chapter 2 sequencess and series

12
FULLY WORKED SOLUTIONS 2 CHAPTER Focus STPM 2 ACE AHEAD Mathematics (T) First Term Second Edition © Oxford Fajar Sdn. Bhd. 2015 1 SEQUENCES AND SERIES 1 u 13 = 3, S 13 = 234 a + 12d = 3 13 2 (a + u 13 ) = 234 a = 3 – 12d ... 1 13 2 (a + 3) = 234 ... 2 From 2 , a = 33 When a = 33, 33 = 3 – 12d d = 5 2 S 25 = 25 2 3 (2)(33) + (24) 1 5 2 24 = 25 2 (66 – 60) = 75 2 (a) a = 1, r = 5 4 S n = a(r n – 1) r – 1 = 1 5 4 2 n – 1 1 5 4 – 1 2 = 4 31 5 4 2 n 1 4 (b) S n > 20 4 31 5 4 2 n – 1 4 > 20 1 5 4 2 n – 1 > 5 1 5 4 2 n > 6 n lg 5 4 > lg 6 n > 8.03 The least number of terms is 9. 3 3 1 2 – 2 2 4 + 33 2 – 4 2 4 + + 3 (2n – 1) 2 – (2n) 2 4 = –3 – 7 – 11… a = –3, d = – 4 S n = n 2 3 –6 + (n – 1)(– 4) 4 = n 2 (–6 – 4n + 4) = n 2 (– 4n – 2) = n(2n + 1) [Shown] (a) 1 2 – 2 2 + 3 2 – 4 2 + + (2n – 1) 2 – (2n) 2 + (2n + 1) 2 = n(2n + 1) + (2n + 1) 2 = (2n + 1)(–n + 2n + 1) = (2n + 1)(n + 1) (b) 21 2 – 22 2 + 23 2 – 24 2 + + 39 2 – 40 2 = (1 2 – 2 2 + 3 2 – 4 2 + + 39 2 – 40 2 ) – (1 2 – 2 2 + 3 2 – 4 2 + + 19 2 – 20 2 ) = S 20 S 10 = –20(2(20) + 1) – [–10(2(10) + 1)] = –820 – (–210) = –610 4 d = 2 u n = a + (n – 1)(2) = a + 2n – 2 When n = 20, u 20 = a + 2(20) – 2 = a + 38 S 20 = 1120 20 2 (a + u 20 ) = 1120 10(a + a + 38) = 1120 2a = 74 a = 37 u 20 = a + 38 = 37 + 38 = 75 5 (a) a = 3, d = 4, S n = 820 S n = n 2 [2a + (n – 1)d ] 820 = n 2 (6 + 4n – 4) 1640 = n(2 + 4n) n(1 + 2n) = 820 n + 2n 2 – 820 = 0 (2n + 41)(n – 20) = 0 n = 20 since n = 41 2 is not a solution. T 20 = 3 + 19(4) = 79

Upload: smk-tengku-intan-zaharah

Post on 18-Aug-2015

31 views

Category:

Education


4 download

TRANSCRIPT

FULLY WORKED SOLUTIONS

2CHAPTER

Focus STPM 2

ACE AHEAD Mathematics (T) First Term Second Edition© Oxford Fajar Sdn. Bhd. 2015

1

SEQUENCES AND SERIES

1 u13

= 3, S13

= 234

a + 12d = 3 132

(a + u13

) = 234

a = 3 – 12d ... 1 132

(a + 3) = 234 ... 2

From 2 , a = 33

When a = 33, 33 = 3 – 12d ⇒ d = – 52

S25

= 252

3(2)(33) + (24)1– 5224

= 252

(66 – 60) = 75

2 (a) a = 1, r = 54

Sn =

a(rn – 1)r – 1

= 1542

n

– 1

154 – 12 = 431542

n

– 14 (b) S

n > 20

431542n

– 14 > 20

1542n

– 1 > 5

1542n

> 6

n lg 54

> lg 6

n > 8.03 The least number of terms is 9.

3 312 – 224 + 332 – 424 + … + 3(2n – 1)2 – (2n)24 = –3 – 7 – 11… a = –3, d = – 4

Sn = n

2 3–6 + (n – 1)(– 4)4

= n2

(–6 – 4n + 4) = n2

(– 4n – 2)

= –n(2n + 1) [Shown]

(a) 12 – 22 + 32 – 42 + … + (2n – 1)2 – (2n)2

+ (2n + 1)2

= –n(2n + 1) + (2n + 1)2

= (2n + 1)(–n + 2n + 1) = (2n + 1)(n + 1) (b) 212 – 222 + 232 – 242 + … + 392 – 402

= (12 – 22 + 32 – 42 + … + 392 – 402)– (12 – 22 + 32 – 42 + … + 192 – 202)

= S20

– S10

= –20(2(20) + 1) – [–10(2(10) + 1)]= –820 – (–210) = –610

4 d = 2 u

n = a + (n – 1)(2) = a + 2n – 2

When n = 20, u20

= a + 2(20) – 2 = a + 38S

20 = 1120

202

(a + u20

) = 1120

10(a + a + 38) = 11202a = 74a = 37

u20

= a + 38 = 37 + 38 = 75

5 (a) a = 3, d = 4, Sn = 820

Sn = n

2[2a + (n – 1)d ]

820 = n2

(6 + 4n – 4)

1640 = n(2 + 4n)n(1 + 2n) = 820

n + 2n2 – 820 = 0(2n + 41)(n – 20) = 0

n = 20 since n = – 412

is not a solution.

