chapter 2 discrete fourier transform

Upload: siddarth-madan

Post on 07-Aug-2018

246 views

Category:

Documents


2 download

TRANSCRIPT

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    1/75

    03/04/16 1

    Chapter 2Chapter 2

    DiscreteDiscrete Fourier TransformFourier Transform

    Instructor: TedInstructor: Ted

    Email:[email protected]:[email protected]

    Phone:13836034068Phone:13836034068

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    2/75

    03/04/16 2

    Three Questions aboutThree Questions about DiscreteDiscrete Fourier TransformFourier Transform

    Q1:Q1: WWHAT is DFT?HAT is DFT?

    Q2:Q2: WWHY is DFT?HY is DFT?

    Q3: HOQ3: HO WW to DFT?to DFT?

    W !T is relationshi" #et$een %&T and other 'inds o( &ourierW !T is relationshi" #et$een %&T and other 'inds o( &ourier

    Trans(orm)Trans(orm)

    W * $e need %&T)W * $e need %&T)

    +W to realize %&T) o$ to use %&T to sol,e the "ractical+W to realize %&T) o$ to use %&T to sol,e the "ractical

    "ro#lems)"ro#lems)

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    3/75

    03/04/16 3

    Basic contents of this chapterBasic contents of this chapter -.1 e,ie$ o( &ourier Trans(orm-.1 e,ie$ o( &ourier Trans(orm

    -.- %iscrete &ourier /eries-.- %iscrete &ourier /eries -.3-.3 %iscrete%iscrete &ourier Trans(orm&ourier Trans(orm

    -.4-.4 elationshi" #et$een %&T z Trans(orm and se2uence selationshi" #et$een %&T z Trans(orm and se2uence s

    &ourier Trans(orm&ourier Trans(orm

    -.-. &re2uency sam"lin5 theorem&re2uency sam"lin5 theorem

    -.6-.6 om"ute se2uence s linear con,olution usin5om"ute se2uence s linear con,olution usin5 %&T%&T

    -.7-.7 /"ectrum analysis #ased on %&T/"ectrum analysis #ased on %&T

    -.8 e,ie$-.8 e,ie$

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    4/75

    03/04/16 4

    2 12 1 Fourier TransformFourier Transform

    ( ) ( )sin 2 x t f t π = × × ( )2 randn+ ×In some situation si5nal s (re2uency s"ectrum can re"resent its characteristics

    more clearly.

    ( ) x t in (re2uency domain( ) x t in time domain

    &ourier

    Trans(orm

    ( ) ( )sin 2 500 x t t π = × ×

    /i5nal !nalysis and Processin5/i5nal !nalysis and Processin5

    11 Time %omain !nalysis: t !Time %omain !nalysis: t !

    -- &re2uency %omain !nalysis: ( !&re2uency %omain !nalysis: ( !

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    5/75

    03/04/16 5

    2 12 1 Fourier TransformFourier Transform

    /i5nal !nalysis and Processin5:/i5nal !nalysis and Processin5:

    11 Time %omain !nalysisTime %omain !nalysis -- &re2uency %omain !nalysis&re2uency %omain !nalysis

    &ourier Trans(orm is a #rid5e (rom time domain to (re2uency domain.&ourier Trans(orm is a #rid5e (rom time domain to (re2uency domain.

    haracteristic: continuous discrete "eriodic haracteristic: continuous discrete "eriodic non"eriodicnon"eriodic ..

    ontinuous "eriodic si5nalsontinuous "eriodic si5nals

    ontinuous non"eriodic si5nalsontinuous non"eriodic si5nals

    %iscrete "eriodic si5nals%iscrete "eriodic si5nals

    %iscrete non"eriodic%iscrete non"eriodic si5nalssi5nals

    Ty"e:Ty"e:

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    6/75

    03/04/16 6

    1! "ontinuous perio#ic si$na%&&Fourier 'eries1! "ontinuous perio#ic si$na%&&Fourier 'eriesIt is "ro,ed that continuous time "eriodic si5nal can #e re"resented #y aIt is "ro,ed that continuous time "eriodic si5nal can #e re"resented #y a

    &ourier /eries corres"ondin5 to a sum o( harmonically related com"le9&ourier /eries corres"ondin5 to a sum o( harmonically related com"le9

    e9"onential si5nal. To a "eriodic (unction $ith "eriod e9"onential si5nal. To a "eriodic (unction $ith "eriod

    ( ) ( )0 0202

    2 1,

    T jn t jn t

    T n nn

    f t F e F f t e dt T T

    ω ω π

    ω

    +∞−

    −=−∞= = ⇔ =∑ ∫

    ( ) f t T

    Conclusion:Conclusion: Continuous periodicContinuous periodic function— function—

    Nonperiodic discrete Nonperiodic discrete frequency impulse sequence frequency impulse sequence

    Time-domain Frequency-domain

    ( ) f t A

    t

    T 2τ 2τ −0

    T n

    n F

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    7/75

    03/04/16 7

    2!2! "ontinuous"ontinuous nonperio#icnonperio#ic function(s Fourier Transformfunction(s Fourier Transform

    ∫ ∞

    Ω= dt et x j X t j ;;

    ∫ ∞

    ∞Ω Ωd e j X t x t j :;

    -1

    :;

    Conclusion :Conclusion : Continuous nonperiodicContinuous nonperiodic function— function— Nonperiodic continuous Nonperiodic continuous function function

    Time-domain Frequency-domain

    t

    ( ) x t A

    2τ 2τ −0 Ω

    ( ) X jΩ

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    8/75

    03/04/16 8

    3!3! Discrete&timeDiscrete&time nonperio#icnonperio#ic se)uence(s Fourier Transformse)uence(s Fourier Transform

    Conclusion :Conclusion : Discrete nonperiodic Discrete nonperiodic function— function—Continuous-time periodicContinuous-time periodic function function

    ; :

    1; :

