chapter 2: fundamentals · chapter 2: fundamentals outline 2.1 definition of system 2.2 forces and...

25
2-1 Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big dominates small 2.5 Fluids and gases as systems 2.6 Energy 2.7 Defining chaos 2.8 Videos and references about chaos 2.9 Tools and techniques for analysis 2.1 Definition of system At its most abstract level a system is comprised of a plurality of parts linked so the behavior of one part affects the behavior of the others either directly or indirectly, either strongly or weakly. To be more accurate a system is a sub-set of parts in the environment that are linked strongly enough to be a recognizable entity and behave as such within the larger environment. In some cases like a system in the form of a living human being its clear which parts are included and which aren’t. In an economic system it becomes debatable which parts to include since one system like the auto industry blends into another like the steel industry. Fluids and gases can also form systems. More on that later. Figure 109 illustrates a simple isolated system using springs to connect the parts, which have mass like little steel balls. A frequent systems behavior is oscillation as the figure attempts to illustrate. This little diagram is a very abstract representation of a system but one to keep in mind. Certainly it applies to systems comprised of discrete parts. However the parts in gaseous systems like the atmosphere or fluidic like the oceans are not so easy to visualize in this manner. Sometimes its necessary to consider a portion of such systems, such as an “blob” of hot air or water, as a part and watch how it moves or changes.

Upload: others

Post on 13-Jul-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-1

Chapter2:FundamentalsOutline

2.1Definitionofsystem2.2Forcesandbehavior:2.3Systemsandtheirwaveforms2.4Allsystemsaresub-systems,andbigdominatessmall2.5Fluidsandgasesassystems2.6Energy2.7Definingchaos2.8Videosandreferencesaboutchaos2.9Toolsandtechniquesforanalysis

2.1DefinitionofsystemAtitsmostabstractlevelasystemiscomprisedofapluralityofpartslinkedsothebehaviorofonepartaffectsthebehavioroftheotherseitherdirectlyorindirectly,eitherstronglyorweakly.Tobemoreaccurateasystemisasub-setofpartsintheenvironmentthatarelinkedstronglyenoughtobearecognizableentityandbehaveassuchwithinthelargerenvironment.Insomecaseslikeasystemintheformofalivinghumanbeingitsclearwhichpartsareincludedandwhicharen’t.Inaneconomicsystemitbecomesdebatablewhichpartstoincludesinceonesystemliketheautoindustryblendsintoanotherlikethesteelindustry.Fluidsandgasescanalsoformsystems.Moreonthatlater.Figure109illustratesasimpleisolatedsystemusingspringstoconnecttheparts,whichhavemasslikelittlesteelballs.Afrequentsystemsbehaviorisoscillationasthefigureattemptstoillustrate.Thislittlediagramisaveryabstractrepresentationofasystembutonetokeepinmind.Certainlyitappliestosystemscomprisedofdiscreteparts.Howeverthepartsingaseoussystemsliketheatmosphereorfluidicliketheoceansarenotsoeasytovisualizeinthismanner.Sometimesitsnecessarytoconsideraportionofsuchsystems,suchasan“blob”ofhotairorwater,asapartandwatchhowitmovesorchanges.

Page 2: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-2

Conservingversusdissipativesystems:Conservingsystemsaresystemswhosetotalinternalenergyremainsconstanteventhoughtheenergyassociatedwitheachpartmaybeoscillating.Thatenergyisinputtothesystembysomeinitialoutsideforcethatstretchesthespring-likebondsawayfromtheirequilibriumlength.Dissipativesystemshaveacomplextechnicaldefinitionhttps://en.wikipedia.org/wiki/Dissipative_systembutIseethemassystemswhereenergyisdissipatedbyfrictionorradiationuntilthesystemcomestoamotionlesshaltunlesstheyarekeptinmotionbycontinuedoroccasionalinputsofenergy.Africtionlessclockpendulumisaconservingsystemwhosependulumwillswingforever.Intherealworldit’sadissipativesystembecausefrictiondrainsenergywhileaspringorweightinsertsenough–intheformofescapementpushes-tokeepitmoving.Pushingaswingisthesameidea.Allrealworldsystemsaredissipative,

Page 3: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-3

somemorethanothers.Thesolarsystemisclosesttoaconservingreal-worldsystemwhileweathersystemslikethunderstormsdissipateenergyrapidly.Incomplexsystemsenergymovementthroughadissipativesystemisaprocesswhereonethingeffectsanotherinachainofeventsuntilalltheenergyescapes.Thehumanbodyisanexample.Foodenergyisinputatoneendofametabolicchemicalprocess–asequenceorcascadeofreactions-whilebodyheatandphysicalexertionsdrainitaway.Suchprocessescanbehavechaotically.DissipativesystemswhichimplementaprocessconstituteawholedimensionofsystembehaviorI’venottimetoexplorehere.2.2Forcesandbehavior:Forcestrength:Therearefourbasicforcesinnature:

GravityWeakbutextendsovercosmicdistancesElectromagneticFairlystrong.Sourceofmagneticattractionandalsosourceofelectrostaticforceswhereoppositechargesattractandlikechargesrepel.Worksattheatomicandmolecularleveltobindatomsintomoleculesandholdsolidstogether.NuclearStrongForceExtremelystrong.Holdsatomicnucleitogether.Powershydrogenfusionbombs.Actsonlyoveraveryshortdistancewithinatomicnuclei.WeakNuclearForceNotrelevantforourpurposes.

