chapter 2 - chemical kinetics.pptx

Upload: johan-daniyal

Post on 08-Jul-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    1/92

    Chemical Kinetics

    CHAPTER 2

    1

    NURUL’ AIN BINTI JAMION

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    2/92

    2

    CHAPTER 2

    Rates of ReactionFactors aecting rates of

    reaction

    Rates law and order ofreaction

    Methods to determine order

    of reactionRelation between rate andtemperature

    Reaction MechanismCatalytic kinetics

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    3/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    4/92

    Chemical kinetics - is the study of chemicalrxns/processes with respect to reaction rates,efect o various variables

    INTRODUCTION

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    5/92

    INTRODUCTION

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    6/92

    RA!s of R!AC"#$

    Defnition:

    A measure of the change in the concentration ofa reactant or product in a gi%en time&

    6

    'nit ( mole / liter (mol / )

    second s

    ( Mol )-* s-*

     xrate

    ∆=

      ][

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    7/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    8/92

    Reaction Rates+cont&,

    depending on the experimental conditions

    average rate rate measured between long timeinter%al

    instantaneos rate rate measured between%ery short inter%al

    initial rate instantaneous rate at the beginningof an experiment

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    9/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    10/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    11/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    12/92

    RA!s of R!AC"#$

    Reactant .roduct

      hen the reactants change into products

    the concentration of reactants decreases

    the concentration of products increases

    with time&

    12

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    13/92

    13

    rate = -∆[A]

    ∆t 

    rate =∆[B]

    ∆t 

    A !

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    14/92

    Measuring Reaction Rate

     o measure a reaction rate0 we usually monitoreither a "ro#ct or a reactant for its change&

    1ome of the characteristics to be monitoredare

    -changes in "ressre

    $changes in color %se s"ectro&otometer '

    $tem"eratre &or e(othermic or

    en#othermic reaction) an#$"resence o& certain ke* s+stance

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    15/92

    Reaction Rates an#

    ,toichiometr*2A B

    Two moles of A disappear for each mole of B that is

    formed.

    rate = ∆[B]

    ∆ t rate = - ∆[A]

    ∆ t 12

    a A + bB c C + d D

    rate = -∆[A]

    ∆ t 

    1

    a= -

    ∆[B]

    ∆ t 

    1

    b=

    ∆[C]

    ∆ t 

    1

    c =

    ∆[D]

    ∆t 

    1

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    16/92

    16

    Example : Write the rate expression for the following reaction:

    CH4 (g ) + 2O2 (g ) CO2 (g ) + 2H2O (g )

    rate = -∆[CH4]

    ∆t = -

    ∆[O2]

    ∆t 

    1

    2 =

    ∆[H2O]

    ∆t 

    1

    2 =

    ∆[CO2]

    ∆t 

    Reaction Rates an#

    ,toichiometr*

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    17/92

    17

     R2

    rite the 3ierential rate e4uation forabo%e e4uation&

    1olution

    +g,#+g,5$#+g,#6$ 6676   +→

       

      += 

      

      += 

      

      −=

    dt

    ]d[O

    dt

    ]d[NO

    4

    1

    dt

    ]Od[N

    2

    1Rate   2252

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    18/92

    18

     R2

    )(3)(2 23   g O g O   →

    dt 

    Od 

    dt 

    Od rate

      ][

    3

    1][

    2

    1 23 +=−=

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    19/92

     R2

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    20/92

     R2

    Consider the reaction for the combustionof methane0 C85 0

    C85+g, 9 6#6+g, → C#6+g,9 686#+g,

    "f the methane is burning at a rate of :&*; mol)-*s-* 0 at what rates are C#6 and 86# being formed<

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    21/92

    1olution

    C85+g, 9 6#6+g, → C#6+g,9 686#+g,

    =i%en d>C85? ( - :&*; mol)-*s-* 

    dt

     so@ -d>C85? ( d>C#6? ( d>86#?