    -

    j j n

    n

    j j n

    X e x n e

    x n X e e d

    = ∞

    =

    =∑∫

    ; - ; -

    -

    ; j M j M n

    n

    j n j nM j n

    n n

    X e x n e

    x n e e x n e

    = ∞ ∞ ∞

    = ∞ = ∞

    =

    = =

    ∑ ∑

    Time-domain Frequency-domain

    ω

    ( ) j X e ω

    π − π 02 π − 2 π

    n

    ( ) x n A

    2 N 2 N −0

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    9/75

    03/04/16 9

    *! "onc%usion*! "onc%usion 11 /am"lin5 in time domain #rin5s "eriodicity in (re2uency/am"lin5 in time domain #rin5s "eriodicity in (re2uency

    domain.domain.-- /am"lin5 in (re2uency/am"lin5 in (re2uency domain #rin5s "eriodicity in timedomain #rin5s "eriodicity in time

    domain.domain. 33 elationshi" #et$een (re2uency domain and time domainelationshi" #et$een (re2uency domain and time domain

    Time domain &re2uency domain Trans(ormTime domain &re2uency domain Trans(orm

    ontinuous "eriodicontinuous "eriodic %iscrete non"eriodic &ourier series%iscrete non"eriodic &ourier series

    ontinuous non"eriodic ontinuous non"eriodicontinuous non"eriodic ontinuous non"eriodic &ourier Trans(orm&ourier Trans(orm

    %iscrete non"eriodic ontinuous "eriodic%iscrete non"eriodic ontinuous "eriodic /e2uence s &ourier/e2uence s &ourier

    Trans(ormTrans(orm

    %iscrete "eriodic %iscrete "eriodic %iscrete &ourier /eries%iscrete "eriodic %iscrete "eriodic %iscrete &ourier /eries

    PeriodicPeriodic %iscrete< =on"eriodic%iscrete< =on"eriodic ontinuousontinuous

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    10/75

    03/04/16 10

    +! Basic i#ea of Discrete Fourier Transform+! Basic i#ea of Discrete Fourier Transformn !rac"ica# a!!#ica"ion, si$na# !rocessed %y com!u"er &as "'o main c&arac"eris"icsn !rac"ica# a!!#ica"ion, si$na# !rocessed %y com!u"er &as "'o main c&arac"eris"ics

    ;1 %iscrete;1 %iscrete ;- &inite len5th;- &inite len5thimi#ar#y, si$na#*s +requency mus" a#so &a e "'o main c&arac"eris"icsimi#ar#y, si$na#*s +requency mus" a#so &a e "'o main c&arac"eris"ics

    ;1 %iscrete;1 %iscrete ;- &inite len5th;- &inite len5th

    IdeaIdea ::

    .!and.!and +ini"e-#en$"& sequence "o !eriodic sequence+ini"e-#en$"& sequence "o !eriodic sequence , com!u"e i"s iscre"e, com!u"e i"s iscre"e

    Fourier eries, so "&a" 'e can $e" "&e discre"e s!ec"rum in +requency domainFourier eries, so "&a" 'e can $e" "&e discre"e s!ec"rum in +requency domain

    u" non!eriodic sequence*s Fourier Trans+orm is a con"inuous +unc"ion o+u" non!eriodic sequence*s Fourier Trans+orm is a con"inuous +unc"ion o+ ωω, and i", and i"is a !eriodic +unc"ion inis a !eriodic +unc"ion in ωω 'i"& a !eriod 2'i"& a !eriod 2 ππ o i" is no" sui"a%#e "o so# e !rac"ica# o i" is no" sui"a%#e "o so# e !rac"ica#di$i"a# si$na# !rocessin$di$i"a# si$na# !rocessin$

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    11/75

    03/04/16 11

    2 2 Discrete Fourier 'eries1 %iscrete &ourier /eries Trans(orm Pair

    /imilar $ith continuous time "eriodic si5nals a "eriodic se2uence $ith"eriod = can #e re"resented #y a &ourier /eries corres"ondin5 to a sum o(

    harmonically related com"le9 e9"onential se2uences such as:

    ( ) ( )1

    0

    1k

    N j n

    k

    x n X k e

    N

    ω −

    =

    = ∑ %%

    Attention: &ourier /eries (or discrete time si5nal $ith "eriod = re2uiresonly = harmonically related com"le9 e9"onentials.

    ( )

    ( )

    12 , s +undamen"a# an$u#ar +requency

    2, s &armonic an$u#ar +requencyk

    x n N

    k x n kth N

    π ω

    π ω

    =

    =

    %

    %

    2-1

    ( ) x n%

    $here

    2 2( )

    "&a" is j kn j k n N

    N N k N k e e

    π π

    ω ω +

    += =:Q

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    12/75

    03/04/16 12

    ( )( )

    ( )

    221

    20

    11 1 1

    01

    j r k N N N j r k n

    N

    j r k n N

    r k mN ee

    otherwise N N e

    π

    π

    π

    −− −

    −=

    = +−= × =−∑

    2-

    +"er mu#"i!#yin$ %o"& sides o+ q (2-1) 'i"& , and summin$

    +rom 0 -1, 'e o%"ain

    j kn N e

    n to N

    π

    =

    ( ) ( )

    ( ) ( ) ( ) ( )

    2 2 21 1 1

    0 0 0

    2 21 1 1 1

    0 0 0 0

    1

    1 1

    N N N j kn j rn j kn N N N

    n n r

    N N N N j r k n j r k n N N

    n r r n

    x n e X r e e N

    X r e X r e N N

    π π π

    π π

    − − −− −

    = = =

    − − − −− −

    = = = =

    =

    = = ÷

    ∑ ∑∑

    ∑∑ ∑ ∑

    %%

    % %

    com!u"a"ion( ) X k %

    ( ) ( ) ( )21

    0

    N j kn N

    n

    X r X k x n eπ − −

    =⇒ = =∑% % %

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    13/75

    03/04/16 13

    Attention:

    :;>

    :;> :;> :;> -1

    0

    ;-1

    0k X en x en x mN k X

    kn N

    j N

    n

    nmN k N

    j N

    n=

    =

    =

    so ( ) is a#so a !eriodic sequence 'i"& !eriod

    ( ) and ( ) is a !eriod sequence !air in +requency domain and "ime domain

    X k

    X k x n

    %

    % %

    Discrete Fourier Series for periodic sequence:

    ( ) ( ) ( ) ( )

    ( ) ( ) ( ) ( )

    21 1

    0 0

    21 1

    0 0

    1 1

    N N j kn kn N N

    n n

    N N j kn kn N N

    k n

    X k DFS x n x n e x n W

    x n IDFS X k X k e X k W N N

    π

    π

    − −−

    = =− −

    = =

    = = =

    = = =∑ ∑

    ∑ ∑

    % % % %

    % % %%

    N j

    N eW

    -

    =

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    14/75

    03/04/16 14

    - Pro"erties o( %&/u!!ose ( ) ( ) ( ) ( ) DFS x n X k DFS y n Y k = = % %% %

    1 ,inear,inear :;> :;> :?;> :;> @ k Y bk X n ybn x D!"

    2 'e)uence 'hift'e)uence 'hift( ) ( )

    ( ) ( )

    km N

    nl N

    DFS x n m W X k

    IDFS X k l W x n

    −+ =+ =

    %%

    % %

    ( )

    1

    0

    1 1

    1

    0

    ( ) ( ) ,

    ( ) ( )

    ( ) ( ) ( )

    N kn

    N n

    N m N mk r m km kr

    N N N r m r m

    N km kr km

    N N N r

    Proof DFS x n m x n m W let r n m

    Then x r W W x r W

    W x r W DFS x n m W X k

    =+ − + −

    − −

    = =−

    − −

    =

    + = + = +

    = =

    = ⇒ + =

    ∑ ∑

    % %

    % %

    %% %

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    15/75

    03/04/16 15

    - Pro"erties o( %&/u!!ose ( ) ( ) ( ) ( ) DFS x n X k DFS y n Y k = =% %% %

    3 -erio#ic "on.o%ution-erio#ic "on.o%ution

    1 1

    0 0

    + ( ) ( ) ( ) "&en

    ( ) ( ) ( ) ( ) ( ) ( ) N N

    m m

    F k X k Y k

    f n IDFS F k x m y n m y m x n m− −

    = =

    =

    = = − = −∑ ∑ % % %

    % % % % % %

    om!ared 'i"& #inear con o#u"ion, !eriodic con o#u"ion*s maindi++erence is

    T&e sum is o er "&e +ini"e in"er a# m 0 -1

    :eriodic con o#u"ion

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    16/75

    03/04/16 16

    1

    0

    (1) ( ) (1 ) 0 N

    m

    f x m y m−

    == − =∑% % %

    1

    0

    (0) ( ) (0 ) 1 N

    m

    f x m y m−

    == − =∑% % %

    1

    0

    (2) ( ) (2 ) 1 N

    m

    f x m y m−

    =

    = − =∑% % %

    1

    0

    ( ) ( ) ( ) N

    m

    f n x m y n m−

    =

    = −∑% % %-erio#ic con.o%ution-erio#ic con.o%ution

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    17/75

    03/04/16 17

    '/mmetr/'/mmetr/ :

    1 1

    0 0

    + ( ) ( ) ( ) "&en1 1

    ( ) ( ) ( ) ( ) ( ) ( ) N N

    l l

    f n x n y n

    F k DFS f n X l Y k l Y l X k l N N

    − −

    = =

    == = − = −∑ ∑

    %

    % %

    %% % % % %

    0u%tip%ication of perio#ic se)uence in timeomain is0u%tip%ication of perio#ic se)uence in timeomain iscorrespon# to con.o%ution of perio#ic se)uence incorrespon# to con.o%ution of perio#ic se)uence infre)uenc/ #omainfre)uenc/ #omain

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    18/75

    03/04/16 18

    Periodic se2uence and its %&/

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    19/75

    03/04/16 19

    2 3 Discrete Fourier Transform&DFT 2 3 Discrete Fourier Transform&DFT

    Periodic se2uence and its %&/

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    20/75

    03/04/16 20

    HINTS

    -erio#ic se)uence is infinite %en$th

    but on%/ se)uence .a%ues contain information

    -erio#ic se)uence finite %en$th se)uence

    e%ationship bet een these se)uences ?

    4nfinite4nfinite FiniteFinite

    -erio#ic-erio#ic NonperiodicNonperiodic

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    21/75

    03/04/16 21

    2 3 Discrete Fourier Transform&DFT 2 3 Discrete Fourier Transform&DFT e%ationship bet een perio#ic se)uence an# finite&%en$th se)uence

    -erio#ic se)uence can be seen as perio#ica%%/ copies of finite&%en$th se)uenceFinite&%en$th se)uence can be seen as e5tractin$ one perio# fromperio#ic se)uence

    Main period

    Finiteuration 'e)uenceFiniteuration 'e)uence -erio#ic 'e)uence-erio#ic 'e)uence

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    22/75

    03/04/16 22

    2 3 Discrete Fourier Transform&DFT 2 3 Discrete Fourier Transform&DFT u!!ose ( ) is a +ini"e-#en$"& sequence; ( ) is a !eriodic sequence; x n x n%

    ( ) ( ) ( ) N x n x n R n= %1, 0 1

    ( ) is a square-'a e sequence ( )0, o"&er'ise N N

    n N R n R n

    ≤ ≤ −=

    'e use (( )) "o deno"e (n modu#o ) N n

    ( )( ) ( )12

    5 5 x x=

    (0) x(1) x

    (2) x

    (3) x

    (4) x

    (6) x(7) x

    (8) x

    (11) x(10) x

    (9) x

    (5) x

    12 N =

    ( )( ) ( )12

    20 8 x x=

    ( )( ) ( )12

    1 11 x x− =

    ( )( )( ) ( )r

    N r x n x n rN x n

    =∞

    =−∞= + =∑%

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    23/75

    03/04/16 23

    ( ) x n

    2 3 Discrete Fourier Transform2 3 Discrete Fourier Transform

    Get DFT by extracting one period of DFS

    DFS of periodic sequence

    ( ) N R k

    om"utation o( %&T #y e9tractin5 one "eriod o( %&/

    To a (inite len5th se2uence :

