of the

relevés), Solanum dulcamara (23 presences out of 25 in the whole of the relevés), Carex vesicaria (22 presences

out of 30 in the whole of the relevés). Also note Carex remota (13 presences out of 15 in the whole of the

relevés).

A single moss is statistically more frequent than the whole: Brachythecium rivulare (14 out of 17).

The Alder woodland with Sedges is therefore clearly defined in relation to Alder woodland with ferns, with

several almost exclusive differentials.

- In the second group (46 relevés),

In the shrub layer, mainly Salix aurita (36 presences out of 59 in the whole of the relevés), Corylus avellana (33

presences out of 47 in the whole of the relevés), Lonicera periclymenum (29 presences out of 41 in the whole of

the relevés), Rubus fruticosus (20 presences out of 25),

In the herbaceous layer, mainly Athyrium filix-femina (45 presences with 29 abondances > 1 out of 79 in the

whole of the relevés), Lonicera periclymenum (42 presences with 28 abondances > 1 out of 56 in the whole of

the relevés), Dryopteris carthusiana (41 presences with 21 abondances > 1 out of 75 in the whole of the relevés),

Juncus effusus (34 presences out of 64 in the whole of the relevés), Carex brizoides (24 presences with 14

abondances > 1 out of 42 in the whole of the relevés) and Molinia caerulea (24 presences out of 32 in the whole

of the relevés),

In the moss layer, Thuidium tamariscinum (36 presences with 18 abondances >1 out of 50 in the whole of the

relevés), Eurhynchium striatum (28 presences out of 40 in the whole of the relevés), Sphagnum palustre (22

presences out of 27 in the whole of the relevés) et Plagiomnium affine (19 presences out of 27 in the whole of

the relevés). On a statistical point of view, this grouping is less clearly defined than the preceding one.

We thus find several species of the differential set of the Alger woodlands with ferns according to BAILLY

namely: Athyrium filix-femina, Rubus fruticosus, Dryopteris carthusiana, Dryopteris dilatata, Juncus effusus,

Lonicera periclymenum, Oxalis acetosella, but not Lysimachia vulgaris, very common with its 87 presences in

the whole of 108 relevés.

The first group corresponds very well to the Alder woodlands with Sedges and the second to the Alder

woodlands with ferns. The sequel is less easy.

For the final ranking, we selected 8 clusters, in order to compare them with the ascending hierarchical

BAILLY’s classification (2012). The classifications and the ranking obtained are presented in table 35.

Page 41: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

41

Table 17. Comparison of the BAILLY’s numerical classification, the agglomerative hierarchical classification

and a ranking in eight groups.

These three results in table 17 are quite different and none can be preferred at this step of the analysis. In

each of the analyses, the extracted groups usually include relevés from two or more associations. There are two

main pieces of information:

- The two main types of Alder woodlands are easily found in both analyses, namely the Alder woodlands with

ferns and the Alder woodlands with Sedges,

- The five relevés of the Hottonio - Alnetum are fairly easily removed from the set.

How to continue?

The easy solution is to split the table of 108 relevés into three:

- the five Hottonio - Alnetum relevés that do not require further analysis due to the small number of relevés,

- the set of 63 relevés of Alder woodlands with ferns,

- and the set of 40 relevés of Alder woodlands with sedges.

These last two sets are again subjected to multivariate analyses. As these are smaller files, it is useful to

take into account the abundance of species and it is the simplified disjunctive files that are selected.

Multiple factor analyses based on non-symmetric correspondence analysis are best suited to this kind of

file.

Page 42: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

42

Data analysis of the fern Alder file

Multiple factor analysis of the simplified disjunctive table

As before, the quality of the multiple factor analysis is evaluated with the covariance distribution (figure

28).

Figure 17. Covariance distribution of the multiple factor analysis of the fern Alders.

Figure 18. The first 12 eigenvalues of the multiple factor analysis based non-symmetric correspondence analysis

of the simplified disjunctive table.

The permutation test indicates that only the first four eigenvalues are significant (figure 18). There is a net

fall after the fourth eigenvalue.

The results are first presented with the coordinates of the relevés on the first four axes, placed in the order

of the plant associations.

0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10 11 12

Page 43: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

43

Figure 19. Multiple factor analysis based on non-symmetric analysis of the simplified disjunctive table of the

Alder woodlands with ferns. Representation of relevés on axes 1 to 4. Dryopterido carthusianae – Alnetum

glutinosae (DA1 to 23). Sphagno flexuosi – Alnetum glutinosae (SA1 to 13). Athyrio filicis-feminae – Alnetum

glutinosae caricetosum brizoidis, mesoacidiphilous variant with Molinia caerulea et Sphagnum palustre (AtA1

to 27).

-3

-2

-1

0

1

2

3aulnaies à fougères113 - mfansca- Axe 1

Dryopterido carthusianae

– Alnetum glutinosae

Sphagno flexuosi

– Alnetum

glutinosae

Athyrio filicis-feminae – Alnetum

glutinosae caricetosum brizoidis

-4

-3

-2

-1

0

1

2

DA

1

DA

3

DA

5

DA

7

DA

9

DA

11

DA

13

DA

15

DA

17

DA

19

DA

21

DA

23

SA2

SA4

SA6

SA8

SA1

0

SA1

2

AtA

1

AtA

3

AtA

5

AtA

7

AtA

9

AtA

11

AtA

13

AtA

15

AtA

17

AtA

19

AtA

21

AtA

23

AtA

25

AtA

27

Axe 2

-3

-2

-1

0

1

2

Axe 3

-3

-2

-1

0

1

2

3

Axe 4

Page 44: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

44

At this step, it is not possible to find a good coincidence between factor analysis and the three

associations and their divisions. First, let's analyze the species ranked in descending order of relative

contribution on the first four axes.

Espèces coord 1 CR 1 P 1

Scirpus sylvaticus-h1 0.2205736 4.86527148 18.77

Dryopteris carthusiana-h1 >1 -0.21866923 4.78162306 9.84

Galium palustre-h1 0.21592822 4.66249963 19.57

Sphagnum palustre -0.1910561 3.65024341 17.01

Quercus robur-a1 -0.19094621 3.64604549 1.17

Caltha palustris-h1 0.18802559 3.53536215 3.67

Lonicera periclymenum-h1 >1 -0.1867205 3.48645436 26.86

Polytrichastrum formosum -0.18397008 3.38449897 5.34

Molinia caerulea-h1 -0.17346687 3.00907556 29.13

Eurhynchium striatum -0.16994186 2.88802355 33.36

Filipendula ulmaria-h1 0.16225767 2.63275519 11.55

Lonicera periclymenum-h1 -0.15896932 2.52712461 11.12

Rubus fruticosus-h1 >1 -0.15555463 2.41972432 29.86

Betula pendula-a1 -0.14891668 2.21761764 4.54

Scirpus sylvaticus-h1 >1 0.1444689 2.08712625 19.67

Carex elongata-h1 0.13934935 1.94182404 19.29

Cardamine pratensis-h1 0.13725027 1.88376361 8.66

Plagiomnium undulatum 0.13707333 1.87890968 42.83

Thuidium tamariscinum -0.12923712 1.67022323 31.98

Frangula dodonei subsp. dodonei-b1 -0.12000139 1.44003336 26.6

Table 18. Species ranked in decreasing order of relative contribution on the first axis. Coord: coordinates on the

axis, CR: relative contribution, P: probability associated with the relative contribution. A1: tree layer, b1: shrub

layer, h1: herbaceous layer. > 1: abundance greater than 1.

