chapter 12 chemical kinetics. overview of kinetics macroscopic study— rates of reaction,...

50
CHAPTER 12 Chemical Kinetics

Upload: gary-atkinson

Post on 11-Jan-2016

231 views

Category:

Documents


1 download

TRANSCRIPT

Page 1: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

CHAPTER 12

Chemical Kinetics

Page 2: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Overview of Kinetics

Macroscopic Study— Rates of reaction, described by rate laws Meaning of reaction rate—change of concentration of

reactants per unit of time. How to determine rate from experimental data How does temperature and concentration reaction affect

rateCollision Theory—

Recall kinetic theory--particles that are in motion Chemical reactions occur when particles collide with

sufficient energy and the correct orientation to cause a chemical reaction

Reaction mechanism—the detailed pathway taken by atoms and molecules in the reaction process

Page 3: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

12.1

Page 4: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

What is kinetics?

A study of reaction rates or speeds.Reaction Rates—a measure of how quickly a

reaction occurs. Is it spontaneous? If not how much energy does it take?

How is it useful?Make sure the reaction proceeds at a fast

enough rate to be useful. (Is it practical? Show me the money!)

Page 5: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Solving Kinetic Problems

You will either be given experimental data and need to use mathematical relationships to solve for an unknown .

ORYou will be given a graph, and need to

understand how to read the data to solve for the unknown. So you need to understand the types of graphs involved and the data they provide.

Page 6: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Graphing

Page 7: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

How are Reaction Rates Measured?

Reaction Rates are Measured in Terms of Concentration

Rate = final concentration – intial concentration

tfinal-tintial

Rate = Δ [A] Δ t --Where A is the reactant or product

being considered.

Page 8: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Consider the following reaction:

2 N2O5(g) 4NO2(g) + O2 (g)

In terms of the reactant, the rate of reaction can be written:

Rate = - [N2O5]final – [N2O5]intial = - Δ [N2O5]

tfinal – tintial ΔtAs the rate proceeds, N2O5 decomposes, so Δ

[N2O5] is negative or is decreasing.Since rate must be positive, a negative sign

must be included for reaction rates of reactants.

Page 9: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Example Continued

In terms of the products, the rate of reaction can be written as:

Rate = Δ [NO2] or Rate = Δ [O2] Δt ΔtWhere there is no negative sign since products

are made so both would be positive slopes already.

Page 10: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

What is an instantaneous reaction rate?

We can obtain the reaction rate at any given instant.

The instantaneous reaction rate is the slope of a line tangent to the curve of an instant in time

Instantaneous rate = - slope of tangent (for a reactant)

Example of instantaneous rate, at t = 2.0 minutes, concentration = .056M Rate = -0.056 M = -.028M/min 2.o min

Page 11: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Reaction Rates and Stoichiometry

Because the coefficients are different for each reactant and product, these three rates will have different values.

Dividing by their Stoichiometric coefficients, we can relate the three rates:

Rate = Δ [N2O5] = Δ [NO2] = Δ [O2] 2Δt 4 Δt Δt Now we can choose any of the reactants or

products to determine the rate.

Page 12: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Example of Instantaneous Rate Reaction

Page 13: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Copyright © Houghton Mifflin Company. All rights reserved.

12a–13

Figure 12.5: A plot of [N2O5] versus time for the decomposition reaction of N2O5.

Page 14: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Figure 12.1: Starting with a flask of nitrogen dioxide at 300°C, the concentrations of nitrogen dioxide, nitric oxide, and oxygen are plotted versus time.

Page 15: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

12.2

Page 16: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Rate Law and Rate Constant

Experimental data, of the rate of reaction versus [N2O5]: Using the general formula for

a line is y = mx + b Where m = slope, b = y-

intercept

The straight line through the origin indicates that the rate is directly proportional to [N2O5]: rate = k [N2O5] In this case, k = the slope of

the line!

0 1 2 3 4 50

0.5

1

1.5

2

2.5

3

3.5

4

4.5

[N2O5]

Rate

(M

/min

)

Page 17: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

What are Rate Laws?

The reaction rate depends on the concentrations of only the reactants. (see note below)

Rate = k[A]n

“k” the rate constantn = the order of the reactantValue of n, must be found experimentally,

cannot be found through stoichiometry!Note:• Chemical reactions are reversible• When there are a lot of products and

little reactants the reaction can reverse, so we usually measure rates soon after mixing.

Page 18: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

What affects reaction rates?

Reactions occur as a result of collisions between reactant molecules.1. Concentration2. Temperature3. Nature of Reactants4. Catalysts

Page 19: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

What is a Reaction Order?