    Periodicalcopies

    ( )( ) N

    x n( ) X k ⇔ DFS

    Attention DFT is ac)uire# b/ e5tractin$ one perio# of

    DF'6 it is not a ne 7in# of Fourier Transform

    DFT

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    24/75

    03/04/16 24

    1

    0

    1

    0

    1

    0

    +ini"e-#en$"& sequence can %e e.!ressed in "&is 'ay

    ( ) ( ) ( )

    ( ) ( ) ( ) (( )) ( )

    "&en ( ) ( ) 0 1

    1"&en ( ) ( ) 0 1

    N

    N kn

    N N N N n

    N kn

    N n

    N kn

    N k

    x n x n R n

    X k X k R k x n W R k

    X k x n W k N

    x n X k W n N N

    =−

    =−

    =

    =

    ∴ = =

    = ≤ ≤ −

    = ≤ ≤ −

    ∑∑

    %

    %

    DFT TransforPair

    =

    =

    10;1

    ;

    10;;

    1

    0

    1

    0

    N nW k X N n x

    N k W n x k X

    N

    k kn N

    N

    n

    kn N

    ( ) ( ) ( ) ( ) X k DFT x n x n IDFT X k = =abbr .

    4n.erse Transform4n.erse Transform

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    25/75

    03/04/16 25

    Pro"erty o( %&Tu!!ose ( ) ( ) ( ) ( ) X k DFT x n Y k DFT y n= =

    ;1 Ainearity( ) ( ) ( ) ( ) , are coe++icien" DFT ax n by n aX k bY k a b+ = +

    ;- ircular /hi(t

    ircular shi(t o( x#n$ can #e de(ined:( ) (( )) ( )m N N x n x n m R n= +

    ( ) ( ) ( ) x n x n x n m+% %

    ( )m x n

    Periodi

    !o"ies

    Shift #xtra t

    $ain "eriod (( )) N x n m= +

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    26/75

    03/04/16 26

    2x (n)

    "ircu%ar shift of se)uence"ircu%ar shift of se)uence ,inear shift of se)uence,inear shift of se)uence

    N - %

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    27/75

    03/04/16 27

    ( ) ( ) (( )) ( ) ( )mk m m N N N X k DFT x n DFT x n m R n W X k −= = + =

    (( )) ( ) ( )nl N N N IDFT X k l R k W x n+ =

    '/mmetric bet een DFT an# 4DFT '/mmetric bet een DFT an# 4DFT

    (( )) ( ) ( ) ( ) N N N DFT x n m R n DFT x n m R n+ = +%( ) ( ) N DFS x n m R k = +%

    ( ) ( )

    ( )

    mk

    N N mk

    N

    W X k R k

    W X k

    ==

    %

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    28/75

    03/04/16 28

    3 -arse.a%(s Theorem-arse.a%(s Theorem1 1

    0 01 1

    2 2

    0 0

    1( ) ( ) ( ) ( )

    1

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    29/75

    03/04/16 29

    4 ircular con,olution

    1

    0

    1

    0

    u!!ose ( ) ( ) ( )

    "&en ( ) ( ) ( ) (( )) ( )

    or ( ) ( ) (( )) ( )

    N

    N N m

    N

    N N m

    F k X k Y k

    f n IDFT F k x m y n m R n

    f n y m x n m R n

    =−

    =

    =

    = = −

    = −

    ∑∑

    Periodic con,olution is con,olution o( t$o se2uences $ith "eriod= in one "eriod so it is also a "eriodic se2uence $ith "eriod =.

    ircular con,olution is ac2uired #y e9tractin5 one "eriod o(

    "eriodic con,olution e9"ressed #y ⊗.

    ircularcon,olution

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    30/75

    03/04/16 30

    f#n$

    1 N y m & n%

    - N y m & n%

    0 N y m & n%

    "ircu%ar con.o%ution"ircu%ar con.o%ution -erio#ic con.o%ution-erio#ic con.o%ution

    0 f

    1 f

    - f

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    31/75

    03/04/16 31

    ( ) ( )

    ( ) ( )( ) ( ) ( ) ( )

    DFT x n X k

    DFT y n Y k IDFT X k Y k x n y n

    ==

    = ⊗

    Circular convolution can be used to

    compute two sequence !s linear

    convolution.

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    32/75

    03/04/16 32

    onBu5ate symmetric "ro"erties

    a %&T o( conBu5ate se2uence

    2

    1 1( )

    0 0

    2

    u!!ose ( ) is com!#e. con>u$a"e sequence o+ ( ) "&en

    ( ) ( ),0 1

    :roo+ ( ) ( ) ( ) ,0 1

    1

    (

    N

    N N nk n k

    N N n n

    j nN nN j n N

    x n x n

    DFT x n X N k k N

    DFT x n x n W x n W k N

    W e e

    DFT x n

    π π

    ∗ ∗

    − −∗ ∗ − ∗

    = =−

    = − ≤ ≤ −

    = = ≤ ≤ −

    = = =

    ∑ ∑

    Q1 1

    ( ) ( )

    0 0

    ) ( ) ( )