T20

= 3 + 19(4) = 79

Chapter 2.indd 1 6/24/2015 5:36:59 PM

2 ACE AHEAD Mathematics (T) First Term Second Edition© Oxford Fajar Sdn. Bhd. 2015

(b) Since they form an A.P., (p2 + q2)2 – (p2 – 2pq – q2)2

= (p2 + 2pq – q2)2 – (p2 + q2)2

(p2 + q2 – p2 – 2pq – q2)(p2 + q2 – p2

+ 2pq + q2) = (p2 + 2pq + q2 + p2 + q2)(p2 + 2pq

– q2 – p2 – q2) (2p2 – 2pq)(2q2 + 2pq) = (2p2 + 2pq)

(2pq – 2q2) 4pq(p – q)(q + p) = 4pq(p + q)(p – q)

LHS = RHS [Shown]

6 (a) Sn = pn + qn2, S

8 = 20, S

13 = 39

(i) S8 = 8p + 64q

8p = 20 – 64q

p = 52

– 8q … 1

S13

= 3913p + 169q = 39 … 2

Substitute 1 into 2 ,

13152 – 8q2 + 169q = 39

652

– 104q + 169q = 39

65q = 132

q = 110

p = 52

– 81 1102 = 17

10(ii) u

n = S

n – S

n – 1

= pn + qn2 – [p(n – 1) + q(n – 1)2]= p(n – n + 1) + q[n2 – (n – 1)2]= p + q[(n + n – 1)(n – n + 1)]= p + q(2n – 1)(1)

= 1710

+ 110

(2n – 1)

= 1710

+ n5

– 110

= 8 + n5

(iii) To show that it is an A.P.,

un = 1

5 (8 + n)

un – 1

= 15

[8 + (n – 1)]

= 15

(7 + n)

un – u

n – 1 = 1

5

⇒ Series is an A.P. with d = 15 = 0.2.

7 If J, K, M is a G.P., then

KJ

= MK

K 2 = MJ … 1

(ar k – 1)2 = (ar m – 1) (ar j – 1)

r 2k – 2 = rm – 1 + j – 1

2k – 2 = m + j – 2

k + k = m + j

k – m = j – k … 2

and

2k = m + j … 3

(k – m)lg J + (m – j)lg K + ( j – k)lg M

= lg J k – m + lg Km – j + lg M j – k

= lg J j – k + lg Km – j + lg M j – k [from 2 ]

= ( j – k)(lg J + lg M) + lg K m – j

= ( j – k)lg JM + lg K m – j

= ( j – k)lg K2 + (m – j)lg K

= 2( j – k)lg K + (m – j)lg K

= (2j – 2k + m – j)lg K

= ( j + m – 2k)lg K

= (2k – 2k)lg K [from 3 ]

= 0 [Proven]

8 (a) A.P., a = 200, d = 400

T a n d n

n

n = + −( ) = + −

= +

1 2000 1 400

400 1600

( )( )

= +400( 4)n

(b) Sn

a ln

n

nn

n = + = + +[ ]

= +

2 22000 400 1600

2400 3600

( )

( )

= +200 ( 9)n n

(c) Sn 200 000

200n(n + 9) 200 000

n2 + 9n – 1000 0

n –36.44135, n 27.44135

∴ n = 28

Chapter 2.indd 2 6/24/2015 5:37:02 PM

ACE AHEAD Mathematics (T) First Term Second Edition© Oxford Fajar Sdn. Bhd. 2015

3

9 S5 = 44,

a(1 – r5)1 – r

= 44 … 1

S10

– S5 = – 11

8a(1 – r10)

1 – r – a(1 – r5)

1 – r = – 11

8a(1 + r5)(1 – r5)

1 – r – a(1 – r5)

1 – r = – 11

8 … 2

a(1 – r5)1 – r

(1 + r5 – 1) = – 118

Substitute 1 into 2 ,44(r5) = – 11

8

r5 = – 132

r = – 12

[Shown]

a31 – 1– 122

541 – 1– 1

22 = 44

a11 + 1322 = 66

a = 64

Sn = a

1 – r

= 64

1 – 1– 122

= 4223

10 (a) r = 3 – 13 + 1

× 3 – 13 – 1

= 3 – 2 3 + 1

3 – 1 = 2 – 3

u3 = u

2r

= ( 3 – 1)(2 – 3)= 2 3 – 3 – 2 + 3= 3 3 – 5

u4 = u

3r

= (3 3 – 5)(2 – 3)= 6 3 – 3(3) – 10 + 5 3= 11 3 – 19

(b) r = 2 – 3 [< 1]

S∞ = a1 – r

= 3 + 1

1 – (2 – 3 )

= 3 + 13 – 1

× 3 + 13 + 1

= 3 + 2 3 + 12

= 2 + 3

11 (a) S

6

S3

= 78

, u2 = – 4

8S6 = 7S

3 … 1

ar = – 4

a = – 4r … 2

83a(1 – r6)1 – r 4 = 73a(1 – r3)

1 – r 48(1 – r6) = 7(1 – r3)

8 – 8r6 = 7 – 7r3

8r6 – 7r3 – 1 = 0(r3 – 1)(8r3 + 1) = 0

r3 = 1 or – 18

r = – 12

since r = 1 is

not a solution.a = – 4

1– 122

= 8

(b) r = 85

× 12

= 45

, a = 2

Sn > 9.9

a(1 – rn)1 – r

> 9.9

231 – 1452

n41152

> 9.9

1 – 1452n

> 0.99

1452n

< 0.01

n lg 45

< lg (0.01)

n > 20.64 The least number of terms is 21.