Among the twenty floristic variables with the highest relative contributions on axis 1, the following two

groups are distinguished:

- a first group (negative coordinates) composed of species of the woody stratum with Quercus robur and Betula

pendula, of species of the shrubby stratum with Frangula dodonei subsp. dodonei, species of herbaceous layer

with Dryopteris carthusianana (abundance> 1), Lonicera periclymenum, Molinia caerulea, Lonicera

periclymenum, Rubus fruticosus (with abundance> 1) and moss species with Eurhynchium striatum,

Polytrichastrum formosum, Sphagnum palustre and Thuidium tamariscinum;

- a second group (positive coordinates) with a set of herbaceous species, namely Caltha palustris, Galium

palustre, Carex elongata, Cardamine pratensis, Filipendula ulmaria, Scirpus sylvaticus (present and abundant),

the moss Plagiomnium undulatum.

Axis 2 is especially marked,

- in its negative values, by Alnus glutinosa, both in the tree layer (abundance> 3) and the shrub layer, in the

herbaceous layer by Athyrium filix-femina (abundance> 1), Carex brizoides (present and abundance> 1 and> 3),

Molinia caerulea (abundance> 1) and Stellaria holostea and in the muscle layer by Plagiomnium affine;

Page 45: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

45

- in its positive values, by elements of the shrub stratum like Salix aurita, of the herbaceous stratum, with

Circaea lutetiana, Lysimachia vulgaris, Scirpus sylvaticus (abundance> 3) and Viburnum opulus and of the

muscular stratum like Atrichum undulatum, Brachythecium rivulare and Sphagnum palustre.

On axes three and four, we note many species already highlighted on the first two axes.

In order to synthesize this information, the 63 relevés are classified on the basis of the first four

coordinates, since only the first four eigenvalues of the non-symmetric correspondence analysis (simplified

disjunctive table) are significant.

Classification and ranking of the fern Alders

The divisive hierarchical classification with reallocations is tested via the evolution of the total occupied

space (see chapter 12).

Figure 20. Evolution of the total occupied space following the steps of the hierarchical division.

This evolution shows that with the descending classification (CENVI), we manage to split the whole into

four clusters.

CENVI MC4 CENVI3 MC3

DA8 DA2 DA7 DA1 DA7 DA1 DA3 DA2 DA8 DA1 DA7 DA14 DA1 DA7

DA10 DA3 DA18 DA5 DA10 DA5 DA8 DA4 DA10 DA2 DA18 DA16 DA2 DA8

DA13 DA4 DA19 SA12 DA18 SA7 DA9 DA6 DA13 DA3 DA19 SA7 DA3 DA9

DA14 DA6 DA21 SA13 DA19 SA11 DA12 DA11 DA14 DA4 DA21 SA8 DA4 DA10

DA15 DA9 DA22 AtA17 DA20 SA12 DA13 SA2 DA15 DA5 DA22 SA9 DA5 DA11

DA16 DA11 DA23 AtA23 DA21 SA13 DA14 SA4 DA16 DA6 DA23 SA11 DA6 DA17

DA17 DA12 AtA19 AtA24 DA22 AtA4 DA15 SA5 DA17 DA9 AtA19 AtA1 DA12 DA18

DA20 SA1 AtA25 DA23 AtA10 DA16 SA8 DA20 DA11 AtA4 DA13 DA19

SA7 SA2 AtA3 AtA12 DA17 SA9 SA7 DA12 AtA5 DA15 DA20

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Total occupied space

Page 46: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

46

SA8 SA3 AtA13 AtA16 SA1 SA10 SA8 SA1 AtA6 SA1 DA21

SA9 SA4 AtA14 AtA17 SA3 AtA1 SA9 SA2 AtA7 SA2 DA22

SA11 SA5 AtA15 AtA20 SA6 AtA2 SA11 SA3 AtA8 SA3 DA23

AtA3 SA6 AtA19 AtA21 AtA7 AtA5 SA13 SA4 AtA9 SA5 SA4

AtA4 SA10 AtA23 AtA8 AtA6 AtA3 SA5 AtA10 SA6 AtA3

AtA5 AtA1 AtA24 AtA9 AtA18 AtA4 SA6 AtA11 SA10 AtA15

AtA7 AtA2 AtA25 AtA11 AtA5 SA10 AtA12 SA12 AtA19

AtA8 AtA6 AtA26 AtA22 AtA7 SA12 AtA13 SA13

AtA9 AtA27 AtA8 AtA1 AtA14 AtA2

AtA10 AtA9 AtA2 AtA16 AtA25

AtA11 AtA10 AtA6 AtA17

AtA12 AtA11 AtA18

AtA13 AtA12 AtA20

AtA14 AtA13 AtA21

AtA15 AtA14 AtA22

AtA16 AtA15 AtA23

AtA18 AtA16 AtA24

AtA20 AtA17 AtA26

AtA21 AtA18 AtA27

AtA22 AtA20

AtA26 AtA21

AtA27 AtA22

AtA23

AtA24

AtA25

AtA26

AtA27 Table 19. Comparison between the descending hierarchical classification and a classification into three or four

group groups from the transformed file of alder ferns.

If, however, we stick to three clusters, the classification by mobile centers most closely resembles the

classification of the phytosociologist. It is easy to see that the group of AtA surveys remains the most cohesive

and that it is associated with a small number of DA and SA relevés. The relevés of the DA and SA associations

fall into the three groups.

Let us test this choice with the characteristic species defined by means of the permutation test. The three

defined groupings are considered as elementary syntaxons.

