chapter 14 vectors in three space

21
CHAPTER 14 Vectors in three space Team 6: Bhanu Kuncharam Tony Rocha-Valadez Wei Lu

Upload: pabla

Post on 06-Feb-2016

51 views

Category:

Documents


0 download

DESCRIPTION

CHAPTER 14 Vectors in three space. Team 6: Bhanu Kuncharam Tony Rocha- Valadez Wei Lu. 14.6 Non-Cartesian Coordinates. The position vector R from the origin of Cartesian coordinate system to the point (x(t), y(t), z(t)) is given by the expression. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: CHAPTER 14  Vectors in three space

CHAPTER 14 Vectors in three space

Team 6:Bhanu Kuncharam

Tony Rocha-ValadezWei Lu

Page 2: CHAPTER 14  Vectors in three space

The position vector R from the origin of Cartesian coordinate system to the point (x(t), y(t), z(t)) is given by the expression

k)t(zj)t(yi)t(x)t(R

k)t(zj)t(yi)t(x)t(R)t(v

i

j

A Cartesian coordinate system (by MIT OCW) 

14.6 Non-Cartesian Coordinates

k)t(zj)t(yi)t(x)t(R)t(a

The vector expression for velocity is given by

The vector expression for acceleration is given by

http://www.wepapers.com/Papers/4521/1_Newton's_Laws,_Cartesian_and_Polar_Coordinates,_Dynamics_of_a_Single_Particle

Page 3: CHAPTER 14  Vectors in three space

14.6.1 Plane polar coordinate

To define the Polar Coordinates of a plane we need first to fix a point which will be called the Pole (or the origin) and a half-line starting from the pole. This half-line is called the Polar Axis.

Polar Angles: The Polar Angle θ of a point P, P ≠ pole, is the angle between the Polar Axis and the line connecting the point P to the pole. Positive values of the angle indicate angles measured in the counterclockwise direction from the Polar Axis.

The Polar Coordinates (r,θ) of the point P, P ≠ pole, consist of the distance r of the point P from the Pole and of the Polar Angle θ of the point P. Every (0, θ) represents the pole.

θ

Polar Axis

rP(r, θ) Definitio

ns:

http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node5.html

Page 4: CHAPTER 14  Vectors in three space

Plane polar coordinate

More than one coordinate pair can refer to the same point.

150o

30o210o

2

2,30o

2,210o

2, 150o

All of the polar coordinates of this point are: 2,30 360

2, 150 360 0, 1, 2 ...

o o

o o

n

n n

http://www.geom.uiuc.edu/docs/reference/CRC-formulas/node5.html

Page 5: CHAPTER 14  Vectors in three space

Plane polar coordinate

Difference quotient method to get rr e

dedande

ded ˆˆˆˆ

))((ˆ)( tetrR r

rr ererRtv ˆˆ)(

ded

dtd

ded

tedtde rr

rr

ˆˆ))((ˆˆ

)(ˆ)(ˆlim

ˆ0

rrr eeded

e

eded r ˆ

ˆ)1(lim

ˆ0

erertv r ˆˆ)( ererererer)t(v)t(a rr

What is ? d

ed rˆ

Greenberg, M. D. (1998). Advanced Engineering Mathematics (2nd ed.): Prentice Hall.

Page 6: CHAPTER 14  Vectors in three space

Plane polar coordinate

Difference quotient method to get rr e

dedande

ded ˆˆˆˆ

What is ?

ded ˆ

d

eddtd

ded

tedtde

ˆˆ)(ˆˆ

)(ˆ)(ˆlim

ˆ0

eeded

rr ee

ded ˆ)ˆ)(1(

limˆ

0

ree ˆˆ

errerrta r ˆ)2(ˆ)()( 2 Greenberg, M. D. (1998). Advanced Engineering Mathematics (2nd ed.): Prentice Hall.

