chapter 17 numerical integration formulas. graphical representation of integral integral = area...

60
Chapter 17 Chapter 17 Numerical Numerical Integration Integration Formulas Formulas

Post on 21-Dec-2015

251 views

Category:

Documents


7 download

TRANSCRIPT

Page 1: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Chapter 17Chapter 17

Numerical Numerical Integration FormulasIntegration Formulas

Page 2: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

max 0 1

1

Integration

( ) ( )

( )

limM b

i i ax i

M

i ii

y f(x)

I f x x f x dx

A f x x I

Page 3: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Graphical Representation of IntegralGraphical Representation of Integral

Integral = area under the curve

Use of a grid to approximate an integral

Page 4: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Use of strips to Use of strips to approximate an integralapproximate an integral

Page 5: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Numerical IntegrationNumerical Integration

Net force against a

skyscraper

Cross-sectional area and volume flowrate

in a river

Survey of land area of an

irregular lot

Page 6: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Water exerting pressure on the upstream face of a dam: (a) side view showing force increasing linearly with

depth; (b) front view showing width of dam in meters.

Pressure Force on a DamPressure Force on a Dam

p = gh = h

Page 7: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

IntegrationIntegration Weighted sum of functional values at discrete

points Newton-Cotes closed or open formulae -- evenly spaced points Approximate the function by Lagrange

interpolation polynomial Integration of a simple interpolation polynomial

Guassian Quadratures Richardson extrapolation and Romberg

integration

Page 8: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Basic Numerical IntegrationBasic Numerical Integration Weighted sum of function values

)()()(

)()(

nn1100

i

n

0ii

b

a

xfcxfcxfc

xfcdxxf

x0 x1 xnxn-1x

f(x)

Page 9: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

0

2

4

6

8

10

12

3 5 7 9 11 13 15

Numerical IntegrationNumerical Integration• Idea is to do integral in small parts, like the way

you first learned integration - a summation

• Numerical methods just try to make it faster and more accurate

Page 10: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Newton-Cotes formulas

- based on idea

dxxfdxxfIb

a n

b

a )()(

Approximate f(x) by a polynomial

nn

1n1n10n xaxaxaaxf

)(

Numerical integrationNumerical integration

Page 11: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

fn (x) can be linear fn (x) can be quadratic

Page 12: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

fn (x) can also be cubic or other higher-order polynomials

Page 13: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Polynomial can be piecewise over the data

Page 14: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Numerical IntegrationNumerical Integration

Newton-Cotes Closed Formulae -- Use both end points

Trapezoidal Rule : Linear Simpson’s 1/3-Rule : Quadratic Simpson’s 3/8-Rule : Cubic Boole’s Rule : Fourth-order* Higher-order methods*

Newton-Cotes Open Formulae -- Use only interior points

midpoint rule Higher-order methods

Page 15: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Closed and Open FormulaeClosed and Open Formulae

(a) End points are known (b) Extrapolation

Page 16: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Trapezoidal RuleTrapezoidal Rule• Straight-line approximation

)()(

)()()()(

10

1100i

1

0ii

b

a

xfxf2

h

xfcxfcxfcdxxf

x0 x1x

f(x)

L(x)

Page 17: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Trapezoidal RuleTrapezoidal Rule• Lagrange interpolation

)()()()()(

)()()(

)()()(

)()()()()(

;,,,

)()()(

bfaf2

h

2hbf

2haf

dhbfd1haf

dLhdxxLdxxf

bfaf1L1 bx

0 ax

abh h

dxd

ab

ax xb xa let

xfxx

xxxf

xx

xxxL

1

0

21

0

2

1

0

1

0

1

0

b

a

b

a

10

101

00

10

1

Page 18: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Example:Trapezoidal RuleExample:Trapezoidal Rule• Evaluate the integral• Exact solution

• Trapezoidal Rule

92647752161x2e4

1

e4

1e

2

xdxxe

1

0

x2

4

0

x2x24

0

x2

.)(

dxxe4

0

x2

%..

..