Page 47: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

47

Fern Alder with Galium palutre and Lysimachia vulgaris

The main results are shown in table 20.

sum

fr

DA

14

DA

16

SA

7

SA

8

SA

9

SA

11

AtA

1

AtA

4

AtA

5

AtA

6

AtA

7

AtA

8

AtA

9

AtA

10

AtA

11

AtA

12

AtA

13

AtA

14

AtA

16

AtA

17

AtA

18

AtA

20

AtA

21

AtA

22

AtA

23

AtA

24

AtA

26

AtA

27

sum

.1

fr.1

pr

Carex elongata-h1 16 0.253968 0 0 0 0 0 1 0 1 0 1 1 1 1 0 0 0 1 1 0 0 1 0 1 1 1 1 1 1 15 0.53571 0

Galium palustre-h1 33 0.52381 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 23 0.8214 0

Oxalis acetosella-h1 15 0.238095 1 0 0 0 0 1 0 0 0 0 1 1 1 1 1 1 1 0 0 1 0 0 1 1 0 0 0 1 13 0.46429 0

Plagiomnium undulatum 27 0.428571 1 1 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 22 0.78571 0

Scirpus sylvaticus-h1 33 0.52381 0 0 1 1 1 1 1 1 1 0 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 22 0.78571 0.001

Plagiomnium undulatum

>1 11 0.174603 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 1 0 10 0.35714 0.001

Lythrum salicaria-h1 14 0.222222 0 0 0 0 1 1 0 0 0 0 1 1 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 1 11 0.39286 0.002

Caltha palustris-h1 20 0.31746 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 15 0.53571 0.003

Lysimachia vulgaris-h1 50 0.79365 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 27 0.9643 0.004

Rubus idaeus-h1 9 0.142857 1 0 0 0 0 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 0 1 8 0.28571 0.004

Caltha palustris-h1 >1 9 0.142857 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 0 0 1 0 1 0 8 0.28571 0.005

Calliergonella cuspidata 21 0.333333 0 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 15 0.53571 0.005

Carex echinata-h1 6 0.095238 1 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0.21429 0.008

Lysimachia vulgaris-h1

>1 19 0.301587 0 0 1 1 1 1 1 1 1 0 1 0 0 0 1 0 0 0 1 0 0 1 0 1 0 0 0 1 13 0.46429 0.012

Lophocolea bidentata 7 0.111111 0 0 0 1 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 6 0.21429 0.016

Athyrium filix-femina-ep1 7 0.111111 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 6 0.21429 0.017

Thuidium delicatulum 5 0.079365 0 0 0 1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 5 0.17857 0.019

Humulus lupulus-b1 5 0.079365 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 0 0 1 5 0.17857 0.02

Filipendula ulmaria-h1

>1 5 0.079365 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 1 5 0.17857 0.026

Lycopus europaeus-h1 9 0.142857 0 0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 7 0.25 0.027

Page 48: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

48

sum

fr

DA

1

DA

2

DA

3

DA

4

DA

5

DA

6

DA

12

DA

13

DA

15

SA

1

SA

2

SA

3

SA

5

SA

6

SA

10

SA

12

SA

13

AtA

2

AtA

25

sum

.2

fr.2

pr.

1

Molinia caerulea-h1 27 0.428571 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 15 0.78947368 0

Sphagnum palustre 22 0.349206 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 13 0.68421053 0

Molinia caerulea-h1 >1 10 0.15873016 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 9 0.473684211 0

Molinia caerulea-h1 >3 5 0.07936508 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 5 0.263157895 0

Polytrichastrum formosum 15 0.23809524 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 10 0.526315789 0.001

Sphagnum palustre >1 10 0.15873016 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 8 0.421052632 0.001

Betula pubescens-a1 >1 5 0.07936508 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 5 0.263157895 0.001

Salix aurita-b1 >1 21 0.33333333 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 12 0.631578947 0.002

Betula pubescens-a1 8 0.12698413 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 6 0.315789474 0.004

Quercus robur-a1 16 0.25396825 1 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 9 0.473684211 0.009

Sphagnum flexuosum 3 0.04761905 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 3 0.157894737 0.017

Rubus fruticosus-h1 >3 5 0.07936508 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 4 0.210526316 0.021

Sorbus aucuparia-b1 5 0.07936508 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 4 0.210526316 0.022

Frangula dodonei subsp. dodonei-b1 24 0.38095238 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 0 0 1 11 0.578947368 0.03

Betula pendula-a1 15 0.23809524 1 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 8 0.421052632 0.036

Table 20. Species of the elementary syntaxon 2 of fern Alder with a statistically higher relative frequency than in all the relevés. The specific names are followed by their

membership to one of the strata. sum and fr: sum of the presences and relative frequency in the Alder. sum.2 and fr.2: sum of the presences and relative frequency in the

grouping; pr = probability calculated by the test.

Among the species with a probability less than 0.05, four have a zero probability: Carex elongata. Galium palustre. Oxalis acetosella and Plagiomnium undulatum. Two

species have both a high relative frequency and a very low probability: Lysimachia vulgaris and Galium palustre. Note also that several species of sedge (Carex echinata. C.

elongata. C. remota and C. vesicaria) also have probabilities of less than 0.5%.

This grouping includes two relevés of Dryopterido carthusianae - Alnetum glutinosae. three relevés from Sphagno flexuosi - Alnetum glutinosae and 22 from Athyrio

filicis-feminae - Alnetum glutinosae caricetosum brizoidis, mesoacidiphilic variant with Molinia caerulea and Sphagnum palustre. The fern Athyrium filix-femina is present in

all the relevés and Dryopteris carthusiana in 22 of the 27 relevés.

Page 49: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

49

It seems logical to name this grouping: fern Alder with Lysimachia vulgaris and Galium palustre.

Fern Alder with Molinia caerulea and Sphagnum palustre

sum

fr

DA

1

DA

2

DA

3

DA

4

DA

5

DA

6

DA

12

DA

13

DA

15

SA

1

SA

2

SA

3

SA

5

SA

6

SA

10

SA

12

SA

13

AtA

2

AtA

25

sum

.2

fr.2

pr.

1

Molinia caerulea-h1 27 0.428571 1 1 1 1 1 0 0 1 0 1 1 1 1 1 1 1 1 1 0 15 0.78947368 0

Sphagnum palustre 22 0.349206 0 1 1 1 0 0 1 0 0 1 1 1 1 1 1 1 1 1 0 13 0.68421053 0

Molinia caerulea-h1 >1 10 0.15873016 1 1 1 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 9 0.473684211 0

Molinia caerulea-h1 >3 5 0.07936508 1 1 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 5 0.263157895 0

Polytrichastrum formosum 15 0.23809524 0 1 1 1 0 1 1 1 0 1 1 0 1 1 0 0 0 0 0 10 0.526315789 0.001

Sphagnum palustre >1 10 0.15873016 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 8 0.421052632 0.001

Betula pubescens-a1 >1 5 0.07936508 0 0 0 0 1 0 1 0 1 1 0 0 0 0 0 1 0 0 0 5 0.263157895 0.001

Salix aurita-b1 >1 21 0.33333333 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 1 1 1 0 12 0.631578947 0.002

Betula pubescens-a1 8 0.12698413 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 6 0.315789474 0.004

Quercus robur-a1 16 0.25396825 1 1 1 0 0 1 1 1 0 1 1 0 0 1 0 0 0 0 0 9 0.473684211 0.009