12 u3 = S

2

ar2 = a(1 – r2)

1 – rar2(1 – r) = a(1 + r)(1 – r)

ar2 = a(1 + r)r2 – r – 1 = 0

r = –(–1) ± (–1)2 – 4(1)(–1)

2

= 1 ± 52

a = 2

When r = 1 + 52

[|r| > 1], S∞ doesn’t exist

When r = 1 – 52

[|r| < 1],

Chapter 2.indd 3 6/24/2015 5:37:04 PM

4 ACE AHEAD Mathematics (T) First Term Second Edition© Oxford Fajar Sdn. Bhd. 2015

S∞ = a1 – r

= 2

1 – 1 – 5

2

= 2

12 – 1 + 52 2

= 41 + 5

× 1 – 51 – 5

= 4 – 4 5

1 – 5 = 5 – 1

13 a = 3, r = 0.4 (a) u

n < 0.02

ar n – 1 < 0.023(0.4)n – 1 < 0.02

(0.4)n – 1 < 1

150

(n – 1)lg 0.4 < lg 1

150

n – 1 > 5.47n > 6.47

The least number of terms is 7. (b) S∞ – S

n < 0.01

a1 – r

– a(1 – rn)

1 – r < 0.01

a

1 – r (1 – 1 + r n) < 0.01

3

0.6 (r n) < 0.01

0.4n < 2 × 10–3

n lg 0.4 < lg (2 × 10–3)n > 6.78

The least number of terms is 7.

14 Sn = a + ar + ar 2 + … + ar n – 2 + ar n – 1 … 1

rSn = ar + ar 2 + … + ar n – 2 +

ar n – 1 + ar n … 2

1 – 2 ,S

n – rS

n = a – ar n

Sn(1 – r) = a(1 – r n)

Sn =

a(1 – r n)1 – r

[Shown]

For S∞ to exist, |r| < 1,

lim Sn = S∞ =

a(1 – r ∞)1 – r

= a

1 – rn → ∞

S∞ – Sn

S∞

=

a1 – r

– a(1 – r n)

1 – ra

1 – r

=

a1 – r

[1 – (1 – r n)]

a1 – r

= rn [Shown]

(a) u4 = 18, u

7 = 16

3

ar3 = 18 … 1 ar6 = 163

… 2

2

1, r3 = 116

3 2 × 118

r3 = 1 8272

r = 1232 a1232

3

= 18

a = 2434

S∞ = 1243

4 21 – 2

3

= 7294

(b) S∞ – S

n

S∞

< 0.001

rn < 0.001

1232n

< 0.001

n lg 23

< lg 0.001

n > 17.04 The least value of n is 18.

15 2r – 1

r(r – 1) –

2r + 1r(r + 1)

= (r + 1)(2r – 1) – (2r + 1)(r – 1)r(r – 1)(r + 1)

= 2r2 – r + 2r – 1 – 2r2 + 2r – r + 1r(r – 1)(r + 1)

= 2rr(r – 1)(r + 1)

= 2(r – 1)(r + 1)

[Verified]

Σr = 2

n 2(r – 1)(r + 1)

= Σr = 2

n 3 2r – 1

r(r – 1) –

2r + 1r(r + 1)4

Chapter 2.indd 4 6/24/2015 5:37:06 PM

ACE AHEAD Mathematics (T) First Term Second Edition© Oxford Fajar Sdn. Bhd. 2015

5

= Σr = 2

n [ f (r) – f (r + 1)] 3f (r) =

2r – 1r(r – 1)4

= f (2) – f (n + 1)

= 32

– 2n + 1n(n + 1)

[Proven]

12

Σr = 2

∞ 2(r – 1)(r + 1)

= 12

lim 332

– 2n + 1n(n + 1)4n → ∞

= 12

lim 332

2n

+ 1n2

1 + 1n4n → ∞

= 12

132 – 02 = 34

16 1

r(r + 1) –

1(r + 1)(r + 2)

= r + 2 – r

r(r + 1)(r + 2)

= 2

r(r + 1)(r + 2)[Shown]

Σr = 1

n 1r(r + 1)(r + 2)

= 12

Σr = 1

n 2r(r + 1)(r + 2)

= 12

Σr = 1

n 3 1

r(r + 1) – 1

(r + 1)(r + 2)4 3f (r) =

1r(r + 1)4

= 12

Σr = 1

n [ f (r) – f (r + 1)]

= 12

[ f (1) – f (n + 1)]

= 12

312

– 1(n + 1)(n + 2)4

= 12

3n2 + 3n + 2 – 22(n + 1)(n + 2)4

= n2 + 3n4(n + 1)(n + 2)