      dt dt 6 dt

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    22/92

    1olution o calculate rate of $6@

    d>C#6? ( - d>C85?  dt dt

      ( -+-:&*; mol)-*s-* ,

      ( :&*; mol)-*s-* 

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    23/92

    1olution

     o calculate rate of 86#@

    d>86#? ( 6x -d>C85?

      dt dt

      ( 6 x +-:&*; mol)-*s-* ,

      ( :&B6 mol)-*s-* 

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    24/92

    24

    Answer :

     At t = 0s, [C2H4] = 0.884 M

     At t = 40s, [C2H4] = 0.328 M

    Rate = (0.884 0.328)M  40s

      = 0.013! Ms-1 

    = 0.014 Ms-1 s", t#e rate "$ rea%t&"'s at 40s &s 0.014 Ms-1 

    TRY : Calculate the rate of reaction of C2! con"erted to C!#from t$% to t$!%s

    2C2H4 () C4H8()

     ime+s, : *: 6: 5: ;:

    >C685?/mol )-* :&5 :&;6* :&5DE :&B6 :&*;E

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    25/92

    The Rate &aw

    13.2

    a A + bB c C + d D

    Rate = k  [A]a

    [B]b

    THE RATE -A.  !xpresses the relationship of the rate of a

    reaction to the rate constant and the concentration of thereactants raised to some powers&

    k ( rate constant

    a b ( reaction order withrespect to A G

    a 9 b ( o%erall reactionorder

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    26/92

    2 (g ) + 2C*O2 (g )  2C*O2 (g )

    rate = k  [2][C*O2]

    • Rate *as are alwa's eter&'e e/er&e'ta** '*ess

    " #ae ee' t"* a rate-*&&t&' "r s*" ste/.

    • Rea%t&"' "rer &s alwa's e$&'e &' ters "$ reactant 

    ('"t /r"%t) %"'%e'trat&"'s.

    • #e "rer "$ a rea%ta't is not re*ate t" t#est"&%#&"etr&% %"e$$&%&e't "$ t#e rea%ta't &' t#e a*a'%e

    %#e&%a* e5at&"'.

    1

    13.2

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    27/92

    27

     he number of concentration factors inthe rate e4uation&

    Can only be determined e("erimentall*/

    "t shows the exact dependence of rate onconcentration&

    not from the number of moles as written

    in the stoichiometric e4uation&  he nits o& the rate constant #e"en#

    on the overall reaction or#er&

    THE ORDER O0 REACTION

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    28/92

    28

    First order reaction- A reaction with a single reactant A- Rate is directly proportional to >A?

    rate= k [A]

    1econd order reaction- Rate is directly proportional to the s4uare of >A?

    rate= k[A]2

    Hero order reaction-

    the rate is not dependent on >A?

    rate= k [A]0 = k  (1) = k 

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    29/92

    2!

     8! #I!RA)) R!AC"#$#R3!R

    Rate ( k > A ?m > G ?n

     he o%erall order of reaction ( sum ofthe indi%idual orders ( m9n&

    with respect to each reactant in the ratelaw&

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    30/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    31/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    32/92

    Rates as Functions of Reactant

    Concentrations "n a general reaction0

     

    a A 1 b ! 1  products

    Rate = k[A] x  [B]y 

    "f concentrations of ! is ke"t

    constant0 you can measure the reaction

    rate of A at %arious concentrations&

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    33/92

    33

    DETERININ3 REACTIONORDER

    "nitialrate

    "ntegrated Rate)aw

    8alflife

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    34/92

    34

    *& "nitial Rate Method

     o Jnd the reaction orders by initialrate method0

    Run a series of experiments0

    !ach of the experiments ha%e adierent set of reactant

    concentration0From each experiments0 obtain an

    initial rate&

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    35/92

    3

    !xample *

     he results shown below are obtained forthe reaction between A and G& 3eterminethe rate e4uation for the reaction betweenA and G&

    !xperiment Concentration+mol )-*,

    "nitial rate +mol )-* s-*,

    >A? >G?