Sphagnum flexuosum 3 0.04761905 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 1 0 0 0 3 0.157894737 0.017

Rubus fruticosus-h1 >3 5 0.07936508 0 0 0 0 0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 4 0.210526316 0.021

Sorbus aucuparia-b1 5 0.07936508 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 4 0.210526316 0.022

Frangula dodonei subsp. dodonei-b1 24 0.38095238 0 1 1 0 1 1 0 0 1 1 1 1 0 1 0 1 0 0 1 11 0.578947368 0.03

Betula pendula-a1 15 0.23809524 1 1 1 0 0 0 0 0 1 1 0 1 0 1 0 0 0 0 1 8 0.421052632 0.036

Table 21. Species of the elementary syntaxon 2 of fern Alder with a statistically higher relative frequency than in all the relevés. The specific names are followed by their

.membership to one of the strata. sum and fr: sum of the presences and relative frequency in the fer Alder. sum.2 and fr.2: sum of the presences and relative frequency in the

grouping; pr = probability calculated by the test.

Among the species with a probability lower than 0.05, two have a zero probability: Sphagnum palustre and Molinia caerulea (represented by the presence and two

degrees of abundance).

Page 50: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

50

This grouping includes nine relevéss of the Dryopterido carthusianae - Alnetum glutinosae, nine relevéss of the Sphagno flexuosi - Alnetum glutinosae and only one of

the Athyrio filicis-feminae - Alnetum glutinosae caricetosum brizoidis, mesoacidiphilic variant with Molinia caerulea and Sphagnum palustre.

The combination of Sphagnum palustre, S. flexuosum, Molinia caerulea, Frangula dodonei subsp. dodonei and Betula pendula form a characteristic whole.

The fern Athyrium filix-femina is present in all the relevés and Dryopteris carthusiana in 18 of the 19 surveys.

Page 51: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

51

Fern Alder with Carex brizoides

Espèces/relevés

sum

fr

DA

7

DA

8

DA

9

DA

10

DA

11

DA

17

DA

18

DA

19

DA

20

DA

21

DA

22

DA

23

SA

4

AtA

3

AtA

15

AtA

19

sum

.3

fr.3

pr.

2

Carex brizoides-h1 34 0,5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 1 0

Carex brizoides-h1 >1 21 0,3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 1 0

Carex brizoides-h1 >3 16 0,3 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 14 0,875 0

Stellaria holostea-h1 3 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 3 0,187

5 0,01

9

Athyrium filix femina-

h1 >1 41 0,7 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 14 0,875

0,02

6

Table 24. Species of the elementary syntaxon 2 of the fern Alders woodlands with a relative frequency

statistically higher than in the whole of relevés. The species names are followed by their membership to a layer.

sum and fr: sum of the presences and relative frequency in the fern Alder. sum.3 and fr.3: sum of the presences

and relative frequency in the grouping; pr = probability calculated by the permutation test.

This grouping gathers 12 relevés of the Dryopterido carthusianae-Alnetum glutinosae, one of the Sphagno

flexuosi - Alnetum glutinosae and three of the l’Athyrio filicis-feminae – Alnetum glutinosae caricetosum

brizoidis, variante mésoacidiphile à Molinia caerulea et Sphagnum palustre..Note that Carex brizoides is

considered by BAILLY as a differential of the Athyrio filicis feminae-Alnetum glutinosae caricetosum brizoidis.

The character-species of the grouping is Carex brizoides, mainly by its abundance. This shows how useful it is to

take abundance into account when analyzing data. Stellaria holostea is only present in this grouping and the fern

Athyrium filix-femina is abundant there.

It seems logical to name that grouping : fern Alder with Carex brizoides.

Data analysis of the sedge Alder file

Multiple factor analysis of the simplified disjunctive table

As previous, the quality of multiple factor analysis is evaluated with the covariance distribution (figure 17).

Page 52: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

52

Figure 17. Covariance distribution of multiple factor analysis of the sedge alder file.

The curve has a fairly pronounced asymmetry with two well-marked peaks.

Figure 18. The first 12 eigenvalues of the multiple factor analysis based on non-symmetric correspondence

analysis of the simplified disjunctive table.

In figure 18, one observes a clear slowing down after the fourth eigenvalue. The permutation test indicates

that the first four axes are significant. The interpretation continues with the coordinates and relative contributions

of the first four axes.

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12

Page 53: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

53

Figure 19. Multiple factor analysis based on non-symmetric analysis of the correspondences of the simplified

disjunctive file of the alder groves. Representation of the relevés on axes 1 to 4. Peudedano palustris - Alnetum

glutinosae, typical variant with Dryopteris cristata (PA1 to 17). Carici acutiformis - Alnetum glutinosae, typical

variant (CA1 to 16). Aconito napelli - Alnetum glutinosae, alluvial subunit (AcA1 and 7).

In view of these results, it is just possible to separate the whole into two entities from axis 1. On one side,

the Peudedano palustris - Alnetum glutinosae, a typical variant of Dryopteris cristata; on the other, Carici

acutiformis - Alnetum glutinosae, typical variant and Aconito napelli - Alnetum glutinosae.

-3

-2

-1

0

1

2

PA

1

PA

2

PA

3

PA

4

PA

5

PA

6

PA

7

PA

8

PA

9

PA

10

PA

11

PA

12

PA

13

PA

14

PA

15

PA

16

PA

17

CA

1

CA

2

CA

3

CA

4

CA

5

CA

6

CA

7

CA

8

CA

9

CA

10

CA

11

CA

12

CA

13

CA

14

CA

15

CA

16

AcA

1

AcA

2

AcA

3

AcA

4

AcA

5

AcA

6

AcA

7

Aulnaies à laîches113 - mfansca- Axe 1

-4

-3

-2

-1

0

1

2

PA

1

PA

2

PA

3

PA

4

PA

5

PA

6

PA

7

PA

8

PA

9

PA

10

PA

11

PA

12

PA

13

PA

14

PA

15

PA

16

PA

17

CA

1

CA

2

CA

3

CA

4

CA

5

CA

6

CA

7

CA

8

CA

9

CA

10

CA

11

CA

12

CA

13

CA

14

CA

15

CA

16

AcA

1

AcA

2

AcA

3

AcA

4

AcA

5

AcA

6

AcA

7

Axe 2

-3

-2

-1

0

1

2

3

PA

1

PA

2

PA

3

PA

4

PA

5

PA

6

PA

7

PA

8

PA

9

PA

10

PA

11

PA

12

PA

13

PA

14

PA

15

PA

16

PA

17

CA

1

CA

2

CA

3

CA

4

CA

5

CA

6

CA

7

CA

8

CA

9

CA

10

CA

11

CA

12

CA

13

CA

14

CA

15

CA

16

AcA

1

AcA

2

AcA

3

AcA

4

AcA

5

AcA

6

AcA

7

Axe 3

-4

-3

-2

-1

0

1

2

3

PA

1

PA

2

PA

3

PA

4

PA

5

PA

6

PA

7

PA

8

PA

9

PA

10

PA

11

PA

12

PA

13

PA

14

PA

15

PA

16

PA

17

CA

1

CA

2

CA

3

CA

4

CA

5

CA

6

CA

7

CA

8

CA

9

CA

10

CA

11

CA

12

CA

13

CA

14

CA

15

CA

16

AcA

1

AcA

2

AcA

3

AcA

4

AcA

5

AcA

6

AcA

7

Axe 4

Page 54: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

54

At this step, we find only a partial coincidence between factorial analysis and the three associations. First,

let's analyze the species ranked in decreasing order of relative contribution on the first four significant axes.