Page 7: CHAPTER 14  Vectors in three space

Transform method to get rr e

dedande

ded ˆˆˆˆ

Plane polar coordinate

jided

jided

jie

jie

r

r

ˆsinˆcosˆ

ˆcosˆsinˆ

ˆcosˆsinˆ

ˆsinˆcosˆ

eejeei

r

r

ˆcosˆsinˆsinˆcos

r22

rr

22rr

r

e)sin(cos)e cose (sinsin)e sine (coscosded

ee)cos(sin)e cose (sincos)e sine (cossinded

Page 8: CHAPTER 14  Vectors in three space

e)r2r(e)rr()t(a

ererR)t(v

))t((e)t(rR

r2r

r

xyyxr

ryrx

1

22

tan

sincos

ktzjtyitxtRtvta

ktzjtyitxtRtv

ktzjtyitxtR

ˆ)(ˆ)(ˆ)()()()(

ˆ)(ˆ)(ˆ)()()(

ˆ)(ˆ)(ˆ)()(

e re

A polar coordinate system (by MIT OCW) 

rr

rr

r

erererererdtdva

ererdtedre

dtdr

dtdRv

ˆˆˆˆˆ

ˆˆˆˆ

2

The expressions of R, v, a in polar coordinates

http://www.wepapers.com/Papers/4521/1_Newton's_Laws,_Cartesian_and_Polar_Coordinates,_Dynamics_of_a_Single_Particle

Page 9: CHAPTER 14  Vectors in three space

r

r

(r,,z)

Cylindrical coordinates are a generalization of two-dimensional polar coordinates to three dimensions by superposing a height z axis.

14.6.2 Cylindrical coordinates

A cylindrical coordinate system  

)2(

http://mathworld.wolfram.com/CylindricalCoordinates.html

Page 10: CHAPTER 14  Vectors in three space

Cylindrical coordinates

xyyxr

ryrx

1tan

22

sincos

The relations between cylindrical coordinates and Cartesian coordinates.

2 2 2

tan( )

r x yyx

z z

Definitions:

zr

zr

zr

ezerrerrtRta

ezerertRtv

ezerR

ˆˆ)2(ˆ)()()(

ˆˆˆ)()(

ˆˆ

2

The expressions of position R, velocity v, and acceleration a in Cylindrical coordinates are

given by

Greenberg, M. D. (1998). Advanced Engineering Mathematics (2nd ed.): Prentice Hall.

Page 11: CHAPTER 14  Vectors in three space

Cylindrical coordinates

Example1:

Find the cylindrical coordinates of the point whose Cartesian coordinates are (1, 2, 3)

Answer:3

1071.15

z

r

Example2:Find the Cartesian coordinates of the point whose cylindrical coordinates are (2, Pi/4, 3)

Answer:3

22

22

zy

x

http://mathworld.wolfram.com/CylindricalCoordinates.html

Page 12: CHAPTER 14  Vectors in three space

14.6.3 Spherical coordinates

(x,y,z) r

z

Spherical coordinates, also called spherical polar coordinates (Walton 1967, Arfken 1985), are a system of curvilinear coordinates that are natural for describing positions on a sphere or spheroid. Define to be the azimuthal angle in the -plane from the x-axis with (denoted when referred to as the longitude), to be the polar angle (also known as the zenith angle and colatitude, with where is the latitude) from the positive z-axis with , and to be distance (radius) from a point to the origin.

Page 13: CHAPTER 14  Vectors in three space

Spherical coordinates

The expressions of Spherical coordinates for velocity and acceleration

eeeee

ee

eee

ee

eee

ˆcosˆsinˆ

,0ˆ

,0ˆ

ˆcosˆ

,ˆˆ

,0ˆ

ˆsinˆ

,ˆˆ

,0ˆ

eR ˆ ))(),((ˆˆ ttee

)ˆsinˆ(ˆ

)ˆˆ

eee

dtde

dtde

eRv

e

eeta

ˆ)cos2sin2sin(

ˆ)cossin2(ˆ)sin()( 2222

Page 14: CHAPTER 14  Vectors in three space

The expressions of R, v, a in Spherical coordinates

ktzjtyitxtRtvta

ktzjtyitxtRtv

ktzjtyitxtR

ˆ)(ˆ)(ˆ)()()()(

ˆ)(ˆ)(ˆ)()()(

ˆ)(ˆ)(ˆ)()(

e

eeta

eeetv

eR

ˆ)cos2sin2sin(

ˆ)cossin2(ˆ)sin()(

ˆsinˆˆ)(

ˆ

2222

cossinsincossin

zyx

Figure taken from reference: http://mathworld.wolfram.com/SphericalCoordinates.html

Page 15: CHAPTER 14  Vectors in three space

Example 3 Calculate the three components of the position, velocity and

acceleration vectors at t=3. The position of the point R is given by R=(t, exp(t), 3t ). Do this for the in Cartesian coordinates,