    ( ),0 1

    N N nN n k n N k

    N N N n n

    x n W W x n W

    X N k k N

    − −− ∗ − ∗

    = =∗

    = =

    = − ≤ ≤ −

    ∑ ∑

    Attention C;' has only ' ,alid ,alues 0≤' ≤= 1 %u" '&en 0 (( 0)) (0) no" ( ),

    so ( ) (( )) ( ) in a s"ric" 'ay N

    N N

    k X N X X N

    DFT x n X N k R k

    ∗ ∗ ∗

    ∗ ∗

    = − == −

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    33/75

    03/04/16 33

    # %&T o( se2uence s real and ima5inary "art

    u!!ose ( ) s rea# and ima$inary !ar" are ( ) and ( )

    "&en ( ) ( ) ( )1 1

    ( ) ( ) ( ) , ( ) ( ) ( )2 2

    ( ) and ( ) s /FT are ( ) and ( ), "&en

    1( ) ( ) ( )2

    r i

    r i

    r i

    r i e o

    e r

    x n x n jx n

    x n x n jx n

    x n x n x n jx n x n x n

    x n jx n X k X k

    X k DFT x n DFT x n

    ∗ ∗= +

    = + = −

    = =

    '

    1( ) ( ) ( )2

    1 1( ) ( ) ( ) ( ) ( ) ( )

    2 2o i

    x n X k X N k

    X k DFT jx n DFT x n x n X k X N k

    ∗ ∗

    ∗ ∗

    + = + −

    = = − = − −

    ( ) ( ) ( )e o X k X k X k = +

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    34/75

    03/04/16 34

    na#ysis o+ ( ) and ( ) s symme"ric

    1( ) ( ) ( )

    21 1

    ( ) ( ) ( ) ( ) ( )2 2

    "&en ( ) ( )

    e o

    e

    e

    e e

    X k X k

    X k X k X N k

    X N k X N k X N N k X N k X k

    X k X N k

    ∗ ∗ ∗ ∗

    = + −

    − = − + − + = − +

    = −

    Q

    CC ee;' is e,en com"onents o( C;' C;' is e,en com"onents o( C;' C ee;' is conBu5ate symmetric

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    35/75

    03/04/16 35

    C e;' conBu5ate e,en "art

    conBu5ate symmetric<

    real "art is e2ual ima5inary

    "art is o""osite.

    C e;' s real "art

    C e;' s ima5inary "art

    C o;' con"ugate odd part con"ugate asy etric#real part is opposite$ i aginarypart is equal%

    C o;' s real "art

    C o;' s ima5inary "art

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    36/75

    03/04/16 36

    "onc%usion1 %&T o( se2uence s real "art is corres"ondin5 to C;' s conBu5ate symmetric "art.

    - %&T o( se2uence s ima5inary "art is corres"ondin5 to C;' s conBu5ate asymmetric

    "art.

    3 /u""ose 9;n is a real se2uence that is 9;n D9 r ;n

    then C;' only has conBu5ate symmetric "art that is C;' DC e;'

    sa"is+y ( ) ( )

    (0) (0) ( ) ( )2 2

    X k X N k N N

    X X X X

    ∗ ∗

    = −= =:

    /o: I( $e 5et hal( X#k$' $e can ac2uire all X#k$ usin5 symmetric"ro"erties.

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    37/75

    03/04/16 37

    01

    0 1 1

    1

    ( ( (

    N N N ( ) N-)

    N N N

    ( N-) #N-)$#N-)$ N N N

    W W W X

    W W W X

    x x x N

    W W W

    X N

    ÷÷ ÷÷ ÷=÷ ÷÷ ÷÷÷÷

    K K M O M

    M K

    1

    0( ) ( ) 0 1

    N kn

    N n X k x n W k N

    == ≤ ≤ −

    ∑ k N →0 1

    n N →0 1

    DFT -ro$rammin$ 85amp%e

    DFT 0atri5

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    38/75

    03/04/16 38

    function &'()*dft+xn,

    N*lengt +xn,# .lengt of sequencen*/:N-1# . ti e sa ple(*/:N-1#

    0N*exp+-" 2 pi N,#n(*n3 (#0Nn(*0N%4n(# .calculate t e DFT 5atrix

    '(*xn 0Nn(# .co pute DFT

    5ore effecti6e et od%

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    39/75

    03/04/16 39

    Fs * 7//# . Get t e analy8ed signal

    T * 1 Fs#9 * 1///#t * +/:9-1, T#x * /% sin+2 pi ;/ t,#

    plot+1/// t+1:2//,$x+1:2//,,#

    < * dft+x, 9# . Discrete Fourier Transfor

    f * Fs 2 linspace+/$1$9 2=1,#ste +f$2 abs+

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    40/75

    03/04/16 40

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    41/75

    03/04/16 41

    2 * DFT6 'e)uence(s Fourier Transform an# 9&transform

    ; : x t X j Ω

    ; : x n x n* j+ X e

    %&/

    /am"lin5

    N

    x n

    Periodic o"ies

    X k %

    x n

    E9tract +ne "eriod E9tract +ne "eriod

    X k %&T

    /e2uence s &ourierTrans(orm

    &ourier Trans(ormontinuoustime

    %iscretetime

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    42/75

    03/04/16 42

    Three #ifferent fre)uenc/omain representations of a finite&%en$th #iscrete&time se)uence

    2 'e)uence(s Fourier Transform2 'e)uence(s Fourier Transform

    3 Discrete Fourier Transform3 Discrete Fourier Transform DFT!DFT!

    1 9&Transform1 9&Transform

    -1

    0

    -1

    0

    ; : ; : 0 1

    1; : ; : 0 1

    N j kn kn N

    N n

    N j kn N

    k

    X k x n e W k N

    x n X k e n N N

    =

    =

    = ≤ ≤

    = ≤ ≤

    11

    0

    1; ; ; ;

    -

    N n n

    C n

    X , x n , x n X , , d, =

    = = ∫Ñ

    1

    0

    1; ; ; ;

    -

    N j+ j+n j+ j+n

    n

    X e x n e x n X e e d+

    =

    = = ∫

    j+ , e}

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    43/75

    03/04/16 43

    j I m5?6

    Re5?6

    C;' and C;z )C;' and C;z )