Espèces coord 1 CR 1 P 1

Carex acutiformis-h1 >1 0.236860547 5.610291889 3.4

Carex acutiformis-h1 0.232975348 5.427751287 3.75

Carex vesicaria-h1 -0.222772345 4.962751779 3.89

Juncus effusus-h1 -0.21690429 4.704747082 4.51

Salix aurita-b1 -0.209624276 4.394233699 7.54

Filipendula ulmaria-h1 0.204499372 4.181999326 12.8

Carex elongata-h1 -0.196493357 3.860963948 12.8

Fraxinus excelsior-b1 0.187948761 3.532473688 17.36

Lycopus europaeus-h1 -0.1798207 3.233548409 14.43

Salix aurita-b1 >1 -0.165599395 2.742315971 4.12

Carex acutiformis-h1 >3 0.161659561 2.613381356 12.29

Carex elongata-h1 >1 -0.160362975 2.571628372 9.36

Filipendula ulmaria-h1 >1 0.155642221 2.422450095 18.86

Caltha palustris-h1 0.154655791 2.391841381 27.14

Circaea lutetiana-h1 0.154378565 2.383274134 19.38

Galium palustre-h1 -0.132635513 1.75921792 33

Lonicera periclymenum-h1 -0.123190886 1.517599428 4.47

Agrostis canina-h1 -0.120495273 1.45191108 5.07

Agrostis canina-h1>1 -0.120495273 1.45191108 5.09

Frangula dodonei subsp. dodonei-b1 -0.116615826 1.359925088 30.95

Table 23. Species ranked in decreasing order of relative contribution on the first axis. Coord: coordinates on the

axis, CR: relative contribution, P: probability associated with the relative contribution. A1: tree layer, b1: shrub

layer, h1: herbaceous layer. > 1: abundance greater than 1.

On this first axis, Carex acutiformis (present and abundant> 1) is easily separated from Carex vesicaria,

Juncus effusus, Salix aurita (abundant> 1) and Lonicera periclymenum.

coord 2 CR 2 P 2

Alnus glutinosa-a1 >3 -0.24088628 5.80262007 1.06

Carex elongata-h1 -0.22528134 5.07516825 6.46

Scirpus sylvaticus-h1 -0.21329103 4.54930629 3.7

Dryopteris carthusiana-h1 -0.20534096 4.21649088 10.16

Iris pseudacorus-h1 -0.20445262 4.18008721 10.21

Phragmites australis-h1 -0.20040051 4.01603661 2.16

Calliergonella cuspidata 0.18486703 3.41758198 11.33

Solanum dulcamara-h1 -0.17760939 3.15450941 16.26

Carex acutiformis-h1 -0.16142122 2.60568108 17.16

Alnus glutinosa-b1 -0.14979655 2.24390075 32.59

Carex acutiformis-h1 >1 -0.14085751 1.98408385 25.74

Page 55: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

55

Lycopus europaeus-h1 -0.13937998 1.94267781 27.51

Angelica sylvestris-h1 0.13842587 1.91617204 31.06

Phalaris arundinacea-h1 -0.13414336 1.79944407 5.95

Scirpus sylvaticus-h1 >1 -0.12620908 1.59287327 4.4

Iris pseudacorus-h1 >1 -0.12399212 1.53740466 5.47

Frangula dodonei subsp. dodonei-b1 0.11825426 1.39840702 29.25

Rubus fruticosus-h1 -0.11449342 1.31087433 40.86

Carex vesicaria-h1 >1 -0.11066728 1.22472465 4.77

Agrostis canina-h1 0.10802953 1.16703787 9.41

Table 24. Species ranked in decreasing order of relative contribution on the first axis. Coord: coordinates on the

axis, CR: relative contribution, P: probability associated with the relative contribution. A1: tree layer, b1: shrub

layer, h1: herbaceous layer. > 1: abundance greater than 1.

There is a group of variables, all negative, with significant relative contributions, including several with an

abundance greater than 1 or 3: Alnus glutinosa (> 3), Scirpus sylvaticus (present and> 1), Phragmites australis

and Carex vesicaria (abundance> 1). They are therefore dense alder with a high biomass of Alnus glutinosa.

Axis 3 opposes species like Rubus fruticosus, Dryopteris carthusiana, Circaea lutetiana, Carex acutiformis

(> 3) to Alnus glutinosa (in the shrub layer), Salix cinerea (shrub layer, present and> 1), Solanum dulcamara,….

Axis 4 opposes Athyrium filix-femina and Salix cinerea (shrub layer, present and> 1) to Carex remota,

Fraxinus excelsior (tree and shrub strata), Iris pseudacorus, Viburnum opulus (grass layer),…

As before, we submit the transformed table, with the coordinates of the statements on the first four axes, to

classification.

Classification and ranking of the Alders with Sedge

The classification and the ranking are realised as above.

Figure 20. evolution of the total occupied space according to the steps of the hiérachical descending

classification.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Total occupied space

Page 56: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

56

The evolution of the total occupied space shows that 6 clusters must be retained (Table 25). However, one

of the surveys is isolated and the virtual center program is applied for 5 clusters.

CENVI MC

CA1 PA1 CA8 CA11 PA7 PA12 PA7 CA1 PA2 PA1 CA11

CA2 PA2 CA12 PA8 PA13 PA8 CA2 PA3 PA14 CA12

CA3 PA3 CA16 PA9 PA14 PA9 CA3 PA4 PA15 CA16

CA4 PA4 AcA1 PA10 PA15 PA10 CA4 PA5 PA16 AcA1

CA5 PA5 AcA2 PA11 PA16 PA11 CA5 PA6 PA17 AcA2

CA6 PA6 AcA3 PA17 PA12 CA6 CA8 AcA7 AcA3

CA7 AcA4 PA13 CA7 AcA4

CA9 AcA5 CA9 AcA5

CA10 AcA6 CA10 AcA6

CA13 AcA7 CA13

CA14 CA14

CA15 CA15

Table 25. Comparison of the hierarchical descending classification and a ranking into three clusters, from a

transformed sedge Alder file.