.)()()(

123579265216

66238479265216

6623847e4024f0f2

04dxxeI 84

0

x2

Page 19: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Better Numerical IntegrationBetter Numerical Integration

Composite integration Multiple applications of Newton-Cotes

formulae Composite Trapezoidal Rule Composite Simpson’s Rule

Richardson Extrapolation Romberg integration

Page 20: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Apply trapezoidal rule to multiple Apply trapezoidal rule to multiple segments over integration limitssegments over integration limits

0

1

2

3

4

5

6

7

3 5 7 9 11 13 15

Two segments

0

1

2

3

4

5

6

7

3 5 7 9 11 13 15

0

1

2

3

4

5

6

7

3 5 7 9 11 13 150

1

2

3

4

5

6

7

3 5 7 9 11 13 15

Four segments Many segments

Three segments

Page 21: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Multiple Applications of Multiple Applications of Trapezoidal RuleTrapezoidal Rule

Page 22: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Composite Trapezoidal RuleComposite Trapezoidal Rule

)()()()()(

)()()()()()(

)()()()(

n1ni10

n1n2110

x

x

x

x

x

x

b

a

xfxf2x2fxf2xf2

h

xfxf2

hxfxf

2

hxfxf

2

h

dxxfdxxfdxxfdxxfn

1n

2

1

1

0

x0 x1x

f(x)

x2h h x3h h x4

n

abh

Page 23: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Trapezoidal RuleTrapezoidal Rule Truncation error (single application)

Exact if the function is linear ( f = 0) Use multiple applications to reduce the

truncation error

3t abf

12

1E ))((

n

1ii2

3

n

1ii3

3

a

fn

1f ;f

n12

ab

fn12

abE

)()(

)()(

Approximate

error

Page 24: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Composite Trapezoidal RuleComposite Trapezoidal Rule

function f = example1(x)% a = 0, b = pif=x.^2.*sin(2*x);

dxx2sinx0

2 )(

Page 25: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

» a=0; b=pi; dx=(b-a)/100;» x=a:dx:b; y=example1(x);» I=trap('example1',a,b,1)I = -3.7970e-015» I=trap('example1',a,b,2)I = -1.4239e-015» I=trap('example1',a,b,4)I = -3.8758» I=trap('example1',a,b,8)I = -4.6785» I=trap('example1',a,b,16)I = -4.8712» I=trap('example1',a,b,32)I = -4.9189

Composite Trapezoidal RuleComposite Trapezoidal Rule» I=trap('example1',a,b,64)I = -4.9308» I=trap('example1',a,b,128)I = -4.9338» I=trap('example1',a,b,256)I = -4.9346» I=trap('example1',a,b,512)I = -4.9347» I=trap('example1',a,b,1024)I = -4.9348» Q=quad8('example1',a,b)Q = -4.9348 MATLAB

function

Page 26: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

n = 2

I = -1.4239 e-15

Exact = -4. 9348

dxx2sinx0

2 )(

Page 27: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

n = 4

I = -3.8758

Exact = -4. 9348

dxx2sinx0

2 )(

Page 28: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

n = 8

I = -4.6785

Exact = -4. 9348

dxx2sinx0

2 )(

Page 29: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

n = 16

I = -4.8712

Exact = -4. 9348

dxx2sinx0

2 )(

Page 30: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Composite Trapezoidal RuleComposite Trapezoidal Rule• Evaluate the integral dxxeI

4

0

x2

%..)().().(

).().()(.,

%..)().(

)().()().(

)().()(.,

%..)()(

)()()(,

%..)()()(,

%..)()(,

662 9553554f753f253f2

50f2250f20f2

hI250h16n

5010 7657644f53f2

3f252f22f251f2

1f250f20f2

hI50h8n

7139 7972884f3f2

2f21f20f2

hI1h4n

75132 23121424f2f20f2

hI2h2n

12357 66238474f0f2

hI4h1n

Page 31: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Composite Trapezoidal RuleComposite Trapezoidal Rule» x=0:0.04:4; y=example2(x);» x1=0:4:4; y1=example2(x1);» x2=0:2:4; y2=example2(x2);» x3=0:1:4; y3=example2(x3);» x4=0:0.5:4; y4=example2(x4);» H=plot(x,y,x1,y1,'g-*',x2,y2,'r-s',x3,y3,'c-o',x4,y4,'m-d');» set(H,'LineWidth',3,'MarkerSize',12);» xlabel('x'); ylabel('y'); title('f(x) = x exp(2x)');