17 (a) 1

(2r – 1)(2r + 1) ≡

A

2r – 1 +

B

2r – 11 ≡ A(2r + 1) + B(2r – 1)

Let r = – 12

, Let r = – 12

,

l = B(–2) 1 = A(2)

B = – 12

A = 12

1

(2r – 1)(2r + 1) =

12(2r – 1)

– 1

2(2r + 1)

= 121

12r – 1

– 1

2r + 12 (b) Σ

r = n

2n

1(2r – 1)(2r + 1)

= Σr = n

2n 3 1

2(2r – 1) –

12(2r + 1)4

= 12

Σr = n

2n [ f (r) – f (r + 1)] 3f (r) =

12r – 14,

= 12

[ f (n) – f (2n + 1)]

= 12

3 12n – 1

– 1

4n + 14 = 1

2 1 4n + 1 – 2n + 1

(2n – 1)(4n + 1)2 = n + 1

(2n – 1)(4n + 1) = an + b

(2n – 1)(4n + 1) [Shown] a = 1, b = 1

(c) lim 3 n + 1(2n – 1)(4n + 1)4n → ∞

= lim 31n

+ 1n2

8 – 2n

– 1n24 = 0

n → ∞

18 Let 1(2r + 1)(2r + 3)

≡ A2r + 1

+ B2r + 3

l ≡ A(2r + 3) + B(2r + 1)

Let r = – 32

Let r = – 12

1 = B(–2) 1 = A(2)

B = – 12

A = 12

1(2r + 1)(2r + 3)

= 12(2r + 1)

– 12(2r + 3)

Σr = 1

n 1(2r + 1)(2r + 3)

= 12

Σr = 1

n 3 1

2r + 1 – 1

2r + 34 = 1

2 Σr = 1

n [ f (r) – f (r + 1)] 3f (r) =

12r + 14

= 12

[ f (1) – f (n + 1)]

= 12

313 – 12n + 34

= 16

– 12(2n + 3)

Chapter 2.indd 5 6/24/2015 5:37:07 PM

6 ACE AHEAD Mathematics (T) First Term Second Edition© Oxford Fajar Sdn. Bhd. 2015

To test for the convergence,

lim 316 – 12(2n + 3)4 = 1

6n → ∞

The series converges to 16

.

S` = 1

6

19 Σn = 25

N 1 1

2n – 1 –

12n + 12

= Σn = 25

N[ f (n) – f (n + 1)] 3f (n) =

12n – 14

= f (25) – f (N + 1)

= 1

50 – 1 –

12N + 1

= 17

– 1

2N + 1

Σn = 25

∞ u

n = lim 117 – 1

2n + 12 = 17n → ∞

20 1r!

– 1(r + 1)!

= (r + 1)! – r!r!(r + 1)!

= (r + 1)r! – r!r!(r + 1)!

= r(r + 1)!

[Shown]

Σr = 1

n r(r + 1)!

= Σr = 1

n 31

r! – 1

(r + 1)!4= Σ

r = 1

n [ f (r) – f (r + 1)],

3f (r) = 1r!4

= f (1) – f (n + 1)

= 1 – 1(n + 1)!

21 r + 1r + 2

– rr + 1

= (r + 1)2 – r(r + 2)

(r + 1)(r + 2)

= r2 + 2r + 1 – r2 – 2r

(r + 1)(r + 2)

= 1(r + 1)(r + 2)

[Shown]

Σr = 1

n 1(r + 1)(r + 2)

= Σr = 1

n 3r + 1

r + 2 – r

r + 14= Σ

r = 1

n [ f (r) – f (r – 1)],

3f (r) = r + 1r + 24

= f (n) – f (0)

= n + 1n + 2

– 12

= 2(n + 1) – (n + 2)2(n + 2)

= 2n + 2 – n – 22(n + 2)

= n2(n + 2)

22 f (r) – f (r – 1)

= 1

(2r + 1)(2r + 3) –

1(2r – 1)(2r + 1)

= 2r – 1 – 2r – 3(2r – 1)(2r + 1)(2r + 3)

= – 4(2r – 1)(2r + 1)(2r + 3)

[Shown]

Σr = 1

n 1(2r – 1)(2r + 1)(2r + 3)

= – 14

Σr = 1

n – 4(2r – 1)(2r + 1)(2r + 3)

= – 14

Σr = 1

n [ f (r) – f (r – 1)]

3f (r) = 1

(2r + 1)(2r + 3)4 = – 1

4[ f (n) – f (0)]

= – 143

1(2n + 1)(2n + 3)

– 134

= 112

– 14(2n + 1)(2n + 3)

= 4n2 + 6n + 2n + 3 – 312(2n + 1)(2n + 3)

= 4n2 + 8n12(2n + 1)(2n + 3)

= n2 + 2n3(2n + 1)(2n + 3)

23 Let 1(4n – 1)(4n + 3)

≡ A4n – 1

+ B4n + 3

l ≡ A(4n + 3) + B(4n – 1)

Let n = – 34

Let n = 14

1 = B(– 4) 1 = A(4)

B = – 14

A = 14

1(4n – 1)(4n + 3)