The rate laws for most reactions have the general form:

Rate = k [reactant 1]m [reactant 2]n…The exponents m and n are called reaction

orders, and the sum of all the reaction orders (m + n) is the overall reaction order.

Infer the number of steps for the reaction!

Page 20: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Using Initial Rates to Determine Rate Laws

Reaction order involving a single reactantFor this type of reaction: A Products the rate law has the form: rate = k [A]m

where m = order of reaction If m = 0, the reaction is “zero-order” If m = 1, the reaction is “first-order”, etc.

The order of the reaction cannot be obtained from the chemical equation, it must be determined from experimental data.

Graphs represent concentration versus time!

Page 21: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

To determine the order…

You need the rates and concentrations for two different instances:

rate 1 = k [A]1m rate 2 = k [A]2

m

We can solve for m by dividing the second rate by the first:

rate 2 = [A]2m = [A]2 m

rate 1 = [A]1m [A]1

Page 22: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Example Problem

Given the following data, determine the reaction order, m, the decomposition of N2O5:

2 N2O5 (g) 4 NO2 (g) + O2 (g)

[N2O5] Rate (M/s)

0.90 M 5.4 x 10-4

0.45 M 2.7 x 10-4

Page 23: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Reaction Order with More than One Reactant

Most reactions are of the form: A + B products

And the general form of the rate law is: Rate = k [A]m [B]n

And the overall reaction order: order = m + n

For example, if the rate law for a reaction is: Rate = k [NO]2 [O2], the reaction is second-order in

NO, first-order in O2, and third-order overall.

Page 24: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Given the following data,

Experiment [O2] [NO] Rate (M/s)

1 0.0110M 0.0130 M 3.21 x 10-3

2 0.0220 M 0.0130 M 6.40 x 10-3

3 0.0110 M 0.0260 M 12.8 x 10-3

Determine m and n, and thus, the reaction order and the rate law for the reaction: O2 (g) + 2NO (g) 2 NO2 (g)

a. First, use data from two experiments where the [NO] remains constant (e.g. Experiments #1 and # 2) to get m.

b. Next use data from two experiments were the [O2] remains constant (e.g. Experiments #1 and #3) to get n.

c. Finally write the rate law for the reaction.

Page 25: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Integrated Rate Equations

Using calculus, we can develop integrated rate equations to relate reactant concentration to time.

Zero-order reaction of this type A products, we get: rate = -k

Thus, the rate for a zero-order reaction is constant and independent of the concentration of the reactants. It does not matter how much you have!!!

Plotting [A] versus time should give us a straight line.

[A]

Page 26: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Figure 12.7: A plot of [A] versus t for a zero-order reaction.

Page 27: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

First-Order Reactions

For a first-order reaction of this type: A Products, we get: rate = - Δ [A]t = k [A]t where [A]t is the [A] at time t

ΔtRearranging the equation above and integrating gives us

the relationship between concentration and time:

ln [A]t = -kt or ln [A]t - ln [A]o = -kt

[A]o

Page 28: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Copyright © Houghton Mifflin Company. All rights reserved.

12a–28

Figure 12.4: A plot of ln[N2O5] versus time.

Only for first-order reactions does one get a straight line when plotting ln [A] versus time!

Page 29: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Half-life (t1/2)

The time required for one half of a sample to decompose.

For first-order reactions, half-life is a fixed value, independent of concentration.

We can solve for the half-life:ln [A]t = ln ½[A]o = ln 1 = -0.693 = -kt1/2

[A]o [A]o 2

So t1/2 = 0.693

k

Page 30: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Second-Order Reactions

For a second-order reaction of this type: A productsWe get:

rate = - Δ[A]t = k [A]2

ΔtRearranging the equation above and integrating gives us

the relationship between concentration and time: 1 - 1 = kt or 1 = kt + 1 [A]t [A]o [A]t [A]o

Page 31: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Copyright © Houghton Mifflin Company. All rights reserved.

12a–31

Figure 12.6: (a) A plot of ln[C4H6] versus t. (b) A plot of 1y[C4H6] versus t.

Only for second-order reactions does one get a straight line when plotting 1/[A]t versus time!

Page 32: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Copyright © Houghton Mifflin Company. All rights reserved.

12b–32

To determine the order of reaction given experimental data, plot the data and determine which set of data gives a linear plot

Page 33: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

The Collision Model

Main Idea: Molecules must collide to reactThree Factors:1. Kinetic Energy—for a reaction to occur, molecules

have to be moving quickly enough that they can break and reform bonds when they collide, if moving too slowly they will merely bounce off each other.

Activation Energy (Ea): the minimum amount of energy required to initiate a chemical reaction

2. Concentration—The higher the concentration, the more molecules present, higher probability of collisions, thus a higher reaction rate!