    * :&:7D7 :&:6*; &6*x*:-B

    6 :&:D*B :&:6*; *&6;x*:-6

    B :&:7D7 :&:BBB *&6;x*:

    -6

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    36/92

    36

      Calculating m in >A?m@ we take the ratio ofthe rate laws for two experiment * and 60

    in which >A? %aries but >G? is constant

      hat is0 :&;76 ( :&:;m

      log :&;76 ( m x log :&:;

      m ( *&E≈ 6

     hus0 the reaction is

    second order  with respect to A

    nm

    nm

    >G?>A?krate6

    >G?>A?krate*

    =

    = m6

    B

    :&:D*B

    :&:7D7

    *:*&6;

    *:&6* 

     

     

     

     =

    ×

    ×−

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    37/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    38/92

    38

    E(am"le 2

     he reaction between C and 3 is represented asfollows

     he experiment results are shown in the tablebelow& 3etermine the rate e4uation for thereaction between C and 3&

    !xperiment

    "nitial concentration+M,

     imeinter%al

    +minutes,

     he change inconcentration

    of C +M,

    >C? >3?

    * :&:7 *&: B: 6&7 x *:-B

    6 :&:7 6&: B: *&: x *:-6

    -B

    !3C   →+

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    39/92

    3!

     hat is0 :&67 ( +:&7,n

      log :&67 ( m x log :&7  n ( 6

     hus0 the reaction is second order  with respect to 3

    nm

    nm

    >3?>C?k6rate

    >3?>C?krate*

    ==   n

    2

    3

    2.0

    1.0

    101.0

    102.5   

      =

    ××

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    40/92

     E(am"le :

      Derive the rate la4 &or the reaction

      A 1 ! 1 C "ro#cts&rom the &ollo4ing #ata :

    Expriment  1 2 3 4

    [A]0 0.100 0.200 0.200 0.100

    [B]0 0.100 0.100 0.300 0.100

    [C]0 0.100 0.100 0.100 0.400

    rate 0.100 0.800 7.200 0.400

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    41/92

    solution

      Assume rate = k  >A? x  >G? y  >C? z 

    From experiment 1 and 2, we have

    !"#!! k $!"2% x   $!"1% y  $ !"1% z 

      &&&&& = &&&&&&&&&&&&&&&&&&&&&&&&

      !"1!! k $!"1% x   $!"1% y   $!"1% z  

    'hus, # = 2 x ( and x = ln# ) ln2 = *

    +y similar procedures, we et y = 2 and z = 1"

    'hus, the rate law is rate = k $-%* $+%2 $.%

    overall order = */2/1 = 0 

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    42/92

    42

     hat is0 :&7 ( +:&7,m

      log :&7 ( m x log :&7  m ( *

     hus0 the reaction is rst order  with respect to C

     he rate e4uation is

    nm

    nm

    >3?>C?kBrate

    >3?>C?krate*

    =

    = m

    B

    B

    :&*

    :&:7

    *:7&:

    *:6&7  

      

     =×

    ×−

    6>C?>3?krate =

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    43/92

    TR5  he following data refers to the following

    reactionC8BC#C8B 9 "6  9 89 →  C8BC#C86" 9 8"

    Expt.  (C)C*C)+, -  (

    +,-  (/2+,

    - /nitial rate,-s01 

    1 3.0 0.2 0.02 6.0 10-6 

    2 3.0 0.4 0.02 12.0 10-6 

    3 4.0 0.4 0.02 16.0 10-6 

    4 4.0 0.2 0.04 8.0 10-6 

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    44/92

    Gased on the abo%e information0

    Calculate the order with respect toC8BC#C8B 0 "6  and 89&

    rite the rate law for the reaction&

    hat is the o%erall order of the reaction<

    3etermine the rate constant0k  with thecorrect unit&

    Calculate the rate of reaction if theconcentration of propanone0 iodine and

    hydrogen ion are each :&7 mol dm-B&

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    45/92

    45

    Lero order reaction

    you will get a hori6ontalline0 

    because rate ( k>A?:

      rate = k  +a horiLontal line,

     rate 

    k

      independent to >reactant?