    C;' and C;eC;' and C;e j+ j+ ) )

    0 N W

    -

    N W

    1 N W

    $ N #

    N W -

    $ N # N W

    1

    k N

    j k

    N

    W ,

    eW ,

    , X k X k N

    -

    E:;:;

    =

    =

    =

    :;:;-

    k N

    j e X k X

    =

    101

    0

    ∑= N k W $n# x $k # X N

    n

    kn N

    1

    0

    ( ) ( ) N

    n

    n

    X % x n % −

    ==∑

    1

    0

    ( ) ( ) N

    jw jwn

    n

    X e x n e−

    =

    =∑

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    44/75

    03/04/16 44

    ; : ; : j X k X e andelationshi" #et$een

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    45/75

    03/04/16 45

    ( ) ( ) or ( ) j X k X e X % ω ⇒ 2 + Fre)uenc/ samp%in$ theorem2 + Fre)uenc/ samp%in$ theorem

    o$ to realize) Prere2uisite (or im"lementation)o$ to realize) Prere2uisite (or im"lementation)What is inter"olation (ormula)What is inter"olation (ormula)

    11 /am"lin5/am"lin5 9;n s z trans(orm:9;n s z trans(orm:

    ∑ ∞ =

    n

    n

    , n x , X :;:;

    2

    ( ) ( ) = ( )k N

    kn N N % W

    n

    j k k N N

    X k X % x n W

    % W eπ

    ==−∞

    = =

    = =

    ∑e5ular inter,al sam"lin5 on unit circle:e5ular inter,al sam"lin5 on unit circle:

    ,oss after samp%in$?,oss after samp%in$?

    !(t "li 5 i ( 2 d i $ 2 i 2!(ter sam"lin5 in (re2uency domain can $e ac2uire se2uence

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    46/75

    03/04/16 46

    !(ter sam"lin5 in (re2uency domain can $e ac2uire se2uence!(ter sam"lin5 in (re2uency domain can $e ac2uire se2uencere"resentin5re"resentin5 x x ;; nn #y in,erse trans(ormin5 (rom C #y in,erse trans(ormin5 (rom C == ;; k k ))

    is "eriodical co"ies o(is "eriodical co"ies o( x x ;; nn that is sam"lin5 in (re2uency that is sam"lin5 in (re2uency

    domain causes "eriodical co"ies o( se2uence in time domain.domain causes "eriodical co"ies o( se2uence in time domain.:;> n x N

    I( $e $ant to reco,er the (inite len5th se2uenceI( $e $ant to reco,er the (inite len5th se2uence x x ;; nn $ith no $ith no

    loss a(ter sam"lin5 in (re2uency domain then it must #e satis(ied:loss a(ter sam"lin5 in (re2uency domain then it must #e satis(ied:

    /u""ose:/u""ose: FF is num#er o( "oints in time domain

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    47/75

    03/04/16 47

    -- Inter"olation (ormulaInter"olation (ormula

    ( ) N X k ( ), 1 x n n $ =

    ( ) N X k 1

    0

    ( ) ( ) $

    n

    n

    X % x n % −

    =

    = ∑

    ( )1

    0

    ( ) $

    j jn

    n

    X e x n eω ω −

    ==∑

    1

    0

    2( ) ( ) ,

    N j

    N k

    X e X k k N

    ω π

    ω

    =

    = Φ − ÷ ∑ ω

    ω

    ω ω

    −−

    =Φ 21

    )2/sin()2/sin(1

    )( N

    j

    e N

    N

    1

    0

    ( ) ( ) ( ), N

    N k k

    X % X k % −

    == Φ∑ 11

    11)( −−

    −−=Φ

    % W %

    N % k

    N

    N

    k

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    48/75

    03/04/16 48

    Ob;ecti.e DFT or 4DFT can be use# to compute t o se)uence(s circu%arcon.o%ution6 an# DFT6 4DFT ha.e their fast a%$orithm 'o if ecan bui%# the re%ationship bet een t o se)uences( circu%ar

    con.o%ution an# %inear con.o%ution6 e can impro.e computationspee# of %inear con.o%ution b/ fast Fourier Transform a%$orithm

    2 < "omputin$ se)uence(s %inear con.o%ution ith DFT

    ( ) ( )i $ & @ d i $ &h

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    49/75

    03/04/16 49

    Circular Convolution

    Linear Convolution

    ( ) ( )u!!ose is a #en$"& @ sequence and is a #en$"& sequence,"&eir #inear con o#u"ion is

    x n h n

    ( ) ( )1

    0

    ( ) ( ) ( ) $

    l m

    y n x n h n x m h n m−

    =

    = ∗ = −∑

    What relationship between and ?( )l y n ( ) y n

    [ ]Aero !addin$ ( ) and ( ) "o "&e same #en$"& , ma. , , "&en x n h n & & N $ ≥( ), 0 1 ( ),0 1