We choose the CENVI classificationwith the relevé CA8 that joins the cluster of the PA1 to 6.

Sedge Alder with Carex acutiformis and Circaea lutetiana

sum

fr

CA

1

CA

2

CA

3

CA

4

CA

5

CA

6

CA

7

CA

9

CA

10

CA

13

CA

14

CA

15

sum

fr

pr

Carex acutiformis-h1 >3 12 0.3 1 1 0 1 1 1 1 1 1 0 1 0 9 0.75 0

Circaea lutetiana-h1 14 0.35 1 1 1 1 1 1 1 1 1 0 1 1 11 0.9167 0

Carex acutiformis-h1 >1 26 0.65 1 1 1 1 1 1 1 1 1 1 1 1 12 1 0.0014

Circaea lutetiana-h1 >1 5 0.125 0 0 0 0 1 1 0 1 1 0 1 0 5 0.4167 0.0014

Carex acutiformis-h1 27 0.675 1 1 1 1 1 1 1 1 1 1 1 1 12 1 0.0033

Fraxinus excelsior-b1 27 0.675 1 1 1 1 1 1 1 1 1 1 1 1 12 1 0.0035

Dryopteris carthusiana-ep1 10 0.25 0 1 0 0 1 1 0 1 1 1 1 0 7 0.5833 0.0041

Galium aparine subsp. aparine-h1 4 0.1 0 0 0 0 0 0 0 1 0 1 1 1 4 0.3333 0.006

Filipendula ulmaria-h1 >1 14 0.35 1 1 1 1 0 0 0 0 1 1 1 1 8 0.6667 0.0079

Dryopteris carthusiana-h1 21 0.525 1 1 1 0 1 1 1 0 1 1 1 1 10 0.8333 0.0114

Filipendula ulmaria-h1 >3 3 0.075 0 1 0 0 0 0 0 0 0 1 1 0 3 0.25 0.0193

Dryopteris dilatata-h1 3 0.075 0 0 1 0 0 0 1 0 0 0 0 1 3 0.25 0.0203

Alnus glutinosa-a1 >3 31 0.775 1 1 1 1 1 1 1 1 1 1 1 1 12 1 0.0212

Rubus fruticosus-ep1 3 0.075 0 0 0 0 0 0 1 1 0 0 1 0 3 0.25 0.0214

Glechoma hederacea-h1 5 0.125 0 1 0 1 0 0 0 0 0 0 1 1 4 0.3333 0.0218

Plagiomnium affine 3 0.075 0 1 0 0 0 0 0 0 0 1 1 0 3 0.25 0.0227

Humulus lupulus-b1 5 0.125 0 0 1 1 1 0 0 0 1 0 0 0 4 0.3333 0.0229

Impatiens glandulifera-h1 >1 3 0.075 0 0 1 1 1 0 0 0 0 0 0 0 3 0.25 0.0233

Rubus fruticosus-h1 22 0.55 1 1 1 0 1 1 1 1 1 0 1 1 10 0.8333 0.024

Page 57: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

57

Kindbergia praelonga 8 0.2 0 1 0 0 1 0 1 0 1 0 1 0 5 0.4167 0.037

Galeopsis tetrahit-h1 8 0.2 0 0 0 0 0 1 1 0 0 1 1 1 5 0.4167 0.0376

Cardamine pratensis-h1 8 0.2 1 0 0 1 0 1 0 0 0 1 1 0 5 0.4167 0.0415

Table 26. Species of elementary syntaxon 1 of sedge Alders with a statistically higher relative frequency than in

all the relevés. The specific names are followed by their memebership to one of the strata. = frequency, Fr =

relative frequency, Pr = probability calculated by the permutation test.

This grouping includes 12 of the 16 relevés of the hygrophilous neutroacidicline sedge Alder with Carex

acutiformis and Circaea lutetiana. The essential difference with the BAILLY’s association is the taking into

account of the abundance of Carex acutiformis and Circaea lutetiana.

Sedge Alder with Carex elongata and Phalaris arundinacea

sum

fr

PA

1

PA

2

PA

3

PA

4

PA

5

PA

6

CA

8

sum

fr

pr

Phalaris arundinacea-h1 7 0.175 0 1 1 1 1 1 0 5 0.7143 2.00E-04

Phalaris arundinacea-h1 >1 4 0.1 0 0 1 1 1 1 0 4 0.5714 3.00E-04

Salix cinerea-b1 >1 7 0.175 1 1 1 1 1 0 0 5 0.7143 7.00E-04

Thysselinum palustre-h1 5 0.125 0 1 1 1 0 1 0 4 0.5714 0.002

Phragmites australis-h1 10 0.25 0 1 1 0 1 1 1 5 0.7143 0.0059

Carex elongata-h1 18 0.45 1 1 1 1 0 1 1 6 0.8571 0.0245

Salix cinerea-b1 13 0.325 1 1 1 1 1 0 0 5 0.7143 0.0264

Table 27. Species of elementary syntaxon 2 of sedge Alders with a statistically higher relative frequency than in

all the relevés. The specific names are followed by their memebership to one of the strata. = frequency, Fr =

relative frequency, Pr = probability calculated by the permutation test.

There are six of the Carex elongata acidicline paludal alder relevés (Peucedano palustris - Alnetum

glutinosae) with two of the three variants, namely the typical Dryopteris cristata variant (1 relevé named PA1)

and the Carex acutiformis and Phalaris arundinacea variant. It is the combination of Carex elongata, Phalaris

arundinacea, Phragmites australis, Salix cinerea and Thysselinum palustre which constitutes the characteristic

set.

Sedge Alder with Caltha palustris and Filipendula ulmaria

sum

fr

CA

11

CA

12

CA

16

AcA

1

AcA

2

AcA

3

AcA

4

AcA

5

AcA

6

AcA

7

sum

fr

pr

Cirsium oleraceum-h1 6 0.2 1 0 1 0 0 1 1 1 0 1 6 0.6 0

Galium mollugo subsp. mollugo-h1 5 0.1 0 0 0 1 1 1 1 0 1 0 5 0.5 2.00E-04

Filipendula ulmaria-h1 21 0.5 1 1 1 1 1 1 1 1 1 1 10 1 4.00E-04

Ranunculus aconitifolius-h1 5 0.1 0 0 0 1 1 0 1 1 0 1 5 0.5 4.00E-04

Caltha palustris-h1 23 0.6 1 1 1 1 1 1 1 1 1 1 10 1 0.001

Aconitum napellus-h1 4 0.1 0 0 0 1 1 0 1 0 0 1 4 0.4 0.0017

Plagiomnium elatum 4 0.1 0 0 0 0 0 1 1 1 1 0 4 0.4 0.0023

Calliergonella cuspidata 15 0.4 0 1 0 1 1 1 1 1 1 1 8 0.8 0.0029

Page 58: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

58

Eupatorium cannabinum-h1 9 0.2 1 0 1 0 0 1 1 1 1 0 6 0.6 0.0032

Table 28. Species of elementary syntaxon 3 of sedge Alders with a statistically higher relative frequency than in

all the relevés. The specific names are followed by their memebership to one of the strata. = frequency, Fr =

relative frequency, Pr = probability calculated by the permutation test.