Cylindrical coordinates, and Spherical coordinates

Examples: The expressions of R, v, a in Non-Cartesian coordinates

Solution:In Cartesian Coordinates:

ktzjtyitxtR ˆ)(ˆ)(ˆ)()(

ktzjtyitxtRtv ˆ)(ˆ)(ˆ)()()(

ktzjtyitxtRtvta ˆ)(ˆ)(ˆ)()()()( jeta

kjeitv

ktjeittR

t

t

t

ˆ)(

ˆ3ˆˆ)(

ˆ3ˆˆ)(

0,08.20,0

3,08.20,1

9,08.20,3,ˆ)(,ˆ3ˆˆ)(,ˆ9ˆˆ3)( 333

zyx

zyx

zyx

aaa

vvv

RRRorjetakjeitvkjeitR

Page 16: CHAPTER 14  Vectors in three space

Solution: In Cylindrical Coordinates:

eejeei

r

r

ˆcosˆsinˆsinˆcos

put into

jeta

kjeitv

ktittR

t

t

ˆ)(

ˆ3ˆˆ)(

ˆ3ˆ)(

1468.0sin1cos,989.03

sin 2

62

3

22

e

e

yx

y

0ˆˆ

RezerR zr

)ˆcosˆ(sin)(

ˆ3)ˆcosˆ(sin)ˆsinˆ(cos)(

ˆ3ˆcos)(

eeeta

eeeeeetv

etettR

rt

zrt

r

zr

get

0,948.2,86.193,959.1,00.209,0,4404.0

zr

zr

zr

aaavvvRRR

The expressions of R, v, a in Non-Cartesian coordinates

Page 17: CHAPTER 14  Vectors in three space

In Spherical Coordinates:

eek

eeej

eeei

ˆsinˆcosˆ

ˆcosˆsincosˆsinsinˆ

ˆsinˆcoscosˆcossinˆ

put

jeta

kjeitv

ittR

t

t

ˆ)(

ˆ3ˆˆ)(

ˆ)(

into

Solution: 0.0

ˆ

zRR

eR

get

)ˆcosˆsincosˆsin(sin

)ˆsinˆ(cos

)ˆcosˆsincosˆsin(sin

)ˆsinˆcoscosˆcos(sin

ˆcossin

eeeea

eet

eeee

eeev

etR

t

t

9142.0cos1sin,4051.093

9cos

1468.0sin1cos,989.03

sin

2

262222

2

62

3

22

ezyx

ze

e

yx

y

045.8,948.2,15.18

361.5,936.3,49.19

0,0,4026.0

aaa

vvv

RRR

The expressions of R, v, a in Non-Cartesian coordinates

Page 18: CHAPTER 14  Vectors in three space

Using the omega method derive the space derivatives of base vectors

0

02

tan2

AA

AAAAAA

tconsAAA

Consider a rigid body B undergoing an arbitrary motion through 3-space. And let A be any fixed vector with B, that is, A is a vector from one material point in B to another so is constant with time, because b is rigid. Thus A=A(t)Fixed vector in B

 

There exists a vector such that AA 1

1

There exists a vector such that 2 BB 1

Greenberg, M. D. (1998). Advanced Engineering Mathematics (2nd ed.): Prentice Hall.

A

14.6.4 Omega Method

Page 19: CHAPTER 14  Vectors in three space

Omega method

Since B is arbitrary:

0)( 21 ASince A is arbitrary:

021

0)(0

0)()(0

cos

21

21

21

BASoBABA

BABABABA

BABA

So we get AA

Omega Method

Page 20: CHAPTER 14  Vectors in three space

Omega method In cylindrical coordinates: ze

Let A be :re eeeedted

rzrr ˆˆˆˆ

ˆ

Using chain differentiation to write:

ze

ze

re

r

dtdz

ze

dtde

dtdr

re

tzttredtd

rrr

rrrr

ˆˆˆ

ˆˆˆ))(),(),((ˆ

zeze

rerzer rrr

ˆˆˆ

0ˆ0

,ˆˆ,0

ˆ

zeee

re rrr

Similarly, let A be :e 0ˆ

,ˆˆ,0

ˆ

zeee

re

r

Let A be :ze 0ˆ

,0ˆ

,0ˆ

zee

re zzz

Omega Method

Page 21: CHAPTER 14  Vectors in three space

End of Chapter 14