» I=trap('example2',0,4,1)I = 2.3848e+004» I=trap('example2',0,4,2)I = 1.2142e+004» I=trap('example2',0,4,4)I = 7.2888e+003» I=trap('example2',0,4,8)I = 5.7648e+003» I=trap('example2',0,4,16)I = 5.3559e+003

Page 32: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Composite Trapezoidal RuleComposite Trapezoidal Rule

dxxeI4

0

x2

Page 33: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Simpson’s 1/3-RuleSimpson’s 1/3-Rule• Approximate the function by a parabola

)()()(

)()()()()(

210

221100i

2

0ii

b

a

xfxf4xf3

h

xfcxfcxfcxfcdxxf

x0 x1x

f(x)

x2h h

L(x)

Page 34: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Simpson’s 1/3-RuleSimpson’s 1/3-Rule

1 xx

0 xx

1 xx

h

dxd

h

xx

2

abh

2

ba x bx ax let

xfxxxx

xxxx

xfxxxx

xxxx xf

xxxx

xxxxxL

2

1

0

1

120

21202

10

12101

200

2010

21

,,

,,

)())((

))((

)())((

))(()(

))((

))(()(

)()(

)()()()(

)( 212

0 xf2

1xf1xf

2

1L

Page 35: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Simpson’s 1/3-RuleSimpson’s 1/3-Rule)(

)()()()(

)()( 21

20 xf

2

1xf1xf

2

1L

1

1

23

2

1

1

3

1

1

1

23

0

1

12

1

0

21

1

10

1

1

b

a

2

ξ

3

ξ

2

hxf

3

ξξhxf

2

ξ

3

ξ

2

hxf

dξ1ξξ2

hxfdξξ1(hxf

dξ1ξξ2

hxfdξLhdxxf

)()(

)()()()(

)()())(

)()()()(

)()()()( 210

b

axfxf4xf

3

hdxxf

Page 36: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Composite Simpson’s RuleComposite Simpson’s Rule

x0 x2x

f(x)

x4h h xn-2h xn

n

abh

…...

Piecewise Quadratic approximations

hx3x1 xn-1

Page 37: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Composite Simpson’s 1/3 RuleComposite Simpson’s 1/3 Rule

Applicable only if the number of segments is even

Page 38: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Composite Simpson’s 1/3 RuleComposite Simpson’s 1/3 Rule Applicable only if the number of segments is even

Substitute Simpson’s 1/3 rule for each integral

For uniform spacing (equal segments)

n

2n

4

2

2

0

x

x

x

x

x

xdxxfdxxfdxxfI )()()(

6

xfxf4xfh2

6

xfxf4xfh2

6

xfxf4xfh2I

n1n2n

432210

)()()(

)()()()()()(

1n

531i

2n

642jnji0 xfxf2xf4xf

n3

abI

,, ,,

)()()()()(

Page 39: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Simpson’s 1/3 RuleSimpson’s 1/3 Rule Truncation error (single application)

Exact up to cubic polynomial ( f (4)= 0) Approximate error for (n/2) multiple

applications

2

abh ;f

2880

abfh

90

1E 4

545

t

)(

)()( )()(

5(4)

4

( )

180a

b aE f

n

Page 40: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Composite Simpson’s 1/3 RuleComposite Simpson’s 1/3 RuleEvaluate the integral

• n = 2, h = 2

• n = 4, h = 1

dxxeI4

0

x2

%..