Onlygravity,electrostatic,andcentrifugalforcesarerelevantinsystemsdiscussedinthisbook.Centrifugalforceisnotoneofnature’sfundamentalforceshowever.Balancebetweenattractingandrepellingforces:Thephysicsassociatedwithintermolecularforces,namelytheforcesthatholdmoleculestogethertoformliquidsandsolids,underlaythesimplediagramstofollowinFigure111.Theimagebelowshowshowthe“resultant”ornetforcebetweentwomoleculesisthesummationofattractiveelectrostaticforcesandrepulsiveelectrostaticforces,eachofwhichvarieswiththedistancebetweenthemolecules.Electrostaticforcesboildownto“likechargesrepel”and“oppositechargesattract”.Thephysicsbehindtheseforcesgetscomplexbutapparentlytherepulsingforcegetsextremelystrongwhentheelectroncloudssurroundingeachatomgettooclose.http://hyperphysics.phy-astr.gsu.edu/hbase/molecule/paulirep.html.Theserepulsingforcesarewhatmakesitverydifficulttocrushsolidmaterialsorcompressliquids.

Page 4: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-4

Theredlineinimagebelowshowsoneagainhowthenetforcebetweentwomoleculesvarieswiththedistancebetweenthem.http://www.schoolphysics.co.uk/age16-19/Thermal%20physics/Heat%20energy/text/Forces_between_molecules/index.htmlAttheequilibriumdistance“M”thenetforceiszero.Thisisalsothelowestenergyconfiguration,meaningittakesaninputofenergytoeitherpushthemoleculesclosertogetherorpullthemfurtherapart.Ontheotherhandifthemoleculesstartoneithersideoftheequilibriumtheygiveoffenergy–inanexothermicreaction-astheyapproachthatequilibrium.Ifheatisappliedtotheequilibriumconfigurationthedistancebetweenthemoleculeswouldbegintooscillatearoundthe“M”position.Inthereal-worldthereisalwayssomeheatsomoleculesalwaysoccillateinternally,gentlyatlowtemperature,violentlyathightemperature.Thepotentialenergycurvecanalsobevisualizedasaramporwell.Ifaballwereatthebottomitwouldtakeenergytorollituponeithersideandcreateapendulumlikeoscillation.

Page 5: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-5

Theshapeofthisredcurvebelowshouldberememberedbecauseitsfundamentaltounderstandingthedynamicsofallsystemswhereseparatepartsareattractedbyonetypeofforcebutrepellediftheygettooclosebyanothertypeofforce.Theresultistheystayacertaindistanceapart–oroscillateaboutit-andformastructureorconfiguration.Thisistruewhethertheforcesbetweenthepartsaresprings,electrostatic,gravitational,orthenuclearstrongforce.Ithinkasimilarsituationisfoundinallothertypesofsystems:ecological,economic,social,etc.Thereissomeforcethatbindspartsintoasystemandanotherwhichkeepsthemfrommergingentirely.Sometimesitprobablyamountstoabalanceofpowerorforcebetweencompetingeconomicandpoliticalorganizations.Thecompromisetheyreachamountstoanequilibrium.Thesystemtheyforminthatequilibriumislikeagiantmolecule.Asocietalmoleculesotospeak.Thefourfundamentalforcesinnaturecanactinsequenceasmassesgetclosertoeachother.Atlongdistancesgravitypullsthingstogetheruntiltheyformasolidballatwhichtimerepulsingintermolecularforcestakeoverandkeeptheballfrombeingcrushedfurther.Planetsaregoodexamples.Iftheballofmatterislargeenough-likeaburnt-outstarofsufficientsize-gravitywilloverwhelmtherepulsiveintermolecularforcesandcrushthestarintoaneutronstar.Somethingcalled“DegenerateNeutronPressure” willresistfurthercollapseatthatpoint.Howeverifthestarwaslargeenoughnoforcecanovercomegravityandthedeadstarwillcollapseintoablackhole.http://minerva.union.edu/vianil/web_stuff2/Election_and_Neutron_Pressure.htm

Page 6: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-6

Behavior:Behavioriswhatasystemdoes,howitchangesovertime.Changeismeasuredintermsofthepositionorspeedoftheparts,temperature,pressure,orsomeotherattributethatvariesovertime.Insocietalsystemsitmightbegroupmembership,organizationalstructure,size,territory,revenue,marketshare,policyposition,projectsundertaken,andsoforth.Allthesearecalledvariables.Whenaspring/masssystemisinequilibriumallthespringsarerelaxedandthepartsaren’tmoving.Whenonepartisdisturbed,thatispulledasidebysomeoutsideforce,thespringsarestretched.Whenthepartisreleasedthespringstryto