= 141

14n – 1

– 14n + 32

Chapter 2.indd 6 6/24/2015 5:37:09 PM

ACE AHEAD Mathematics (T) First Term Second Edition© Oxford Fajar Sdn. Bhd. 2015

7

Let f (r) = 14r + 3

14

Σr = 1

n 1 1

4r – 1 – 1

4r + 32 = 1

4 Σr = 1

n [ f (r – 1) – f (r)]

= 14

[ f (0) – f (n)]

= 14

313 – 14n + 34

= 14

34n + 3 – 33(4n + 3) 4 = n

3(4n + 3)

24 f (x) = x + x + 1

1f (x)

= 1

x + x + 1 × x – x + 1

x – x + 1

= x – x + 1x – (x + 1)

= x + 1 – x

Σx = 1

24 1f (x)

= – Σx = 1

24 1 x – x + 12

= – ( 1 – 2 + 2 – 3 + … + 24 – 25)= – (1 – 5) = 4

25 Using long division,1

x2 + 6x + 8 2x2 + 6x + 0x2 + 6x + 8

–8

x(x + 6)(x + 2)(x + 4)

≡ 1 – 8(x + 2)(x + 4)

Let 8(x + 2)(x + 4)

≡ A(x + 2)

+ B(x + 4)

,

8 ≡ A(x + 4) + B(x + 2) Let x = – 4, Let x = –2,

8 = B(–2) 8 = A(2)B = – 4 A = 4

x(x + 6)(x + 2)(x + 4)

= 1 – 4x + 2

+ 4x + 4

Σx = 1

n 31 – 4

x + 2 + 4

x + 44 = Σ

x = 1

n 1 – 4 Σ

x = 1

n 3 1

x + 2 – 1

x + 44 = n – 4313 – 1

5 + 1

4 – 1

6 + 1

5 – 1

7 + …

+ 1n + 1

– 1n + 3

+ 1n + 2

– 1n + 44

= n – 4313 + 14

– 1n + 3

– 1n + 44

= n – 43 712

– 2n + 7(n + 3)(n + 4)4

= n – 437(n2 + 7n + 12) – 12(2n + 7)12(n + 3)(n + 4) 4

= n – 7n2 + 49n + 84 – 24n – 843(n + 3)(n + 4)

= n – 7n2 + 25n3(n + 3)(n + 4)

= 3n(n + 3)(n + 4) – n(7n + 25)3(n + 3)(n + 4)

= n[3n2 + 7n + 12) – 7n – 25]3(n + 3)(n + 4)

= n[3n2 + 21n + 36 – 7n – 25]3(n + 3)(n + 4)

= n(3n2 + 14n + 11)3(n + 3)(n + 4)

= n(n + 1)(3n + 11)3(n + 3)(n + 4)

[Shown]

26 ( ) ( )( ) ( )( )

( ) ( ) ( )

2 3 2 4 2 3 6 2 3

4 2 3 3

16 96 216

4 4 3 2 2

3 4

+ = + + +

+

= + +

x x x

x x

x xx x

x

x x x

2 3

4

4 4 3 2 2

216

81

2 3 2 4 2 3 6 2 3

4 2 3

+ +

+ -[ ] = + - + -

+ -

( ) ( )( ) ( ) ( )

( )( xx x

x x x

x

x x x

) ( )

( ) ( )

3 4

2 3

4

4 4

3

16 96 216 216

81

2 3 2 3 192 43

+ -

= - + - +

+ - + = + 22

2

2 3 2 2 3 2

192 2 432 2

1056 2

3

4 4

3

x

xLet =

+ - +

= +

=

,

( ) ( )

( )

27 (a)

xx

x xx

x x

xx

xx x

x x

+ = + + +

+ +

= +

15

110

1

101

51 1

5

55 4 3

2

23 4 5

5 33

3 5

33 2

10 101

51 1

13

13

1

1

+ + +

+

− = + − + − +

xx

x x

xx

x xx

xx

x

3

33

5 35 3

3

3 31 1

1 15 10

101

51

= − + −

+ − = + + +

+

x xx x

xx

xx

x x x

x x

+

× − +

13

31 1

53

3

xx x

x x

Chapter 2.indd 7 6/24/2015 5:37:11 PM

8 ACE AHEAD Mathematics (T) First Term Second Edition© Oxford Fajar Sdn. Bhd. 2015

xx

x xx

x x

xx

xx x

x x

+ = + + +

+ +

= +

15

110

1

101

51 1

5

55 4 3

2

23 4 5

5 33

3 5

33 2

10 101

51 1

13

13

1

1

+ + +

+

− = + − + − +

xx

x x

xx

x xx

xx

x

3

33

5 35 3

3

3 31 1

1 15 10

101

51

= − + −

+ − = + + +

+

x xx x

xx

xx

x x x

x x

+

× − +

13

31 1

53

3

xx x

x x

Terms containing x4

= + −( ) + ( )= − += −

xx

x x x x

x x x

x

5 3 3

4 4 4

4

35 3 10

3 15 10

2

Coefficient of x4 = –2

(b) Tn

ra b

rx x

rx x

r

rn r r

r r

r r r

+−

− −

− −

=

= ( ) ( )

= ( )

=

1

2 6 1

12 2

62

62

62

(( ) −r rx12 3

The term independent of x is the term where 12 – 3r = 0

r = 4

28 (a) 11 – 32

x25

(2 + 3x)6

= 31 + 5C11– 3

2x2 + 5C

21– 32

x22

+ …4 [26 + 6C

1(2)5(3x) + 6C

2(2)4(3x)2 + … ]

= 11 – 152

x + 452

x22(64 + 576x + 2160x2)

= 64 + 576x + 2160x2 – 480x – 4320x2

+ 1440x2

= –720x2 + 96x + 64 [Shown]

(b)

29 (a) 1 + 10(3x + 2x2) + 10(9)2

(3x + 2x2)2

+ 10(9)(8)3!