      >A? 

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    46/92

    46

    Jrst order reaction

    For Jrst order0 rate ( k>A?

      rate

      the plot is a straight line %linear' 

    [A]

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    47/92

    47

    second order reaction

     the plot is a branch of a prabola0 because

    rate = k  >A?6

    Rate

     

    [A]

    The Rate -a4 7

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    48/92

    Summary of the Kinetics of Zero-Orer! "irst-Oreran Secon-Orer Reactions

    The Rate -a4 7Or#er O& Reaction

    *rder Rate &aw

    /ntegrated rate

     law alf0&ife

    0

    1

    2

    rate = k 

    rate = k [A]

    rate = k [A]2

    *'[A] = *'[A]0 - kt 

    1

    [A]=

    1

    [A]0+ kt 

    [A] = [A]0 - kt 

    t *' 2

    k =

    t ½ =[A]02k 

    t ½ =1

    k [A]0

    nit

    Ms-1

    s-1

    M-1s-1

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    49/92

    #e rea%t&"' "$ '&tr&% "&e &t# #r"e' at 1280" C &s

    2O()  + 2H2()  2()  + 2H2O() 

    r" t#e $"**"&' ata %"**e%te at t#&s te/eratre, eter&'e 9

    a) #e rate *a

    ) #e rate %"'sta't

    %) #e rate "$ t#e rea%t&"' #e' [O] = 1.2 10-3M a' [H2] = 6.0 10-3 M 

    experiment >$#? +M, >86? +M, "nitialrate+M/s,

    * 7&: x *:-B 6&: x *:-B *&B x *:-7

    6 *:&: x *:-B 6&: x *:-B 7&: x *:-7

    B *:&: x *:-B 5&: x *:-B *:&: x *:-7

    E(ercise 8 $ Initial rate

    metho#

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    50/92

    .:#at &s t#e #a*$-*&$e "$ 2O &$ &t e%"/"ses &t# a rate

    %"'sta't "$ .7 10-4 s-1;

    t *' 2

    k =

    0.6!3

    .7 10-4 s-1= = 1200 s = 20 &'tes

    H" " "

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    51/92

    E(ercise 9 Integrate# rate $la4

    #e rea%t&"' 2A B &s $&rst "rer &' A &t# a rate%"'sta't "$ 2.8 10-2 s-1 at 800C. H" *"' &** &t ta

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    52/92

    *&  he rate constant for the decomposition of$6#7 to $#6 and #6 at D:°C is ;&6 x *:-B s-*&

    1uppose we start with :&B:: mol of $6#7+g, in

    a :&7:: ) container&8ow many moles of $6#7 will remain after *&7

    min<

    8ow many minutes will it take for the 4uantity

    of $6#7 to drop to :&:B: mol<hat is the half-life of $6#7 at D:°C <

     R2

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    53/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    54/92

    The Collision Theor* "n a chemical reaction0 bonds are

    broken and new bonds are formed&

    Molecules can only react if theycollide with each other&

    Furthermore0 molecules must collidewith the correct orientation and withenough energy to cause bondbreakage and formation&

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    55/92

    The Collision Theor*

    E;ective collision

    E;ective collision

    Ine;ective collision

    Ine;ective collision

    ..3ut how do we define it as an effecti"e44

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    56/92

    The Collision Theor* E00ECTI

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    57/92

    The Collision Theor* : -ctivation nery 

    • "n other words0 there is a minimm amonto& energ* re=ire# &or reaction theactivation energ*) Ea&

    •  Oust as a ball cannot get o%er a hill if it does notroll up the hill with enough energy0 a reactioncannot occur unless the molecules possesssucient energy to get o%er the acti%ationenergy barrier& he activation energy (Ea ) is the

    minimum amount of energy re4uired to

    initiate a chemical reaction&

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    58/92

    Acti%ation energy +cont&,

    The activation energyis represented on areaction profile(reaction energydiagram) as theenergy barrierbetween reactants

    and products. 