Page 7: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-7

pullitbacktoitsequilibriumposition.Howeverthepartdoesn’tstoptherebutratherovershootsandthengetspulledbacktheotherway.Thusthepartoscillatesbackandforth,untilandunlessfrictionslowsittoastop.Amainpremiseofthisbookisthatmostreal-worldsystemsbehavethisway,betheymechanicallikethesolarsystem,chemicallikelivingorganisms,orecological,economic,orpolitical.Theactionsofonepartaffectthepartsithasrelationshipswith.Ofcourserealworldsystemsofpracticalinterestarenotconnectedbysprings,butsincepartsdoaffecteachothertheremustbesomeforceorforceequivalentlinkingthem.Usingspringsisaconvenientwaytorepresentthisconnectingforce.Figure111takesacloserlookatthis.Forasystemtoexistthereneedtobetwotypesofforces;onepullingthepartstogethersotheymakeasystemandotherkeepingthemsomedistanceapartsotheyremainseparateparts.Theattractingforceinsolarsystemsisgravityandtheattractingforceinmoleculesandsolidobjectsissomeversionofelectrostaticorelectromagneticforce.Botharenon-linearinthattheirstrengthfallsoffexponentiallywithdistance.Thespringmasssystemsobviouslyareheldtogetherbysprings,whichatthemolecularlevelalsoinvolveelectromagneticforces.Howeveratthemacrolevelmostspringsarelinearmeaningtwiceasmuchforcestretchesthemtwiceasmuch.Iwon’tgetintorepellingforcesnowexcepttosaytheyexist,althoughnotalwaysintheformexpected.Forinstancecentrifugalforceisnotoneofnaturesbasicforcesbutitdoesbalancegravitytokeepplanetsinorbit.

Page 8: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-8

Figure111aillustratestheinterplayofattractingandrepellingforces.Thelargeballwithanxthroughitatleftisonepartandthesmallblackballistheotherpart.Thegreenlinerepresentsalongrangeattractingforce,which,likegravity,getsweakerthefurtherapartthesetwobodiesare.Theredlinerepresentsarepellingforcethat’smuchstrongeratclosedistancebutfallsoffrapidlywithdistance.Ifthiskindofrepellingforcedidn’texistsolidbodieslikeearthwouldbecrushedbygravityintoatinyspec.Andasblackholestestifyifgravityisstrongenoughburnt-outstarswillbecrushedtominiscule“singularities”.Thedottedlineisthesumoftheseattractingandrepellingforcesandthusthenetforceonabody.Atoneparticulardistancethenetforceiszeroandabodyplacedtherewillremaininequilibrium.Ifitgetscloseritwillbepushedout.Ifitisfurtheroutthenetforcepullsitin.

Page 9: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-9

Thenextfourdiagramslookatthingsfromanenergyperspective,rememberingthattopushagainstaforcetakesenergy.Figure111”b”thru“e”useaneasytounderstandrampanalogy.Ifapartisoutonthegreensideoftherampitwillrollinanddownhilltowardthelowpoint.Ifitsontheredrepellingsideitwillrollout.Heretheballisshownrollingin.Thisistheessenceofsystemsself-assembly.Partsthatstartfarapartarepulledtogetheruntiltheyreachanequilibriumdistanceapart.Thebig-bangblastedallthematterintheuniversefarapartand–inlocalized“gravitybound”areaslikegalacticclusters-gravityhasbeenpullingitbacktogethereversince.Atsomepointgravitywillbebalancedbyarepellingforceandinwardmovementwillstop.Againwemakeanexceptionforblackholes.Figure111cshowsthatiftheballispulledasideandthenreleaseditwillrolldownonesideanduptheother.Withoutfrictionthiswillresultinendlessbackandfortheoscillation.Arguablyitshowalmostallsystemsactuallybehavetoonedegreeoranother.Itskeytonotethatwhentheballishigh-upishaspotentialenergyorPE.TheforceexertedonitatthatpointacceleratesittowardtheequilibriumpintthusconvertingthePEtokineticenergyastheballspeedsup.Thisistheessentialcorereasonwhysystemsoscillate.Figure111dshowsthebodyatadistancewheretheforcesarebalancedandthusdon’tseektomoveit.Itsatamotionlessequilibrium.Itsfairtosayallsystemstendtoevolvetowardanequilibriumconfigurationwhereallforcesarebalancedandnothingchangesormoves.Howevernotallequilibriumsareequal.Therearerelativelyweakofunstablelocalequilibriumsandifasysteminoneisdisturbedenoughitmightsnapintoadifferentandmorestableconfiguration.Thatwouldbringittoalowerenergylevel.Figure111eshowswhyittakesenergytomoveapartonceit’sinanequilibriumconfiguration.Itslikerollingtheballuphilleitherway.Samethingwhentryingtochangeasystemwhenitsinornearequilibrium.Intherealworlditexplainswhyittakesconsiderableefforttochangemolecules,governmentpolicy,organizationalstructure,orstartarevolution.FinallyFigure111fshowstheequivalentsituationifspringsareapplyingtheattractingandrepellingforces.Obviouslywhenrelaxedtheyholdthingsapartsomedistance,whencompressedtheybecomerepellingforcesandwhenstretchedtheyactasattractingforces.Thuswecanbuildrealphysicalmodelsandcomputermodelsusingspringsthatmimicthebehaviorofsystemswherethepartsareeffectedbygravityandotherforces.Inanysystemwhereonepartinfluencesanothersomespring-likeforceisinvolved.Ifthepartsarerigidlyattacheditsreallytheequivalentofveryverystiffsprings.Thesystemswestudyinthischaptermainlyinvolvegravitationalormagneticforces,butsomeusesprings.Thereisadifferenceinhowtheybehavebecausespringsapplylinearforceswhereasgravityandmagneticforcesarenon-linear.TogeneralizeIoftensay“spring-likeforces”