3. Orientation of molecules (or steric factor)—molecules have to be in the correct orientation for a reaction to occur (see figure 12.13)

Page 34: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Importance of the steric factor

Page 35: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Copyright © Houghton Mifflin Company. All rights reserved.

12b–35

Figure 12.13: Several possible orientations for a collision between two BrNO

molecules. Orientations (a) and (b) can lead to a reaction, but orientation (c) cannot.

Page 36: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Kinetic Molecular Theory

Recall with the kinetic molecular theory of gases, the higher the temperature, the higher the kinetic energy of molecules.

By increasing temperature, more molecules have the required activation energy for a reaction.

Page 37: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Activation Energy

Page 38: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Figure 12.12: Plot showing the number of collisions with a particular

energy at T1 and T2, where T2 > T1.This figure shows the energy of molecules at two temperatures.

At higher temperature T2 more molecules have higher energy

The shaded region indicates molecules with the activation energy (Ea)

At the higher temperature, more molecules have Ea.

Page 39: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Transition-State Model: Energy Profiles

We can show a reaction in terms of an Energy Profile.

The transition state (also called the activated complex) is the arrangement of atoms at the peak of the energy profile.

The activation energy, Ea, is the difference in energy between the reactants and the transition state.

The difference in energy between reactants and products is ΔHrxn. Note the next slide for a diagram.

Page 40: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Figure 12.11: (a) The change in potential energy as a function of reaction progress for the reaction 2BrNO

2NO + Br2. The activation energy Ea represents the energy needed to disrupt the BrNO molecules so that they can form

products. The quantity DE represents the net change in energy in going from reactant to products. (b) A molecular

representation of the reaction.

Page 41: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

The Arrhenius Equation

Svante Arrhenius noted that for most reactions, the temperature dependence for the rate constant is given by:

k = A e-Ea/RT

Where A = frequency factor which accounts for the frequency of collision and the probability that the molecules are in the correct orientation.

Ea = activation energyR = 8.314 J/mol *KT = Temperature in Kelvins

Page 42: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

The Arrhenius Equation continued…

If we take the natural log of both sides and rearranging the equation we get:

ln k = - Ea + ln A RTFrom this equation plotting ln k versus 1/T

should give a straight line;

Thus, we can determine the activation energy for a given reaction if we have experimental data on its rate constant at different temperatures.

Page 43: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Figure 12.14: Plot of ln(k) versus 1/T for the reaction 2N2O5(g) 4NO2(g) + O2(g). The value of the activation energy for this reaction can be obtained from the slope of the line, which equals -Ea/R.

Page 44: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

“Two-Point” Equation Relating k and T

We can also determine the activation energy for a given reaction if we have experimental data for the reaction at two different temperatures:

ln k2 = Ea 1 - 1

k1 R T1 T2

This equation will also allow us to determine the rate constant at a different temperature if we have the activation energy.

Page 45: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Example

The rate constant for a first-order reaction is 0.346 s-1 at 298K. What is the rate constant at 355 K if the activation energy for the reaction is 50.2 kJ/mol?

Page 46: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Reaction Mechanisms

A reaction mechanism is a sequence of steps by which a reaction occurs at the molecular level.

Elementary Steps: The individual steps that make up a reaction mechanism

The molecularity of a reaction describes the number of molecules reacting in an elementary step. Unimolecular: only one reactant Bimolecular: two reactants Termolecular: three reactants (less common as very low

probability of 3 molecules colliding in the correct orientation for a reaction )

Page 47: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

The types of elementary steps and their corresponding rates are given below:

Copyright © Houghton Mifflin Company. All rights reserved.

Page 48: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Catalysts

Substances that accelerate a chemical reaction but are not themselves transformed into a product of the reaction. If the catalyst is the same state as the reactant(s) it is a homogeneous catalysts and if it is not it is a heterogeneous catalysts (usually a solid).

Page 49: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

How to tell if it is a intermediate or a catalyst

If it is a catalyst, it will appear first on the reactant side.

If it is an intermediate, it will first appear on the product side.

Page 50: CHAPTER 12 Chemical Kinetics. Overview of Kinetics Macroscopic Study—  Rates of reaction, described by rate laws  Meaning of reaction rate—change of

Important Equations

Arrhenius Equation

k = A e-Ea/RT

ln k = - Ea + ln A RT A = frequency factor which

accounts for the frequency of collision and the probability that the molecules are in the correct orientation.

Ea = activation energyR = 8.314 J/mol *KT = Temp in Kelvins

Note: From this equation plotting ln k versus 1/T should give a straight line;

Thus, we can determine the activation energy for a given reaction if we have experimental data on its rate constant at different temperatures.

Two different temperature problems:ln k2 = Ea 1 - 1ln k1 R T1 T2