    ( ) ( )0, 1 0, 1

    x n n $ h n n N

    x n and h n $ n & N n &

    ≤ ≤ − ≤ ≤ − = = ≤ ≤ − ≤ ≤ −

    ( ) ( ) ( ) ( ) ( ) ( )( ) DFT x n X k DFT h n ' k Y k X k ' k = = =

    ( )0

    ( ) ( ) ( ) ( ) (( )) ( ) &

    N &m

    y n IDFT Y k x n h n x m h n m R n=

    ′ ′ ′ ′= = = −

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    50/75

    03/04/16 50

    " can %e !ro ed "&a" "&a" "&e re#a"ions&i! %e"'een ( ) and ( ) isl y n y n

    ( )( ) ( ) l &(

    y n y n (& R n∞

    =−∞

    = +∑'&ic& means !oin"s circu#ar con o#u"ion ( ) is !eriodic co!ies

    o+ ( ) %y e."rac"in$ "&e main !eriodl

    & y n

    y n

    nd ( ) s #en$"& is 1l y n N $ + −

    so '&en -1, "'o sequence s !oin"s circu#ar con o#u"ion

    ( ) is e.ac"#y "&eir #inear con o#u"ion ( ) l

    & N $ &

    y n y n

    ∴ ≥ +

    ( ) ( ) ( ) y n x n h n′ ′= ( ) ( )( )l y n x n h n= ∗=

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    51/75

    03/04/16 51

    ( ), 3h n N =

    ( ), 5 x n $ =

    ( )l y n

    5 & =

    6 & =

    7 & =

    8 & =

    rocess

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    52/75

    03/04/16 52

    -rocess( ), 0 1

    #e" ( )0, 1

    ( ), 0 1( ) 0, 1

    x n n $ x n

    $ n &

    h n n N

    h n N n &

    ≤ ≤ −= ≤ ≤ −

    ≤ ≤ −= ≤ ≤ −

    "onc%usion:We can compute %inear con.o%ution usin$ circu%ar con.o%ution if%en$th of DFTs satisf/ -1 & N $ ≥ +

    x #n$

    . #n$

    Gero "addin5

    Gero "addin5 ⊗

    C;'

    ;'

    C;' ;' x

    #n$ .

    #n$ x#n$ .#n$

    FT

    FT

    FT∗

    Pro#lems:

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    53/75

    03/04/16 53

    After FFT a%$orithm6 o.er%ap&a## metho# an# o.er&%ap sa.e

    metho# i%% be %earne#

    Pro#lems:4n practica% app%ication: / n!=5 n!>h n!6suppose 5 n!(s %en$th is 0 h n!( %en$th is

    sua%%/6 0@@ 6 4f ,= 0&16 then:For short se)uence: man/ 9eros pa##e# into h n!

    For %on$ se)uence: compute after a%% se)uence inputDifficu%ties ,ar$e memor/6 %on$ computation time6

    so rea%&time propert/ can not be satisfie#'o%ution: #ecomposition computation on %on$ se)uence

    Di.i#e# an# "on)uer Di.i#e# an# "on)uer

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    54/75

    03/04/16 54

    2 'pectrum ana%/sis usin$ DFT 2 'pectrum ana%/sis usin$ DFT

    1! Appro5imation process1! Appro5imation process

    ; : x t

    X j Ω

    'amp%e ; : x n x n* ⇒

    1

    0

    N nk

    N n

    X k x n W

    =

    = ∑

    1! -rocess of spectrum ana%/sis usin$ DFT 1! -rocess of spectrum ana%/sis usin$ DFT

    %&T

    2! 8rror ana%/sis2! 8rror ana%/sis3! 4mportant parameters3! 4mportant parameters

    /"ectrum analysis/"ectrum analysis %&T om"utation%&T om"utation%iscretization in time and%iscretization in time and

    (re2uency domain(re2uency domain

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    55/75

    03/04/16 55

    Basic theor/ of Fourier TransformB &inite duration si5nal H In(inite $idth (re2uency s"ectrum

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    56/75

    03/04/16 56

    -rocess of spectrum ana%/sis usin$ DFT -rocess of spectrum ana%/sis usin$ DFT

    22 8rrors of spectrum ana%/sis usin$ DFT8rrors of spectrum ana%/sis usin$ DFT

    3! Fence effect3! Fence effect

    ; : x t

    X j Ω

    'amp%in$ x n

    j X e

    ⇒ ⇒

    - j

    X k

    X e k N

    =

    ′ =

    x n x n + n=

    K j j j X e X e W e ′ ="on.o%ution

    1

    3

    2

    1!1! A%iasin$A%iasin$

    2! "utoff effect2! "utoff effect

    Win#o in$

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    57/75

    03/04/16 57

    1

    ; : x t

    X j Ω

    'amp%in$ ; : x n x n* ⇒

    1

    0

    N nk

    N n

    X k x n W

    =

    =

    %&T

    22 8rrors of spectrum ana%/sis usin$ DFT8rrors of spectrum ana%/sis usin$ DFT

    -rocess of spectrum ana%/sis usin$ DFT -rocess of spectrum ana%/sis usin$ DFT

    1! A%iasin$1! A%iasin$ I( condition is not met: there $ill #e s"ectrum distortion at (sJ-

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    58/75

    03/04/16 58

    22 "utoff effect of DFT

    22 8rrors of spectrum ana%/sis usin$ DFT8rrors of spectrum ana%/sis usin$ DFT

    ; : x t

    X j Ω

    x n

    j

    X e

    ⇒ ⇒

    - j

    X k

    X e k N

    =

    ′ =

    x n x n + n=

    K j j j

    X e X e W e

    ′ =

    "on.o%ution

    1 2

    Win#o in$

    -rocess of spectrum ana%/sis usin$ DFT -rocess of spectrum ana%/sis usin$ DFT

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    59/75

    03/04/16 59

    "utoff effect of DFT

    !m"litude o( s2uare $a,e (unctions

    s s"ectrum #e(ore and a(ter$indo$in5 #y s2uare $a,e (unction.cos; :4 n

    Aea'a5e%istur#ance

    'o%ution: increase 'amp%in$ points 6 or usin$ other 7in# of'o%ution: increase 'amp%in$ points 6 or usin$ other 7in# of in#o functionin#o function

    2 f $8 f %/ i i $ DFT

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    60/75

    03/04/16 60

    3

    ; : x t

    X j Ω

    x n

    j X e

    - j

    X k

    X e k

    N

    =

    =

    %&T

    22 8rrors of spectrum ana%/sis usin$ DFT8rrors of spectrum ana%/sis usin$ DFT

    -rocess of spectrum ana%/sis usin$ DFT -rocess of spectrum ana%/sis usin$ DFT

    3! Fence effect3! Fence effect = %&TH= e2ual inter,al sam"lin5 o( &T.= %&TH= e2ual inter,al sam"lin5 o( &T. /"ectrum (unction ,alue is omitted #et$een sam"lin5 "oints = inter,als./"ectrum (unction ,alue is omitted #et$een sam"lin5 "oints = inter,als.