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    59/92

    Acti%ation energy+cont&,

     he height of the acti%ation barrier inPuences the

    rate

    "fEa is large

    0 then few molecules possessenough energy to get o%er the barrier@ fewproducts are formed and the rate is slo4&

    "f Ea is small0 then many molecules possess

    enough energy to get o%er the barrier@ moreproducts are formed and the rate is &aster&

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    60/92

    .hat &actors a;ect the rate o&reactions>

    &'%rease temperature

    &'%rease concentration "$

    &ss"*e rea%ta'ts

    &'%rease surface area "$ s"*&

    rea%ta'ts

    se "$ a catal'st

    &'%rease pressure "$ ase"s

    rea%ta'ts

    Eff t f t t t

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    61/92

    Effect of temperature on rate#e #&#er t#e te/eratre, t#e $aster t#e rate "$ a rea%t&"'.

    ' a' rea%t&"'s, a r&se &' te/eratre "$ 10 

    >C %ases t#erate "$ rea%t&"' t" a//r"&ate* "*e.

    :# "es &'%rease te/eratre

    &'%rease t#e rate "$ rea%t&"';

     At a #&#er te/eratre, /art&%*es#ae "re e'er. #&s ea's

    t#e "e $aster a' are "re

    *&

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    62/92

    reaction

    #e #&#er t#e %"'%e'trat&"' "$ a &ss"*e rea%ta't, t#e

    $aster t#e rate "$ a rea%t&"'.

    :# "es &'%rease %"'%e'trat&"' &'%rease t#e rate "$

    rea%t&"';

     At a #&#er %"'%e'trat&"', t#ere are "re /art&%*es &' t#e

    sae a"'t "$ s/a%e. #&s ea's t#at t#e /art&%*es are

    "re *&

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    63/92

    1lower and slowerQ

    Rea%t&"'s " '"t /r"%ee at a stea rate. #e start "$$ at

    a %erta&' s/ee, t#e' et s*"er a' s*"er 't&* t#e st"/.

     As t#e rea%t&"' /r"resses, t#e %"'%e'trat&"' "$ rea%ta'ts

    e%reases.

    #&s re%es t#e $re5e'% "$ %"**&s&"'s etee' /art&%*es

    a' s" t#e rea%t&"' s*"s "'.

    /er%e'tae %"/*et&"' "$ rea%t&"'

    1%%5%5 265 6%5 765

    reactants

    product

    !ect of pressure on rate of reaction

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    64/92

    !ect of pressure on rate of reaction

    #e as /art&%*es e%"e %*"ser t"et#er, &'%reas&' t#e

    $re5e'% "$ %"**&s&"'s. #&s ea's t#at t#e /art&%*es are "re*&

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    65/92

    !ect of surface area on rate of reaction A' rea%t&"' &'"*&' a s"*& %a' "'* ta

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    66/92

    reaction 8time9

      e  n

      e  r  g  '

       8   :   ;   9

    8ow catalysts increase rate of rxn<S#ees u# a reaction $ut is chemica%%y unchan&e at theen of the reaction'Ain& a cata%yst has e(act%y effect on )A'#ro*ies an a%ternati*e route for the reaction +ith%o+er acti*ation ener&y' 

    D&$$ere't %ata*sts "r< &'&$$ere't as, t "st

    *"er t#e rea%t&"'?s

    a%t&at&"' e'er (@a).