We mix three relevés of the acidicline paludal alder with Carex elongata: Peucedano palustris -

Alnetum glutinosae Noirfalise & Sougnez 1961, with a relevé of the variant with Carex vesicaria and two

relevés of the subassassociation agrostietosum caninae, as well as seven relevés of mountain alder with

Aconitum napellus.

Sedge Alde with Carex remota and Carec vesicaria

sum

fr

PA

7

PA

8

PA

9

PA

10

PA

11

sum

fr

pr

Carex remota-h1 8 0.2 1 0 1 1 1 4 0.8 0.0032

Carex vesicaria-h1 14 0.35 1 1 1 1 1 5 1 0.0033

Lycopus europaeus-h1 16 0.4 1 1 1 1 1 5 1 0.0064

Carex vesicaria-h1 >1 5 0.125 0 0 1 1 1 3 0.6 0.01

Rumex sanguineus-h1 2 0.05 1 0 1 0 0 2 0.4 0.0127

Carex elongata-h1 18 0.45 1 1 1 1 1 5 1 0.0152

Lonicera periclymenum-h1 6 0.15 1 1 0 0 1 3 0.6 0.0162

Scirpus sylvaticus-h1 >1 6 0.15 1 0 0 1 1 3 0.6 0.0167

Scirpus sylvaticus-h1 13 0.325 1 0 1 1 1 4 0.8 0.03

Salix aurita-b1 13 0.325 0 1 1 1 1 4 0.8 0.0346

Myosotis scorpioides-h1 3 0.075 1 0 1 0 0 2 0.4 0.0356

Juncus effusus-h1 14 0.35 1 1 1 1 0 4 0.8 0.0411

Rubus fruticosus-h1 22 0.55 1 1 1 1 1 5 1 0.043

Salix aurita-b1 >1 8 0.2 0 0 1 1 1 3 0.6 0.0459

Iris pseudacorus-h1 23 0.575 1 1 1 1 1 5 1 0.0466

Table 29. Species of elementary syntaxon 4 of sedge Alders with a statistically higher relative frequency than in

all the relevés. The specific names are followed by their memebership to one of the strata. = frequency, Fr =

relative frequency, Pr = probability calculated by the permutation test.

These seven relevés correspond perfectly to the acidicline paludal Alder with Carex elongata: Peucedano

palustris - Alnetum glutinosae, variant with Carex vesicaria.

Sedge Alder with Agrostis canina

sum

fr

PA

12

PA

13

PA

14

PA

15

PA

16

PA

17

sum

fr

pr

Agrostis canina-h1 6 0.15 1 1 1 1 1 1 6 1 0

Agrostis canina-h1 >1 6 0.15 1 1 1 1 1 1 6 1 0

Carpinus betulus-h1 4 0.1 1 1 0 1 1 0 4 0.666666667 1.00E-04

Polytrichastrum formosum 4 0.1 1 1 0 0 1 1 4 0.666666667 1.00E-04

Sphagnum auriculatum 4 0.1 1 0 1 0 1 1 4 0.666666667 1.00E-04

Page 59: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

59

Molinia caerulea-h1 5 0.125 0 0 1 1 1 1 4 0.666666667 6.00E-04

Salix aurita-b1 13 0.325 1 1 1 1 1 1 6 1 7.00E-04

Carex vesicaria-h1 14 0.35 1 1 1 1 1 1 6 1 7.00E-04

Juncus effusus-h1 14 0.35 1 1 1 1 1 1 6 1 0.001

Populus tremula-a1 3 0.075 1 0 0 0 1 1 3 0.5 0.0013

Sphagnum palustre 3 0.075 0 0 1 1 0 1 3 0.5 0.0017

Populus tremula-b1 3 0.075 0 1 0 0 1 1 3 0.5 0.002

Quercus robur-a1 6 0.15 1 1 1 0 1 0 4 0.666666667 0.0023

Sphagnum inundatum 3 0.075 1 1 0 1 0 0 3 0.5 0.0029

Frangula dodonei subsp. dodonei-b1 11 0.275 0 1 1 1 1 1 5 0.833333333 0.0042

Frangula dodonei subsp. dodonei-h1 4 0.1 1 1 0 1 0 0 3 0.5 0.0076

Alnus glutinosa-h1 4 0.1 0 0 1 1 1 0 3 0.5 0.0078

Thuidium tamariscinum 4 0.1 0 0 0 1 1 1 3 0.5 0.008

Salix aurita-b1 >1 8 0.2 1 1 1 0 0 1 4 0.666666667 0.011

Populus tremula-h1 2 0.05 1 0 0 0 1 0 2 0.333333333 0.0167

Sphagnum auriculatum >1 2 0.05 1 0 0 0 0 1 2 0.333333333 0.0168

Agrostis canina-h1 >3 2 0.05 0 0 0 1 1 0 2 0.333333333 0.017

Populus tremula-h1>1 2 0.05 1 0 0 0 1 0 2 0.333333333 0.0183

Ranunculus flammula-h1 5 0.125 1 1 0 1 0 0 3 0.5 0.0191

Pellia epiphylla 2 0.05 0 0 0 0 1 1 2 0.333333333 0.0191

Carpinus betulus-b1 5 0.125 0 1 0 1 1 0 3 0.5 0.0192

Carex viridula subsp. oedocarpa-h1 2 0.05 1 0 0 0 0 1 2 0.333333333 0.0192

Sphagnum inundatum >1 2 0.05 1 1 0 0 0 0 2 0.333333333 0.0192

Fagus sylvatica-h1 2 0.05 0 0 1 0 1 0 2 0.333333333 0.0194

Juncus effusus-h1 >1 2 0.05 0 0 0 1 1 0 2 0.333333333 0.0202

Pseudoscleropodium purum 2 0.05 0 0 0 1 1 0 2 0.333333333 0.0206

Carex echinata-h1 2 0.05 0 0 0 1 0 1 2 0.333333333 0.0213

Lonicera periclymenum-h1 6 0.15 0 0 1 1 1 0 3 0.5 0.0292

Lonicera periclymenum-b1 6 0.15 0 0 1 1 1 0 3 0.5 0.033

Carex elongata-h1 >1 11 0.275 0 1 1 1 1 0 4 0.666666667 0.0353

Scutellaria galericulata-h1 11 0.275 1 1 0 0 1 1 4 0.666666667 0.039

Viola palustris-h1 3 0.075 0 0 0 1 0 1 2 0.333333333 0.0468

Viola palustris-h1 >1 3 0.075 0 0 0 1 0 1 2 0.333333333 0.0495

Table 30. Species of elementary syntaxon 5 of sedge Alders with a statistically higher relative frequency than in

all the relevés. The specific names are followed by their memebership to one of the strata. = frequency, Fr =

relative frequency, Pr = probability calculated by the permutation test.