)()()(

)()()()()(

708 9755670

e4e34e22e403

1

4f3f42f21f40f3

hI

8642

%..)(

)()()(

9657 4118240e4e2403

2

4f2f40f3

hI

84

Page 41: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Simpson’s 3/8-RuleSimpson’s 3/8-Rule Approximate by a cubic polynomial

)()()()(

)()()()()()(

3210

33221100i

3

0ii

b

a

xfxf3xf3xf8

h3

xfcxfcxfcxfcxfcdxxf

x0 x1x

f(x)

x2h h

L(x)

x3h

Page 42: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Simpson’s 3/8-RuleSimpson’s 3/8-Rule

)())()((

))()(()(

))()((

))()((

)())()((

))()(()(

))()((

))()(()(

3231303

2102

321202

310

1312101

3200

302010

321

xfxxxxxx

xxxxxxxf

xxxxxx

xxxxxx

xfxxxxxx

xxxxxxxf

xxxxxx

xxxxxxxL

)()()()( 3210

b

a

b

a

xfxf3xf3xf8

h33

abh ;L(x)dxf(x)dx

Truncation error

3

abh ;f

6480

abfh

80

3E 4

545

t

)(

)()( )()(

Page 43: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Example: Simpson’s RulesExample: Simpson’s Rules Evaluate the integral Simpson’s 1/3-Rule

Simpson’s 3/8-Rule

dxxe4

0

x2

%..

..

.)(

)()()(

96579265216

41182409265216

4118240e4e2403

2

4f2f40f3

hdxxeI

84

4

0

x2

%71.30926.5216

209.6819926.5216

209.6819832.11923)33933.552(3)18922.19(308

)4/3(3

)4(f)3

8(f3)

3

4(f3)0(f

8

h3dxxeI

4

0

x2

Page 44: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

function I = Simp(f, a, b, n)% integral of f using composite Simpson rule% n must be evenh = (b - a)/n;S = feval(f,a);for i = 1 : 2 : n-1 x(i) = a + h*i; S = S + 4*feval(f, x(i));endfor i = 2 : 2 : n-2 x(i) = a + h*i; S = S + 2*feval(f, x(i));endS = S + feval(f, b); I = h*S/3;

Composite Simpson’s 1/3 RuleComposite Simpson’s 1/3 Rule

Page 45: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Simpson’s 1/3 RuleSimpson’s 1/3 Rule

Page 46: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Composite Simpson’s 1/3 RuleComposite Simpson’s 1/3 Rule

Page 47: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

» x=0:0.04:4; y=example(x);» x1=0:2:4; y1=example(x1);» c=Lagrange_coef(x1,y1); p1=Lagrange_eval(x,x1,c);» H=plot(x,y,x1,y1,'r*',x,p1,'r');» xlabel('x'); ylabel('y'); title('f(x) = x*exp(2x)');» set(H,'LineWidth',3,'MarkerSize',12);» x2=0:1:4; y2=example(x2);» c=Lagrange_coef(x2,y2); p2=Lagrange_eval(x,x2,c);» H=plot(x,y,x2,y2,'r*',x,p2,'r');» xlabel('x'); ylabel('y'); title('f(x) = x*exp(2x)');» set(H,'LineWidth',3,'MarkerSize',12);» » I=Simp('example',0,4,2)I = 8.2404e+003» I=Simp('example',0,4,4)I = 5.6710e+003» I=Simp('example',0,4,8)I = 5.2568e+003» I=Simp('example',0,4,16)I = 5.2197e+003» Q=Quad8('example',0,4)Q = 5.2169e+003

n = 2

n = 4

n = 8

n = 16

MATLAB fun

Page 48: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Multiple applications of Simpson’s rule Multiple applications of Simpson’s rule with odd number of intervalswith odd number of intervals

Hybrid Simpson’s 1/3 & 3/8 rules

Page 49: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Newton-Cotes Closed Newton-Cotes Closed Integration FormulaeIntegration Formulae

)()()()()()()(

)(

)()()()()()(

)(

)()()()()(

)(

)()()()(

)('

)()()(

)(

)(

)(

)(

)(

67543210

6743210

453210

45210

310

fh12096

275

288

xf19xf75xf50xf50xf75xf19ab5

fh945

8

90

xf7xf32xf12xf32xf7abrule sBoole'4

fh80

3

8

xfxf3xf3xfabrule 3/8sSimpson'3

fh90

1

6

xfxf4xfabrule 1/3 sSimpson2

fh12

1

2

xfxfabrule lTrapezoida1

Error TruncationFormulaNamen

n

abh

Page 50: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Composite Trapezoidal Rule with Composite Trapezoidal Rule with Unequal SegmentsUnequal Segments

Evaluate the integral h1 = 2, h2 = 1, h3 = 0.5, h4 = 0.5

dxxeI4

0

x2

%...