(3x + 2x2)3

= 1 + 30x + 20x2 + 45(9x2 + 12x3)

+ 120(27x3)

= 1 + 30x + 425x2 + 3780x3

Coefficient of x3 = 3780

(b) (1 + x)–1(4 + x2)–

12

= 31 + –11!

(x) + –1(–2)2!

(x)2 +

–1(–2)(–3)3!

(x)3 + …414–

122 31 + x2

4 4–

12

= 12

(1 – x + x2 – x3 + …)1 + – 1

21! 1

x2

4 2

+ – 1

21– 322

2! 1x2

4 22

+ …

= 12

(1 – x + x2 – x3 + …) 11 – x2

8 + …2

13

21

3

2

1 53

210

3

2

10

25

5

22

3

− − = − +

= − + + + −

x x x x

x x x x

x

3

25

3

2

115

25 10

9

43

1027

8

27

4

34

4

2 2 2

3

+ + +

= − − + + + −

+

x x x

x x x x x

x xx x x x

x x x x x

x

+ + + +

= − − + + + −

581

166

115

25

45

230 10

135

4

13

4 4

2 2 3 4

3

55

2

405

164 4x x+ +

=

115

2

35

5

15

4

515

162 3 4- + - -x x x x

Chapter 2.indd 8 6/24/2015 5:37:13 PM

ACE AHEAD Mathematics (T) First Term Second Edition© Oxford Fajar Sdn. Bhd. 2015

9

= 12

11 – x2

8 – x + x3

8 + x2 – x32

= 12

11 – x + 78

x2 – 78

x3 + …2where |x| < 1

30 Let f (x) ≡ A1 – x

+ Bx + C1 + x2

1 + 2x + 3x2 ≡ A(1 + x2) + (Bx + C)(1 – x) Let x = 1, 1 + 2 + 3 = A(2)

A = 3 Let x = 0,

1 = 3(1) + (0 + C)(1)C = –2

Let x = –1, 1 – 2 + 3 = 3(2) + [–B + (–2)](2)

2 = 6 – 4 – 2BB = 0

Hence, f (x) = 31 – x

– 21 + x2

f (x) = 3(1 – x)–1 – 2(1 + x2)–1

= 331 + –11!

(–x) + –1(–2)2!

(–x)2

+ –1(–2)(–3)3!

(–x)3 + …4 – 231 + –1

1! (x)2 + …4

= 3(1 + x + x2 + x3 + …) – 2(1 – x2 + …)= 3 + 3x + 3x2 + 3x3 – 2 + 2x2

= 1 + 3x + 5x2 + 3x3 where |x| < 1[Shown]

31 (a) ( 5 + 2)6 – ( 5 – 2)6

8 5

=

[( 5 + 2)3 + ( 5 – 2)3][( 5 + 2)3

– ( 5 – 2)3]8 5

=

( 5 + 2 + 5 – 2)[( 5 + 2)2 – ( 5 + 2)( 5 – 2) + ( 5 – 2)2]( 5 + 2 – 5 + 2)[( 5 + 2)2

+ ( 5 + 2)( 5 – 2) + ( 5 – 2)2]8 5

=

[2 5(5 + 4 5 + 4 – 1 + 5 – 4 5 + 4)] [(4)(5 + 4 5 + 4 + 1 + 5 – 4 5 + 4)]

8 5 = (17)(19)= 323

(b) (1 – 3x)13

= 31 + 13

1! (–3x) +

131– 2

322!

(–3x)2

+

131– 2

321– 532

3!(–3x)3 + …4

= 1 – x – x2 – 53

x3 – … where |x| < 13

When x = 18

,

(1 – 3x)13 = 1582

13 =

3 52

≈ 1 – 18

– 11822

– 531

182

3

– …

3 5 ≈ 13151536

(2)

≈ 1315768

= 1.17 [2 decimal places]

32 ( ) ( )( )( )

!( )

(

1 1 22 2 1

2

1 2 2 1

1

2 2

2

- = + - +-

- +

= + + -( ) +

+

y

y

n n yn n

y

ny n n y

)) ( )( )( )

!( )- = + -( ) +

- - -+

= - + +( ) +

2 2

2

1 22 2 1

2

1 2 2 1

n n yn n

y

ny n n y

……

1

11 1

1 2 2 1

1 2 2 1

22 2

2

−+

= −( ) +( )= − + −( ) +( )

− + +(

−y

yy y

ny n n y

ny n n

nn n

)) +( )= − + + − +

+ −( )= − +

y

ny n n y ny

n y n n y

ny n y

2

2

2 2 2

2 2

1 2 2 1 2

4 2 1

1 4 8

( )