Page 10: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-10

whenI’mnotsurewhethertheyarelinearlikesimplespringsornon-linearlikegravity.2.3SystemsandtheirwaveformsFigure104showsthatsystemswithjusttwopartsoscillatedifferentlythansystemswiththreeormoreparts.

Page 11: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-11

Inatwo-partsystemifonepartispulledasideorsetinmotionitpushesorpullsontheothercausingittomoveinasinusoidaloscillationthat,withoutfrictionorcollision,willcontinueindefinitely.Figure104introducesthebasicconcepts.Attopleftweseethreedifferenttwo-partsystems.Theupperhasamasssittingonaspringsuchthatgravitypullsitdownwhilespringpressurepushesitup.When

Page 12: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-12

displacedfromequilibriumitwillbounceupanddownandanyvariablewilltraceaperfectsinewaveasshownonright.Withoutfrictioneachwavewillbethesameasthosebeforeandfuturebehaviorcaneasilybepredicted.Iftheweightislifteditwillintroducepotentialenergyintothesystemjustasliftingaweightoffthefloorwould.Ifitispusheddownitwillgainspringpotentialenergy.Thusattimezeroonleftthesystemhassomeleveloftotalpotentialenergy“E”.Whentheweightisreleasedthemasswillaccelerateconvertingpotentialenergy(PE)intokineticenergy(KE).Withoutfrictionthelawofconservationofenergymeansthetotalenergymuststayconstantbutitcanexchangebetweendifferentforms,namelyPEorKE.TheplotofanyvariableinthissystemwhetheritsPE,KE,speed,orthedisplacementofthemasswillformasignwave.Theplotshowsthatasdisplacementorpotentialenergyincreases,speedorkineticenergyfalls.Thevaluesmustalwaysstayinanenvelopeasdeterminedbythetotalenergyinthesystem.Wewillseethatthisapplieswhetherthemotionisperiodicasitishereorchaotic.Variablesdovarybutonlywithinbounds,evenwhenthatvariationischaotic.ThelowerpartofFigure104showswaveformsassociatedwithsystemshavingthreeormoreparts.Thepartsdon’toscillatewithasimplesinusoidalmotion.Rathertheirmovementsaremorecomplex,possiblychaotic,becauseeachdisturbsalltheothers.Thekeypointaboutsystemswiththreeormorepartsisthatthepartsrarelymoveinaperfectlyrepeatableorperiodicmannerasthechartattemptstoillustrate.Thepeaksandvalleysintheirwaveformareconstantlychanging.Inadditiontheenergyinthesystemmovesfromparttopartbecausethepushingpartslowsdownandtransfersenergytothepartbeingpushedandaccelerated.Figure104attemptstoshowhowtheenergyineachpartchangesovertime.Andthatitusuallychangesrandomlyorchaotically.2.4Allsystemsaresub-systems,andbigdominatessmallThesetwopointswerealreadymentionedinChapter1butinsertedherejustforareminder.AsdescribedinChapter1nosystemexistsintotalisolation.Computermodelsoftenassumetheydobutit’snottrueintherealworld.Thebehaviorofarealworldsystemisalwaysaffectedtosomedegreebyeventsinitsenvironment,includingthebehaviorofothersystemstowhichitiscoupled,weaklyorstrongly.Thereisahierarchyofsystemsrangingfromtheverypowerfultotheveryweak.Themostpowerfulsystemofpracticalconcernisthesolarsystemwhosebehavioraffectsalmosteverythingonearth,butitcan’tbearguedthatwhathappensonearthhasanynoticeableeffectonearthsorbit.“Small”systems,evenonesaslargeastheeconomyrideatopandareinfluencedbylargerunderlyingsystemslikeocean