    Ea with

    catal'st

    Ea without

    catal'st

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    67/92

    67

     ype of catalysis

    a, 8omogeneous

     he catalyst is in the same phase as the reactants&

    b, 8eterogeneous

     he catalyst is in a dierent phase 

    than the reactants  often a solidcatalyst and li4uid or gaseousreactants&

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    68/92

    ,o+ tem#erature an ata%ysts Affect Reaction Rates

    The Arrhenius’ ).uation

    /0 A e- Ea/RT 

    "re.uency

    of co%%isions

    Acti*ation

    ener&y

    Tem#erature in K 

    1as constant

    2'345 J6mo% 7 K 

    3etermination of the %alues of

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    69/92

    3etermination of the %alues of - and a 

    lineariLing the Arrhenius e4uation@

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    70/92

    70

    3etermination of the %alues of - and a

    A plot of ln k  verss 8?T  will ha%e a slope of-a/ and an intercept of ln -&

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    71/92

    71

    !xample A plot of ln+k, %s& */+,

    Rate "s. Temperature

    = -7330.4 + 26.417

    :

    :&5

    :&C

    *&6

    *&;

    6

    B&*!-:B B&6!-:B B&B!-:B B&5!-:B B&7!-:B B&;!-:B

    1

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    72/92

    !xample +cont&, 

    S*Calculate the acti%ation energy for this

      reaction<

    S6 Calculate rate would be expected for this

      reaction at B:°C<SB 3etermine temperature is needed to

    double this rate<

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    73/92

    7

    1olution for S*

    0irst) correlate the actal e=ation o& theline 4ith the Arrhenis E=ation:

    ln k @ $ Ea

    ?R%8?T' 1 ln A* @ m( 1 c

    * @ $99B/( 1 2/8

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    74/92

    74

    1olution for S*

    1lope (

    !a ( - +1lope, x +R,

    !a ( - +-DBB:&5 , x +&B*5 O/mol,Ea @ B/F kG?mol

    1o the acti%ation energy for this reaction

     is B/F kG?mol

    a!

    R−

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    75/92

    75

    1olution for S6

     he rate at B:TC is U

    + B: 9 6DB ( B:B,

    ln+k, ( -DBB:&5+*/, 9 67&5*D +gi%en,

    ln+k, ( -DBB:&5+*/B:B , 9 67&5*D

    ln+k, ( *&66

      k ( e *&66

      k @ 9/B s$8

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    76/92

    76

    1olution for SB

     he temperature needed to double this

    rateU&+ B&5 x 6 ( ;&,

    ln+rate, ( -DBB:&5+*/, 9 67&5*D +gi%en,ln+;&, ( -DBB:&5+*/, 9 67&5*D

    *&E* ( -DBB:&5+*/, 9 67&5*D

    -6B&7: ( -DBB:&5+*/,

      ( B*6   ( B*6 6DB ( BETC

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    77/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    78/92

    If +e ha*e t+o ifferent / *a%ues at ifferent

    tem#eratures! you can com$ine the t+o

    reactions to &i*e8

    %n / 9 0 )a  4 4

      / 4  R T4  T9

    .here T8  T2

    Example

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    79/92

    Example

    #e rate %"'sta't $"r t#e $"rat&"' "$ H at 600 a' 60

    are easre a' $"' t" e 2.710-4 M-1s-1 a' 3.10-3

    M-1s-1, res/e%t&e*. Deter&'e t#e a%t&at&"' e'er a't#e rate %"'sta't at 800 .

    H2+2  2H

    1olution

    ln +B&7x*:-B , ( !a * - *  +6&Dx*:-5 , &B*5 Omol-*  ;:: ;7: 

    ln +*B&: , ( !a +*&6x*:-5,  &B*5 Omol-*

    !a ( 6&7; x &B*5 Omol-* ( *&;;x*:7 Omol-*

      +*&6x*:-5,  ( 8 kGmol$8

    %n / 9 0 )a  4 4

      / 4  R T4  T9

    E(am"le

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    80/92

    >olution

    To determine rate %"'sta't at 800.