11

11 4 8

1

50

1

16

22 2−

+= − + +

= =

y

yny n y

y n

n …

Let ,

11

50

11

50

1 41

16

1

508

1

10

1

50

49

51

79 601

80 00

1

82 2

1

8

-

+» - +

»

00

1 1

Chapter 2.indd 9 6/24/2015 5:37:15 PM

10 ACE AHEAD Mathematics (T) First Term Second Edition© Oxford Fajar Sdn. Bhd. 2015

33 (1 – x)10 = 1 – 10x + 45x2 + … (1 + 2x2)3 = 1 + 6x2 + … (1 + ax)5 = 1 + 5ax + 10a2x2 + … (1 + bx2)4 = 1 + 4bx2 + … (1 – x)10 (1 + 2x2)3 – (1 + ax)5 (1 + bx2)4

= (1 – 10x + 45x2 + …)(1 + 6x2 + …)– (1 + 5ax + 10a2x2 + …)(1 + 4bx2 + …)

= 1 + 6x2 – 10x + 45x2 – 1 – 4bx2 – 5ax– 10a2x2 + …

–10 – 5a = 0 6 + 45 – 4b – 10a2 = 0a = –2 6 + 45 – 4b – 40 = 0

b = 114

34 (a) 1x + 1x2

5

1x – 1x2

3

= 3x5 + 5(x)411x2 + 10x31 1x2 2 + 10x21 1

x3 2+ 5x1 1

x4 2 + 1x5 4 3x3 + 3(x)21–1

x 2+ 3x1– 1

x22

+ 1– 1x2

3

4 = 1x5 + 5x3 + 10x + 10

x + 5

x3 + 1

x5 21x3 – 3x + 3

x – 1

x32 To obtain x4 term,

= … + x513x2 + 5x3(–3x) + 10x(x3) + …

= 3x4 – 15x4 + 10x4 = –2x4

The coefficient of x4 term is –2.

(b) (1 + x)15 – 5 + 3x

5 + 2x

= 31 +

151!

(x) +

151– 4

522!

(x)2

+

151– 4

521– 952

3!(x)3 + …4

– (5 + 3x)(5 + 2x)–1

= 11 + 15

x – 225

x2 + 6125

x32– (5 + 3x)(5)–111 + 2

5x2

–1

= 11 + 15

x – 225

x2 + 6125

x32– (5 + 3x)115231 + –1

1!125

x2+ –1(–2)

2! 125x2

2

+ –1(–2)(–3)3! 125x2

3

4

= 1 + 15

x – 225

x2 + 6125

x3 – 15

(5 + 3x)

11 – 25

x + 425

x2 – 8125

x32= 1 + 1

5x – 2

25x2 + 6

125x3 – 1

5 15 – 2x

+ 45

x2 – 825

x3 + 3x – 65

x2 + 1225

x32= 1 + 1

5 x – 2

25 x2 + 6

125 x3 – 1 – 1

5 x + 2

25 x2

– 4125

x3 = 2125

x3 where |x| < 25 [Shown]

Hence, p = 2125

By using x = 0.02,

(1.02)15 –

125350 2

125250 2

= 2125

(0.02)3

= 1.28 × 10–7 [Shown] 35 (1 + ax + bx2)7

= [(1 + ax) + (bx2)]7

= 7Cr (1 + ax)7 – r (bx2)r

x term: = 7C

0(1 + ax)7

= 7C0[7C

1 (ax)]

= 7ax x2 term: = 7C

0(1 + ax)7 + 7C

1(1 + ax)6 (bx2)

= 7C0[7C

2(ax)2] + 7C

1[6C

0(ax)0 (bx2)]

= 21a2x2 + 7bx2

= (21a2 + 7b)x2

7a = 1 21a2 + 7b = 0

a = 17

2111722

+ 7b = 0

7b = – 37

b = – 349

Let (1 + ax + bx2)7 = 1 + x

(1 + x)17 = 1 + 1

7x – 3

49x2 + … where |x| < 1

By using x = 0.014, 7 1.014 ≈ 1 + 1

7 (0.014) – 3

49 (0.014)2

≈ 1.001988 [6 decimal places]

36 (1 + x)7

1 – 2x = (1 + x)7 (1 – 2x)–1

= [1 + 7x + 21x2 + 35x3 + …] 31 + –11!

(–2x)

+ –1(–2)2!

(–2x)2 + –1(–2)(–3)3!

(–2x)3 + …4

Chapter 2.indd 10 6/24/2015 5:37:17 PM

ACE AHEAD Mathematics (T) First Term Second Edition© Oxford Fajar Sdn. Bhd. 2015

11

= (1 + 7x + 21x2 + 35x3 + …) (1 + 2x + 4x2

+ 8x3 + …) = 1 + 2x + 4x2 + 8x3 + 7x + 14x2 + 28x3

+ 21x2 + 42x3 + 35x3 + … = 1 + 9x + 39x2 + 113x3 + … where |x| < 1

2[Shown]

Using x = –0.01,

(0.99)7

(1.02) ≈ 1 + 9(–0.01) + 39(–0.01)2

+ 113(–0.01)3 + …

≈ 0.914 [3 decimal places]

37 1 + x

= (1 + x)12

= 1 +

121!