Page 13: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-13

currentcirculationandclimate,whichinturnrideatopandarethusinfluencedinthelongtermbychangesinearthsorbitcausedbyinteractionwithotherplanets.Thebigpartswithinasystemaffectthesmallpartsmorethanviceversa.ForinstanceJupiter’sbehaviorgravitationallyaffectsearthfar,farmorethanthereverse.Andclearlythesunsbehavior,especiallysolarstorms,affectsearthbutitshardtoimaginehowearthcouldaffectthesuninanymeaningfulway.Governmenthasfarmoreaffectonanindividualcorporationthanthereverse.Onereasontomentionthisisthatthepartsintoysystemslikethedoublependulumtendtobemoreorlessthesamesize.Notdifferentbyanorder(s)ofmagnitude.2.5FluidsandgasesassystemsThisbookdealsalmostentirelywithmechanicalsystemscomprisedofafewdiscretepartsconnectedbyspring-likeforcesintosomespatialconfigurationlikeadoublependulum,solarsystem,ormolecule.Howeversystemscanbemadefromfluidsandgases.Werefertocirculatingoceancurrentsassystemsaswellastheatmosphere.Thesesystemsbehavechaoticallytoagreaterorlesserextentandwillbereferencedfromtimetotimebutnotexploredindepth.Itsnoteasytoseehowthesamephysicallawsapplytotinymechanicalsystemswithafewpartsandalsotofluidsandgaseswithuntoldtrillionsofparts,butitseemsthatafluidorgasisessentiallyahugespring/masssystemwherethevibrationandmovementofeachmoleculeeffectseveryother.Ifwelookjustatthemicroscalewhereelectromagneticforcesgovernthevibrationwithinmoleculeswetendtooverlookthegravitationalforcesthatalsoaffectgroupsofmoleculesatthemacrolevel.Thuswhenamoleculeofwaterisheatedtheintra-molecularspringsvibratehardermakingthemoleculeeffectivelylarger,andthuslessdense.Gravityactsonablobofless-densewatermakingitriseup.Thusonthemacroscaleweseeconvectioncurrentsintheoceanandatmosphere,andconsidertheirconfigurationsassystemsintheirownright.Wehaveahierarchyofsystemsfromtheverysmalltotheverylargeandabehaviorateachlevel.Ihaven’ttimetoreallyfocusonthebehavioroffluidicsystemsinthisbook.2.6EnergyConservationof:Ifthereisnofrictionorotherwaytothrowoffenergythenthetotallevelofenergyinasystemremainsconstant.Thelawaboutconservationofenergyrequiresthatitallstaywithinthesystemalthoughitcanoscillatebetweenitspotentialandkineticformsandmovefromplacetoplaceorparttopart.Real-worldsystemsalmostalwaysshedenergythrufriction,whichturnstoheat,andthenradiatesaway.Gravitywavesalsoshedenergyfromplanetaryorstellarsystems,albeitveryslowly.AlmostallthesimulationsIdiscussinthisbook

Page 14: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-14

conserveenergysotheycontainthesametotalenergythroughout.Thisisrealisticenoughforourpurposes.Systemasenergystoragedevice:Inmanynaturalsystemsmadewithpartshavingmass–asopposedtosocietalsystems-energyisstoredinthesystemwhenpartsaremovingandthushavekineticenergy,orwhenthespring-likeforcesareeitherstretchedorcompressed.Thisgivesthempotentialenergy.Agrapefruitsittingonthecounterhaspotentialenergybecauseliftingittherestretcheditsgravitationalbondwithearth.Energyindissipativesystems:Systemsareeitherconservativeordissipative.Inaconservativesystemthereisnofrictionorotherwayforenergytobleedoffsothetotalenergyinthesystemremainsconstant.Dissipativesystemsdissipateenergyastheymove.EnergyisaddedtotheLorenzwaterwheelbypouringwaterinatthetop.Itdissipatesorbleedsoffwhenthewaterleaksfromthecupsatalowerlevel.IntheRayleigh-Benardconvectioncellsitsaddedasheatalongthebottomanddissipatedatthecoolertop.AssumingtheenergybleedsoffatthesamerateitsaddedIbelievethatthereisstillacertainfixedamountofenergyinadissipativesystemsandthepartsmustmovesoastoexpressorcontainit.Energychangesformandmoveswithinthesystem:ThebackandforthconversionofenergyfromitspotentialformtoitskineticformiswellrecognizedbutstrangelyenoughI’venotseenthefactitmovesfromplacetoplaceorparttopartmentionedintheliterature.Idiscussthisalotlaterbutfornowsufficeittosaythatinadoublependulumthearmspushandpulloneachother.Thepushingarmgivessomeofitsenergytotheonebeingpushedsoenergymoves,actuallyoscillatesbetweenthedifferentparts.2.7DefiningchaosCasualdefinition:Thecasualdefinitionofchaosisthatutterconfusionexistsandanythingcanhappen.Scientistshaveaverydifferentdefinition.Tothem,chaosisarandomlookingoscillationthatstayswithinboundsandfollowsthelawsofphysics.Scientificdefinition:AccordingtoStrogatzthereisnouniversallyaccepteddefinitionofchaos.howeverheoffersthefollowing.

“Chaosisaperiodiclong-termbehaviorinadeterministicsystemthatexhibitssensitivedependenceoninitialconditions”(Ca2,p.323)

Notetheword“aperiodic”.DuringmyearlyresearchIfellvictimtothinkingthatanybehaviorthat’saperiodicisbydefinitionchaotic,whileignoringhispointthatitalsoneedstoshowSDIC.Bothtestsshouldbeapplied,andI’vesincedoneso.