This alder is particularly well-typed, very diverse, with a characteristic set which is particularly well

represented. It corresponds perfectly to the acidicline paludal alder with Carex elongata: Peucedano palustris -

Alnetum glutinosae, subass. agrostietosum caninae.

Page 60: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

60

Conclusions on the analysis of the BAILLY’s table

The comparison between the classification of the Alder woodlands proposed by BAILLY (2012) and that

resulting from the numerical classification resulting from our own analyses. leads us to propose the diagram of

figure 21.

Figure 21. Proposal for a classification of the Alder woodlands

Although it is easy to separate the Fern Alders and the Sdge Alders, this is not the case in the following.

and statistical analysis only partially correlates with the classification of the phytosociologist. Several well-typed

associations are also well recognized, or in large part, by the phytosociologist or the biometrician; for many

others, the difference is important. Despite the differences observed. we are convinced that the statistical analysis

is likely to help the phytosociologist in his search for a classification integrated into a hierarchical system.

The work would have been facilitated if accurate environmental data and soil characteristics were available.

Swampy Alder of

Franche-Comté

Fern Alder Sedge Alder

Amphibious

Alder with

Hottonia

palustris

Fern Alder with

Galium palustre

and Lysimachie

vulgaris

FernAlder

with

Molinia

caerulea

and

Sphagnum

palustre

Fern Alder

with Carex

brizoides

Sedge Alder

with Carex

acutiformis

and Circaea

lutetiana

Sedge Alder

with Carex

elongata

and

Phalaris

arundinacea

Sedge Alder

with Caltha

palustris

and

Filipendula

ulmaria

Sedge Alder

with Carex

remota and C.

vesicaria

Sedge Alder with

Agrostis canina

Page 61: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

61

General conclusions

The statistical analysis of a small file is relatively easy especially when the data are well structured, as is

the case in the ROYER’s file. In this example. it corresponds. to a large extent. to the analysis of the

phytosociologist. provided that it is based solely on presence data. The non-symmetric correspondence analysis

is best suited to this type of data. This leads to a good agreement between the analysis of the phytosociologist

and the statistical analysis. However. the statistical analysis is not adapted to the few data and it is difficult to

discriminate plant groups represented by a very small number of relevés.

Another way to process a phytosociological table, without losing any nuance provided by the field

observer, is to create a disjunctive table, complete or simplified. In the two files covered in this chapter. the

analysis of a complete disjunctive table, with a line for absences for each species and a line for each category of

abundance, yielded only results that were difficult to interpret. Even after removing the zeros, the data remained

inadequate for multivariate analyses. The disjunctive tables which we call simplified, that is to say without the

lines of zeros and by grouping several categories of abundance into a single line, have proved compatible with a

good multivariate analysis. The way of grouping several categories of abundance remains relatively empirical

but it must adapt to the kinds of data tables, depending on the number of relevés and the structure of the data.

The examination of the distributions of covariances in the multivariate analyses seems to be an important step in

the choice of the multivariate analysis best suited to the table to be analysed; a fairly symmetric and relatively

flattened bell covariance distribution is a promise of success for multivariate analysis. In the case of a clearly

asymmetric distribution, multivariate analysis can do nothing.

Finally, with pluristratal vegetation. multiple factor analysis is a very powerful tool, which I strongly

advise.

However, when you have a fairly large file, such as the Alder woodland file, you can not use all the

variability of the data with single-scale analyses. In this file. it has proved essential to analyse the data on two

successive scales: that of the 108 relevés and then that of the two Alder woodlands. These two scales have their

own sensitivity and a single-scale analysis of the large picture can not, in our opinion, lead to a good

understanding of the structure of the data. This methodology increases the time given to the analysis and

interpretation of the relevé tables, but this complementary time is only a small fraction of the time and energy

spent collecting the field data.

References

BAILLY, G. (2012). Contribution à l’étude des aulnaies marécageuses comtoises. Les Nouvelles Archives de la

Flore jurassienne et du nord-est de la France. 10: 57-102.

Page 62: Chapter 11. Statistical analysis and phytosociologyguy-bouxin.e-monsite.com/medias/files/ch11a.pdf · Statistical analysis of relevés tatbles 2020 ° rue des Sorbiers 33 B-5101 Erpent

62

BOUXIN, G. (2017). Analyse statistique des tableaux de relevés de végétation. Available on Internet at

http://guy-bouxin.e-monsite.com.

COLLAUD, R. avec la collaboration de Y. FERREY, N. SIMLER et G. BAILLY ( 2010). Contribution à l’étude

des forêts hygrosciaphiles de ravins à affinités atlantiques en Franche-Comté. Les Nouvelles Archives de la

Flore jurassienne et du nord-est de la France. 8: 87-122.

FERREY, Y. (2007). Contribution à l’étude phytosociologique des prairies mésophiles de Franche-Comté. Les

Nouvelles Archives de la Flore jurassienne et du nord-est de la France. 5: 59-151.

FERREY, Y. (2009). Contribution à l’étude phytosociologique des groupements végétaux des parois calcaires

[classe des Asplenietea trichomanis (Br.-Bl. 1934) Oberdorfer 1977] du massif jurassien et de la Franche-

Comté. Les Nouvelles Archives de la Flore jurassienne et du nord-est de la France. 7: 123-158.

FERREY, Y. (2011). Contribution à la connaissance des prairies humides oligotrophes (Molinion caeruleae

Koch 1926) de Franche-Comté. Les Nouvelles Archives de la Flore jurassienne et du nord-est de la France.

9: 9-24.

FOUCAULT de, B. (1984). Systémique. structuralisme et synsystématique des prairies hygrophiles des plaines

atlantiques françaises. t. 1. Thèse de doctorat, Sciences Naturelles, Université de Rouen – Laboratoire

d’Écologie Végétale. Université de Lille II – Laboratoire de Botanique. 409 p.

GUYONNEAU. J. (2005). Etude de la végétation et de l’hydrologie du marais de Levresses, réserve naturelle

régionale des tourbières de Frasne. Les Nouvelles Archives de la Flore jurassienne et du nord-est de la

France. 3: 69-126.

ROYER, J.-M. (2009). Petit précis de phytosociologie sigmatiste. Bulletin de la Société Botanique du Centre-

Ouest. Nouvelle Série. Numéro spécial 33. 86 pp.

TISON, J.-M. et B. de FOUCAULT (2014). FLORA GALLICA. Flore de France. Société botanique de France.

Éditions biotope. 1195 pp.