(x) +

121– 1

222!

(x)2

+

121– 1

221– 322

3! (x)3

+

121– 1

221– 3221– 5

224!

(x)4 + …

= 1 + x2

– x2

8 + x3

16 – 5

128 x4 + … … 1

14

(6 + x) – (2 + x)–1

= 6 + x4

– 2–131 + x24

– 1

= 6 + x4

– 1231 + –1

1! 1x

22 + –1(–2)2!

1x22

2

+ –1(–2)(–3)3!

1x22

3

+ –1(–2)(–3)(– 4)4!

1x22

4

4 = 6 + x

4 – 1

211 – x2

+ x2

4 – x3

8 + x4

16 – …2

= 6 + x4

– 12

+ x4

– x2

8 + x3

16 – x4

32 + …

= 1 + x2

– x2

8 + x3

16 – x4

32 … 2

To obtain the error,

1 – 2 , 11 + x2

– x2

8 + x3

16 – 5

128x42

– 11 + x2

– x2

8 + x3

16 – x4

32 2

= – 5128

x4 + x4

32

= – x4

128 The error is approximately x4

128. [Shown]

38 ( )a b ab

aa

b

a

ab

aa

b

+ = +

= +

+ = +

1

2

1

2 1

2

1

2

1

2

1

2 1

2

1 1

1 11

2

aa

b

a

b

a

a

+−

+− −

+

=

1

2

1

21

2

1

2

1

21

1

22

3

2

3

1

2

!

!

112 8

16

1

12 8

2

2

3

3

1

2

1

2

1

2

22

2

+ − +

+

−( ) = −

= − − −

b

a

b

a

b

a

a b ab

a

ab

a

b

a

… … bb

a

a b a b ab

a

b

a

ab

a

b

a

3

3

1

2

1

2

1

2

3

3

1

2

3

3

16

2

2

2

16

8

+

+( ) − −( ) = +

= +

… …

Let a = 4, b = 1

5 3 41

4

1

8 4

129

256

1

23

- = +( )

æ

èçç

ö

ø÷÷

=

5 3 5 3 5 3

2

129

2565 3 2

5 3 2256

129512

129

-( ) +( ) = -

=

+( ) =+( ) = ´

=

1 – 2

2

1

Chapter 2.indd 11 6/24/2015 5:37:19 PM

12 ACE AHEAD Mathematics (T) First Term Second Edition© Oxford Fajar Sdn. Bhd. 2015

39 y = 1

1 + 3x + 1 + x ×

1 + 3x – 1 + x1 + 3x – 1 + x

= 1 + 3x – 1 + x

1 + 3x – (1 + x)

= 12x

1 1 + 3x – 1 + x2 [Shown]

12x3(1 + 3x)

12 – (1 + x)

124

= 12x531 +

121!

(3x) +

121– 1

222!

(3x)2

+

121– 1

221– 322

3!(3x)3 + …4 – 31 +

121!

(x)

+

12

1– 122

2!(x)2 +

121– 1

221– 322

3!(x)3 + …46

= 12x311 + 3

2 x – 9

8 x2 + 27

16 x3+ …2 – 11 + x

2

– x2

8 + x3

16 + …24

= 12x1x – x2 + 13

8 x3 + …2

= 12

– x2

+ 1316

x2

Using x = 1100

,

y = 1

1 + 3x + 1 + x

= 1

103100

+ 101100

= 10

103 + 101 ≈ 1

2 –

1 110022

+ 13161

11002

2

≈ 79 213160 000

[Shown]

40 (a) 3 – 5x + 3x2

≡ A(1 + x2) + (B + Cx)(1 – 2x)

Let x = 12

,

54

= 54

(A)

A = 1 Let x = 0,

3 = 1(1 + 0) + (B + 0)(1)B = 2

Let x = 1,1 = 1(2) + (2 + C )(–1)

C + 2 = 1C = –1

(b) (1 – 2x)–1 = 31 + –11!

(–2x) + –1(–2)2!

(–2x)2

+ –1(–2)(–3)3!

(–2x)34= 1 + 2x + 4x2 + 8x3

(1 + x2)–1 = 31 + –11!

(x2) + …4= 1 – x2

(c) (3 – 5x + 3x2)(1 – 2x)–1(1 + x2)–1

= 11 – 2x

+ 2 – x1 + x2

= 1(1 – 2x)–1 + (2 – x)(1 + x2)–1

= 1(1 + 2x + 4x2 + 8x3) + (2 – x)(1 – x2)

= 1 + 2x + 4x2 + 8x3 + 2 – 2x2 – x + x3

= 3 + x + 2x2 + 9x3

⇒ a = 1, b = 2, c = 9

41 (a) ur

r r

r r

r

= +

= +

= +( )

=

+ + −

+ +

+

1

3

1

3

1

39

1

3

1

31 9

10

2 1 2 1 2

2 1 2 1

2 1

332 1r +

(b) It is a G.P. with a =10

27 and r =

1

9

Sa r

r

S

n

n

n

n

=−( )−

=

= −

=∞

1

1

10

71

1

9

11

9

5

121

1

9

55

12

Chapter 2.indd 12 6/24/2015 5:37:22 PM