Page 15: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-15

HereiswhatWikipediasaysbywayofdefinition:

“Although no universally accepted mathematical definition of chaos exists, a commonly used definition originally formulated by Robert L. Devaney says that, for a dynamical system to be classified as chaotic, it must have these properties:[12]

1. it must be sensitive to initial conditions 2. it must be topologically mixing 3. it must have dense periodic orbits

In some cases, the last two properties in the above have been shown to actually imply sensitivity to initial conditions.[13][14] In these cases, while it is often the most practically significant property, "sensitivity to initial conditions" need not be stated in the definition.” https://en.wikipedia.org/wiki/Chaos_theory

Idon’tclearlyunderstandwhat’smeantbytopologicallymixingordenseperiodicorbitsbutIthinktheyrefertophasespaceplotsandthatthedoublependulumandothertoysystemsdiscussedinthisbooksatisfythosecriteria.

Here’sanotherfromMathInsight:

“Adynamicalsystemexhibitschaosifithassolutionsthatappeartobequiterandomandthesolutionsexhibitsensitivedependenceoninitialconditions.”http://mathinsight.org/definition/chaos

OneofthebestplainEnglishdescriptionsofchaosI’vefound.Includesdiscussionofitsdefinition:http://plato.stanford.edu/entries/chaos/#DefChaLyapunovExponent:TheLyapunovexponentisawidelyusedtestforjudgingwhetherasystemischaoticornot.ItbasicallymeasureshowsensitivethesystemistosmalldifferencesininitialconditionsorSDIC.Inotherwordsitmeasureshowfastthewaveformsdiverge.Youcanseethissimplybycomparingthem,buttheLyapunovexponentisatechnicalmeasure.

“TheSystemissaidtobehavechaoticallyiftheLyapunovexponentispositive,whileaLyapunovexponentlessthanorequaltozerodenotesnon-chaoticbehavior.”http://psi.nbi.dk/@psi/wiki/The%20Double%20Pendulum/files/projekt_2013-14_RON_EH_BTN.pdfBelowisaplotofthatexponentforthedoublependulum.

Page 16: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-16

Accordingtothistestthedoublependulumbecomeschaoticwhenthependulumisreleasedwitha1=a2=0.7radians(40degrees).Thiswasapparentlycomputedforadoublependulumwithsolidarmswhereasallmysimulationsusedpointmasses,whichIcallbobs.Itsnotclearthatthesameanglesthatmarkthethresholdtochaoswithsolidarmsapplytopointmassbobs.Iassumedtheydidn’t.OneproblemwithusingtheLyapunovexponentisthatonemustknowtheequationsofmotionforthesystemandenoughmathtocomputeit.TheSDICtest:Itstrueandveryeasytodemonstrate–assumingyouhavetherightcomputermodels-thattoysystemexhibitsensitivedependenceoninitialconditionsorSDIC.SDICmeansthatasmalldifferenceintheinitialconditionofachaoticsystemwillmagnifyovertimeandmakeaverylargedifferenceinitsfuturecondition.Someexperimentershavebuilttwoidenticaldoublependulumsandreleasedthematthesametimealbeitatslightlydifferentanglestoseehowthewaveformsdiverge.Othershavedoneessentiallythesamethingusingcomputermodels.Thefirstfigurebelowshowsthewaveforms–generatedbyacomputermodel-ofthreedoublependulumsreleasedatalmostthesamelow10degreeangle.Theydifferedonlyby0.01radians(onehalfdegree).Thewaveforeachpendulumisplottedinred,blueorgreen.With10degreereleasetheyhadverylittleenergyinthisrun.Eachblockshowsadifferentvariable.Forinstancetheupperleftplotsthe

Page 17: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-17

angleoftheupperarm.It’sabithardtoseebuttheblue,redandgreenwaveformsdifferedlittleinthissimulation.Atfirstglancetheyseemperiodicbutcloserinspectionshowstheheightsofthepeaksareslowlydrifting.Myexperimentsshowedthesamethingatlowenergy.Namelythisisnotperfectlyperiodicbehavior,ratheritsquasi-periodic.

Theimagebelowshowshowthered,greenandbluewaveformsdivergethenthearmsarereleasedatamuchhigher105degreeanglegivingthesystemconsiderablymoreenergyandmakingitchaotic.Thesewaveformsshowwhythelong-termbehaviorofchaoticsystemscan’tbepredicted.Whichlineisright,theredone,theblueone,orthegreenone?Ontheotherhandthethreelineslieclosetighterforawhileindicatingthatshort-termforecastsarepossiblewithagoodmodel.Thisisthereasonitsrelativelyeasyto

Page 18: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-18

predictwhetheritwillrainthreedaysfromnow,butnot10ormoredaysout.Wecanofcourseciteprobabilitiesbasedonhistoricrecords.