    /olution: Gero "addin5 or chan5e se2uence s len5th increase =./olution: Gero "addin5 or chan5e se2uence s len5th increase =.

    3 DFT important parameters

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    61/75

    03/04/16 61

    p*

    L−L

    ( ) BMC e

    M

    1 1 s

    "

    f F N NT T = = =

    3 DFT important parametersTime-domain +s, T, , T!; +requency domainTime-domain +s, T, , T!; +requency domain FF

    n

    2L

    :a$e 46 ana#o$ +requency +s/2

    di$i"a# +requency L

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    62/75

    03/04/16 62

    3 4mportant parameter of DFT

    ome im!or"an" conc#usionome im!or"an" conc#usion1 1 s

    "

    f F

    N NT T = = =

    1 1(1)

    "

    F T NT

    = =

    ;- I( N unc. n/ed & incensement can only #e ac2uired #y

    lo$erin5 f s 0/o s"ectrum analysis sco"e $ill #e small.

    ;3 f s unchan5ed & incensement can only #e ac2uired #y

    increase N *p1N* that is increase sam"lin5 len5th.

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    63/75

    03/04/16 63

    3 4mportant parameter of DFT

    ome im!or"an" conc#usionome im!or"an" conc#usion1 1 s

    "

    f F

    N NT T = = =

    1 1(1)

    "

    F T NT

    = =

    ;- I( N unc. n/ed & incensement can only #e ac2uired #y

    lo$erin5 f s 0/o s"ectrum analysis sco"e $ill #e small.

    ;3 f s unchan5ed & incensement can only #e ac2uired #y

    increase N *p1N* that is increase sam"lin5 len5th.

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    64/75

    03/04/16 64

    %etermine sam"lin5 rate #y si5nal s hi5hest%etermine sam"lin5 rate #y si5nal s hi5hest(re2uency .(re2uency .

    c f s f

    -roce#ure of spectrum ana%/sis usin$ DFT

    !dBust "arameters #y %&T results.!dBust "arameters #y %&T results.

    %etermine e9tractin5 len5th = #y (re2uency%etermine e9tractin5 len5th = #y (re2uency

    resolution.resolution.

    DFT ro$rammin$ 85amp%e

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    65/75

    03/04/16 65

    01

    0 1 1

    1

    ( ( ( N N N

    ( ) N-) N N N

    ( N-) #N-)$#N-)$ N N N

    W W W X W W W X

    x x x N

    W W W X N

    ÷÷ ÷÷ ÷=÷ ÷÷ ÷÷ ÷÷

    K K M O M

    M K

    1

    0

    ( ) ( ) 0 1 N

    kn

    N n

    X k x n W k N −

    == ≤ ≤ −

    ∑ k N →0 1

    n N →0 1

    DFT -ro$rammin$ 85amp%e

    DFT 0atri5

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    66/75

    03/04/16 66

    function &'()*dft+xn,

    N*lengt +xn,# . lengt of sequencen*/:N-1# . ti e sa ple(*/:N-1#

    0N*exp+-" 2 pi N,#

    n(*n3 (#0Nn(*0N%4n(# .calculate t e DFT 5atrix

    '(*xn 0Nn(# .co pute DFT

    0ore effecti.e metho#?

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    67/75

    03/04/16 67

    Fs * 7//# . Get t e analy8ed signal

    T * 1 Fs#9 * 1///#t * +/:9-1, T#x * /% sin+2 pi ;/ t,#

    plot+1/// t+1:2//,$x+1:2//,,#

    < * dft+x, 9# . Discrete Fourier Transfor

    f * Fs 2 linspace+/$1$9 2=1,#ste +f$2 abs+

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    68/75

    03/04/16 68

    l b E l #2l b E l #2

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    69/75

    03/04/16 69

    atlab Example #2atlab Example #2

    f f 11 2C?2C? f f 22 2 05C?2 05C?

    f f ss 10C?10C?

    x)n*+sin), x)n*+sin), π π f f -- n.f n.f s s */ sin), */ sin), π π f f ,, n.f n.f s s * * !"!" #$%&'()*+,#$%&'()*+,

    -. /0-. /0

    2 1 0 05 f f f '% ∆ = − =

    0 05 F '% ≤

    min 200 s f N N

    F = ⇒ =

    (1)(1) 128 128 11 .(n).(n) 2323 D(E) D(E)

    (2)(2) 256 256 11 .(n).(n) 2323 D(E) D(E)

    (3)(3) 512 512 11 .(n).(n) 2323 D(E) D(E)

    1 1 s "

    f F

    N NT T = = =

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    70/75

    03/04/16 70

    45-

    9;n 0NDnN 6

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    71/75

    03/04/16 71

    9;n 0NDnN- 6

    0

    100

    1 0

    )*-

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    72/75

    03/04/16 72

    )*

    -

    9;n 0NDnN10 4

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    73/75

    03/04/16 73

    9;n 0NDnN10-4

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    74/75

    03/04/16 74

    Three Questions aboutThree Questions about DiscreteDiscrete Fourier TransformFourier Transform

    Q1:Q1:

    WW

    HAT is DFT?HAT is DFT?

    Q2:Q2: WWHY is DFT?HY is DFT?

    Q3: HOQ3: HO WW to DFT?to DFT?

    W !T is relationshi" #et$een %&T and other 'inds o( &ourierW !T is relationshi" #et$een %&T and other 'inds o( &ourier

    Trans(orm)Trans(orm)

    W * $e need %&T)W * $e need %&T)

    +W to realize %&T) o$ to use %&T to sol,e the "ractical+W to realize %&T) o$ to use %&T to sol,e the "ractical

    "ro#lems)"ro#lems)

  • 8/20/2019 CHAPTER 2 Discrete Fourier Transform

    75/75

    HO08WO CHO08WO C

    6771 +1 + !! 11 "#"#

    1