.

)().().()(

)()()()(

)()()()(.

.

4514 585971 e4e53 2

0.5

e533e 2

0.5e3e2

2

1e20

2

2

4f53f2

h53f3f

2

h

3f2f2

h2f0f

2

h

dxxfdxxfdxxfdxxfI

87

76644

43

21

4

53

53

3

3

2

2

0

Page 51: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Trapezoidal Rule for Unequally Spaced DataTrapezoidal Rule for Unequally Spaced Data

Page 52: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

MATLAB Function: MATLAB Function: trapztrapz

» x=[0 1 1.5 2.0 2.5 3.0 3.3 3.6 3.8 3.9 4.0]

x =

Columns 1 through 7

0 1.0000 1.5000 2.0000 2.5000 3.0000 3.3000

Columns 8 through 11

3.6000 3.8000 3.9000 4.0000

» y=x.*exp(2.*x)

y =

1.0e+004 *

Columns 1 through 7

0 0.0007 0.0030 0.0109 0.0371 0.1210 0.2426

Columns 8 through 11

0.4822 0.7593 0.9518 1.1924

» integr = trapz(x,y)

integr =

5.3651e+003

Z = trapz(x,y)

Page 53: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Integral of Unevenly-Spaced DataIntegral of Unevenly-Spaced Data

Trapezoidal rule

Could also be evaluated with Simpson’s rule for higher accuracy

Page 54: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Composite Simpson’s Rule with Composite Simpson’s Rule with Unequal SegmentsUnequal Segments

• Evaluate the integral

• h1 = 1.5, h2 = 0.5

dxxeI4

0

x2

%..

).(.

).(.

)().()(

)().()(

)()(

763 235413

e4e534e33

50e3e5140

3

51

4f53f43f3

h

3f51f40f3

h

dxxfdxxfI

87663

2

1

4

3

3

0

Page 55: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Newton-Cotes Open FormulaNewton-Cotes Open FormulaMidpoint Rule Midpoint Rule ((One-pointOne-point))

)()(

)()(

)()()(

f24

ab

2

bafab

xfabdxxf

3

m

b

a

a b x

f(x)

xm

Page 56: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Two-point Newton-Cotes Open FormulaTwo-point Newton-Cotes Open Formula

Approximate by a straight line

)()(

)()()( f108

abxfxf

2

abdxxf

3

21

b

a

x0 x1x

f(x)

x2h h x3h

Page 57: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Three-point Newton-Cotes Open FormulaThree-point Newton-Cotes Open Formula

Approximate by a parabola

)()(

)()()()(

f23040

ab7

xf2xfxf23

abdxxf

5

321

b

a

x0 x1x

f(x)

x2h h x3h h x4

Page 58: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Newton-Cotes Open Newton-Cotes Open Integration FormulaeIntegration Formulae

)()()()()()(

)(

)()()()()(

)(

)()()()(

)(

)()()(

)(

)()()(

)(

)(

)(

6754321

454321

45321

321

31

fh140

41

20

xf11xf14xf26xf14xf11ab6

fh144

95

24

xf11xfxfxf11ab5

fh45

14

3

xf2xfxf2ab4

fh4

3

2

xfxfab3

fh3

1xfab2

Error TruncationFormulan

n

abh

Page 59: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

Area under the function surface

Double IntegralDouble Integral

dydxyxfdxdyyxfdydxyxfd

c

b

a

b

a

d

c

d

c

b

a

),(),(),(

Page 60: Chapter 17 Numerical Integration Formulas. Graphical Representation of Integral Integral = area under the curve Use of a grid to approximate an integral

T(x, y) = 2xy + 2x – x2 – 2y2 + 40

Two-segment trapezoidal rule

Exact if using single-segment Simpson’s 1/3 rule (because the function is quadratic in x and y)

Double IntegralDouble Integral