    *'

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    81/92

     R2

    The rate constant o& a reaction is 8/2 ( 8B$

    9 sec$8 at 9BB C an# 2/8 ( 8B$9 sec$8 at BB C/Calclate the energ* o& activation o& thereaction/

    Answer !a ( 55&*; kO mol-*

    %n / 9 0 )a  4 4

      / 4  R T4  T9

    Reaction echanism

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    82/92

    Elementar* reactions

    Reaction echanismElementar* reactions

    1Elementar* reactions

    REACTIONECHANI,

    Uni$

    moleclar

    !i$

    moleclar

    Trimoleclar

    0ast,lo4

    Reactionintermediate

    Rate –determining step

    Reaction -echanisms

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    83/92

    #e "era** /r"ress "$ a %#e&%a* rea%t&"' %a' e re/rese'te

    at t#e "*e%*ar *ee* a ser&es "$ s&/*e elementary steps 

    "r elementary reactions.

    #e se5e'%e "$ elementar' steps t#at *eas t" /r"%t

    $"rat&"' &s t#e reaction mechanism.

    2O (g ) + O2 (g ) 2O2 (g )

    @*ee'tar ste/9 O + O 2O2

    @*ee'tar ste/9 2O2 + O2  2O2Oera** rea%t&"'9 2O + O2  2O2

    +

    84Intermediates are s/e%&es t#at a//ear &' a rea%t&"'

    # & 3 t t & t# ** * t&

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    84/92

    @*ee'tar ste/9 O + O 2O2

    @*ee'tar ste/9 2O2 + O2  2O2

    Oera** rea%t&"'9 2O + O2  2O2

    +

    e%#a'&s 3ut not &' t#e "era** a*a'%e e5at&"'.

     A' intermediate &s a*as $"re &' a' ear* e*ee'tar ste/

    a' %"'se &' a *ater e*ee'tar ste/.

    #e molecularity of a reaction &s t#e 'er "$ "*e%*es

    rea%t&' &' a' e*ee'tar ste/.

    • Unimolecular reaction   e*ee'tar ste/ &t# 1 "*e%*e• Bimolecular reaction   e*ee'tar ste/ &t# 2 "*e%*es

    • Termolecular reaction   e*ee'tar ste/ &t# 3 "*e%*es

    85

    Rate as a' @*ee'tar Ete/s

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    85/92

    :r&t&' rea%t&"' e%#a'&ss9

    • #e s "$ t#e e*ee'tar ste/s must &e t#e "era**

    a*a'%e e5at&"' $"r t#e rea%t&"'.

    #e rate-eter&'&' ste/ s#"* /re&%t t#e sae rate*a t#at &s eter&'e e/er&e'ta**.

    #e rate-determining step &s t#e slowest ste/ &' t#e

    se5e'%e "$ ste/s *ea&' t" /r"%t $"rat&"'.

    #e e/er&e'ta* rate *a $"r t#e rea%t&"' etee' O

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    86/92

    #e e/er&e'ta* rate *a $"r t#e rea%t&"' etee' O2 

    a' CO t" /r"%e O a' CO2 &s rate = k [O2]2. #e

    rea%t&"' &s e*&ee t" "%%r &a t" ste/s9

    Ete/ 19 O2 + O2  O + O3

    Ete/ 29 O3 + CO O2 + CO2

    :#at &s t#e e5at&"' $"r t#e "era** rea%t&"';

    O2+ CO O + CO2

    :#at &s t#e &'tere&ate;

    O3

    :#at %a' " sa a"t t#e re*at&e rates "$ ste/s 1 a' 2;

    rate = k [O2]2 &s t#e rate *a $"r ste/ 1 s"

    ste/ 1 st e s*"er t#a' ste/ 2

    13.

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    87/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    88/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    89/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    90/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    91/92

  • 8/19/2019 chapter 2 - Chemical Kinetics.pptx

    92/92

    Thank *oJ