Eyeballtest:UnfortunatelyIdidn’thaveaccesstoamodelthatcouldplotwaveformsfortwoormoredoublependulumsatthesametimesoIwasunabletomakeplotslikethoseaboveandusethemtosayifaparticularrunwaschaoticornot.Iwashoweverabletomaketwoseparaterunswithslightlydifferentinitialconditionsandcomparethemvisually.Iusedthattechniqueextensivelyinmyanalysisofthedoublependulum.DetailsappearinChapters7,8and9.Systemsbehaviorincludingchaoticbehaviorisdeterministic.Thismeansthatthewaythesystemistodayisthesoledeterminantofhowitwillevolveinthefuture.Startingwithitscurrentsituationthewayitwillchangeorevolvewillobeysthelawsofphysics.Nothinginthebehaviorofthesesystemshappensbychanceor

Page 19: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-19

luck.Waveformsdoappeartovaryrandomly,andtheyareoftendescribedthatway,butitsjustphysicsdoingitsthing.2.8VideosandreferencesaboutchaosAnice4-minuteintroductiontochaosbyJamesGleichisfoundat:http://www.clausewitz.com/mobile/chaosdemos.htm#DblPendCompellinglabdemousingrubbersheettoshowsolarsystemdynamics:https://www.youtube.com/watch?v=MTY1Kje0yLgSophisticateddiscussioninplainEnglishaboutthedefinitionofchaoswithextensivereferencesat:http://plato.stanford.edu/entries/chaos/…Areadablediscussionofchaosincludeddoffingoscillator.Phasespace,etc.:https://books.google.com/books?id=l2E4ciBQ9qEC&pg=PA117&lpg=PA117&dq=chaos+spring+mass&source=bl&ots=7HJuhOrR4X&sig=n2i2PQJO5HLIQhbDdTFLDz0ko1M&hl=en&sa=X&ved=0ahUKEwiXyoyWtdfJAhUQ0mMKHV7zBd4Q6AEINDAD#v=onepage&q=chaos%20spring%20mass&f=falseThisisgoodonclimateandchaos:http://www.realclimate.org/index.php/archives/2005/11/chaos-and-climate/andsoisthis:https://www.aip.org/history/climate/chaos.htm2.9ToolsandtechniquesforanalysisTherearesimplemechanicalandelectricalsystemswhosereal-worldbehaviorcanbeobserved,andwatchingthemisinstructive.Howevercomputersimulationmodelsarefarmoreusefulsinceonecanaccuratelyvarycertainparametersandmakeplotsshowinghowthevariableschangeinresponse.SeveralJavamodelseasilyobtainedonthewebhavebeenusedbytheauthortogreatbenefit.AmodelofthedoublependulumcreatedbyDr.Doolinghasbeenespeciallyhelpful.http://www2.uncp.edu/home/dooling/applets/double_pen.files/tom/models/doublepen.html.Orhttp://www2.uncp.edu/home/dooling/applets/double_pen.files/tom/models/doublepen.htmlWithmodelsonecanplothowvariableschangesovertimebutsometimesitsmoreinstructivetoshowhowonevariableischangingrelativetohowanother.IftherearetwovariablesthevalueofoneisplottedontheXaxisandtheotherontheYaxissowegeta2-dimensionalplot.Threevariablesproducea3-Dplot.Thesearecalled“phasespace”portraitsorplots.Iftherearemorethanthreevariablesthephase

Page 20: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-20

spaceplotwouldrequire4ormoredimensions.That’simpossible;howeverevenplottingtwoorthreeisoftensufficient.Itsofteneasiertoseehowperiodic,quasi-periodicorchaoticasystemisbymakingphasespaceplotsthatitisbylookingatthewaveforms.Thevalueofallthevariablesatanyinstantshowsupasadotinphasespacebutasthevariableschangethedotmovesleavingatraceortrajectorybehindit.Ifthedottracesthesamepatterntimeaftertimethesystemisoscillatingperiodically.Ifnotitseitherquasi-periodicorchaotic.Ihighlyrecommendspendingsometimewiththesesimulationmodelsasnothinggivesafeelforasystemsbehaviorbetterthanwatchingitinaction.TheyareoftenwritteninJavaandeasilydownloadedfromthewebaftergettingyoursecuritysettingstoacceptthem.ThescreenshotbelowshowstheuserinterfacetoDr.Dooling’smodelofthedoublependulum.Iuseditextensively.Userscanadjustanyoftheparameters.Whenbothbobshangmotionlessandstraightdownthereiszeroenergyinthesystem.Beforeinitiatingaruntheboborbobsareliftedtosomeangleinordertoinsertpotentialenergyintothesystem.UsuallyIjustvariedangle1toseehowthesystembehavedatdifferentenergylevels.Thesescreenshotsshowtheuserinterfaceandsomeoftheplotsthatcanbegenerated.Theupperleftdiagramshowsthependulumbobsandthelastfewsecondsofthetraceleftbehindthemastheymove.Inthiscasethelowerleftplotshowsawaveformdepictinghowthekineticenergyofthebluebobchangedovertime.Inthisruntheredbobwasreleasedhighsothesystemhadalargeamountofenergy.Thismadeitchaoticandenabledthebluebobtoswingoverthetoporspinonoccasion.Hereitsjustgoneoverthetop.Thewaveformishighlyirregularbutwehaven’twatcheditlongenoughorseenenoughotherdatayettoconcludewhetheritsperiodic,quasi-periodicorchaotic.

Page 21: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-21

Usuallyitseasiertodetermineifasystemisbehavingperfectlyperiodically,quasi-periodically,orchaoticallybyplottingonevariableagainstanotherasshowninthescreenshotsbelow.Thisproducesa2-Dviewintowhatisreallya4-D“phasespaceportrait”becausethedoublependulumhasfourvariablesPE1,PE2,KE1andKE2.Thefirstscreenshotbelowthe2-Dorpartialphasespaceplotforasystemthatwasoscillatingperfectlyperiodicallyorveryclosetosame.Thetracegoesroundandroundretracingexactlythesamepatterntimeaftertime,oneatoptheother.Givenwherealltheotherparameters–linebobmassandarmlength-weresetthereleaseanglea1hadtobeexactlyrighttogetperfectlyperiodicoperation.Inthiscaseit

Page 22: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-22

was51.44degrees.Thisvaluewasfoundbytrialanderrorstartingwitharunthatjustseemedclose.

Belowweshowwhatquasi-periodicbehaviorlookslike.Thetracemakesthesamegeneralpatternoverandover–itwasstoppedforthisscreenshotafterfourtimes-butthevaluesareslightlydifferenteachtimesothepatternsareoffset.Theselineswillcontinuetodriftuntiltheyfill-intheentireenvelope.Thesizeoftheenvelopeislimitedbytheenergyinthesystem.Inthiscaseangle1canneverexceedthe51degreesitwasreleasedat.Notethatanglea1wasalmostthesameastheanglethatmadetherunaboveperfectlyperiodic.Theperfectlyperiodicrunwasfoundbyfinetuningangle1bytrialanderror.

Thefollowingthreescreenshotsfromanotherrunshowhowthevaluesdriftovertimeduringquasi-periodicoperation.Thefirstwastakenabout13secondsintotherun,thesecondwastakenafter150secondsandthelastafter300seconds.Ijudgedthisasquasi-periodicbecauseitwasobviousthatthegeneralpatternofbehaviorrepeatedtimeaftertimebutsincethepatternsdidnotoverlypreciselythiswasnot

Page 23: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-23

perfectlyperiodicbehavior.Othermorecasualobservershaveapparentlycalledthisbehavior“periodic”,whichisalooseinterpretationofthatterm.

Page 24: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-24

Iftheaboverunhadrunlongenoughthetracewouldhaveprobablyfilledintheentireenvelopeasitdidinotherquasi-periodicruns.Theredlinesshowtherangeoverwhichvariablea1changed.Iusuallysaythevaluesorpatternsdrift.Itsobviousthatsomeamountofpredictionispossiblewhenthesystemisoperatingquasi-periodically.Belowisanexampleofchaoticbehavior.Thetracefollowsarandomroute.Thereisnoconsistentpattern.Ifletrunlongertheselineswouldalsofill-intheentireenvelope.

Youshouldnowhavesomeideahowthesetoolsareappliedtobetterunderstandthebehaviorofthissystem.Wediscusstheusefulinsightslater.

Page 25: Chapter 2: Fundamentals · Chapter 2: Fundamentals Outline 2.1 Definition of system 2.2 Forces and behavior: 2.3 Systems and their waveforms 2.4 All systems are sub-systems, and big

2-25

Ifonevariableinasystemischangingitmeansalltheothersarechanginginsimilarmanner.Inotherwordswecouldplotangle1,angle2,ke1orke2andtheywouldallhavesimilarwaveformsovertime.Itshandytoknowthatwhenviewingsimulations.Havingsaidthat,plottingtwovariablesinapartialphasespaceplotmakesiteasiertodetermineifasystemisperfectlyperiodic,quasi-periodicorchaotic.Thestageisnowsettohaveacloserlook.AftershowingpicturesorlinkingtovideosofsomedynamicsystemsinChapter3,Chapters4and5willfollowbylistingwhatIfeelarethemostimportantfindingsaboutsystemsbehaviorthatI’vebecomeawareof.Eachfindingorconclusionwillincludeplots,screenshots,orotherdatatosupportitsoitsnotjustspeculation.Chapters6,7,8,9and10describeindetailsimulationrunsI’vemadeinordertodiscoverhowthedoublependulumandmagneticpendulumbehave.Chapters11and12attempttorelatewhatweknowabouttoysystemstoseverallargereal-worldsystems.ExpertslikeStrogatzwritethattheapplicationofchaostheorytocomplexsystemsislargely“unexploredterritory”.(Ca2,p.10)Makingthatjumpinvolvessomespeculationonmypart.That’spartlybecauseIhaven’tfoundsimulationmodelstohelpbridgethegap.Inotherwordsmodelsthathavemorepartsthanthesmalltoysystemsstudiedsofarand/oraredesignedforseriousanalysis.Forinstancethespring/masssimulationsI’vefoundwithabout6partsdon’tproduceadequatewaveformandphasespaceplotsand/ortheydon’tallowinitialconditionstobesetaccurately.WhatIthinkwouldbemosthelpfulisaspring/massmodelthatcouldhandleuptosay20massesallconnectedbysprings.Theusershouldbeabletoselectthenumberofmasses,insertspringswhereverhechoses,makethespringslinearornon-linear,producealltherequisiteplots,beabletoplottheforceonanymass,tracktheenergyofeachmass,beabletotestforSDIC,etc.InChapter11I’vedescribedsuchamodelinmoredetail.