chapter 2 solutions · web viewchapter 2 2.1 based upon table 2.1, a resistivity of 2.82 -cm < 1...

20
CHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m-cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of 10 15 -cm > 10 5 -cm, and silicon dioxide is an insulator. 2.3 I max = ( 10 7 A cm 2 ) ( 5 mm)( 1 mm ) ( 10 8 cm 2 mm 2 ) =500 mA 2.4 ( a ) R=ρ L A =( 2.82 x 10 6 cm) 1.8 2 cm ( 5 x 10 4 cm)(1 x 10 4 cm) =144 ( b ) R=ρ L A =( 2.82 x 10 6 cm) 1.8 2 cm ( 5 x 10 4 cm)(0.5 x 10 4 cm ) =287 2.5 ( a ) R=ρ L A =( 1.66 x 10 6 cm) 1.8 2 cm ( 5 x 10 4 cm )(1 x 10 4 cm) =94.5 ( b ) R=ρ L A =( 1.66 x 10 6 cm) 1.8 2 cm ( 5 x 10 4 cm)(0.5 x 10 4 cm) =169 2.6 n i 2 =BT 3 exp ( E G kT ) B=1.08 x 10 31 (10 10 ) 2 =1.08 x 10 31 T 3 exp ( 1.12 8.62 x 10 5 T ) Using a spreadsheet, solver, or MATLAB yields T=305. 23K Define an M-File: ©R. C. Jaeger & T. N. Blalock 3/23/15 2 - 1

Upload: others

Post on 26-Dec-2019

21 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

CHAPTER 2

2.1

Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m-cm, and aluminum is a conductor.

2.2

Based upon Table 2.1, a resistivity of 1015 -cm > 105 -cm, and silicon dioxide is an insulator.

2.3

I max=(107 Acm2 ) (5 mm ) (1 mm )(10−8cm2

mm2 )=500 mA

2.4

(a ) R=ρ LA

=( 2.82 x 10−6−cm ) 1.8√2 cm(5 x10−4 cm ) (1 x10−4 cm )

=144

(b ) R=ρ LA

=( 2.82 x 10−6−cm ) 1.8√2 cm(5 x10−4 cm ) (0 . 5x 10−4 cm )

=287

2.5

(a ) R=ρ LA

=( 1. 66 x 10−6−cm ) 1 .8√2cm(5 x10−4 cm) (1 x10−4 cm)

=94 .5

(b ) R=ρ LA

=(1 . 66 x 10−6−cm ) 1. 8√2cm(5 x10−4 cm) ( 0. 5 x10−4 cm )

=169

2.6

ni2=BT 3 exp(−EG

kT ) B=1 . 08 x 1031

(1010 )2=1 .08 x 1031T 3exp(−1. 128. 62 x10−5 T )

Using a spreadsheet, solver, or MATLAB yields T=305 .23KDefine an M-File:

function f=temp(T)f=1e20-1.08e31*T^3*exp(-1.12/(8.62e-5*T));

Then: fzero('temp',300) | ans = 305.226 K

©R. C. Jaeger & T. N. Blalock 3/23/152 - 1

Page 2: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

2.7

ni=√BT 3 exp(− EG

8 .62 x10−5T )For silicon, B = 1.08 x 1031 and EG = 1.12 eV:

ni = 5.07 x10-19/cm3 6.73 x109/cm3 1.69 x 1013/cm3.

For germanium, B = 2.31 x 1030 and EG = 0.66 eV:

ni = 2.63 x10-4/cm3 2.27 x1013/cm3 2.93 x 1015/cm3.

2.8(a) Define an M-File:

function f=temp(T)ni=1E15;f=ni^2-1.08e31*T^3*exp(-1.12/(8.62e-5*T));

ni = 1015/cm3 for T = 602 K

(b ) N D=1015/cm3 , ni2=1015 /cm3 : n=

1015+√ (1015 )2+4 (1015 )2

2=1 . 62 x 1015 /cm3

p=ni

2

n=1030

1. 62 x1015 =6. 18 x1014 /cm3

(c ) At room temperature, N D>> ni2 .

∴n=N D=1015 electrons/cm3 and p=ni

2

n=1020

1015=105holes/cm3

2.9

ni=√BT 3 exp(− EG

8 .62 x 10−5T ) with B=1. 27x1029 K−3 cm−6

T = 300 K and EG = 1.42 eV: ni = 2.21 x106/cm3

T = 100 K: ni = 6.03 x 10-19/cm3 T = 450 K: ni = 3.82 x1010/cm3

T = 300 K and EG = 1.42 eV: ni = 2.21 x106/cm3

T = 100 K: ni = 6.03 x 10-19/cm3 T = 450 K: ni = 3.82 x1010/cm3

©R. C. Jaeger & T. N. Blalock 3/23/152-2

Page 3: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

2.10

vn=−μn E=(−700 cm2

V −s )(−2000 Vcm )=+1.40 x 106 cm

s

v p =+ μ p E=(+250 cm2

V−s )(−2000 Vcm )=−5 .00 x 105 cm

s

jn=−qnvn=(−1.60 x10−19C )(1017 1cm3 )(1.40 x106 cm

s )=2 .24 x104 Acm2

j p=qnv p=(1.60 x 10−19C )(103 1cm3 )(−5 . 00 x105 cm

s )=−8 .00 x 10−11 Acm2

2.11

| jn|=qnvn=(1 .60 x10−19C )(1018 1cm3 )(107cm

s )=1 . 60 x 106 Acm2 =1. 60 MA

cm2

| jp|=qnv p=(1 . 60 x 10−19C )(1021cm3 )(107 cm

s )=1 .60 x 10−10 Acm2 =160 pA

cm2

I=| jn|⋅Area=1 . 60 x 106 Acm2

(10−4 cm ) (25 x 10−4cm )=400 mA

2.12

j=Qv=(0 . 4 Ccm3 )(107 cm

sec )=4 x106 Acm2=4 MA

cm2

2.13

v= jQ

=2500 A /cm2

0 .01C /cm2 =2 .5 x 105 cms

2.14

vn=−μn E=−(1000 cm 2

V−s )(−1500 Vcm )=+1.50 x106 cm

s

v p =+ μ p E =+(400 cm2

V −s )(−1500 Vcm )=−6 . 00 x105 cm

s

j n=−qnvn=(−1.60 x10−19C )(103 1cm3 )(+1 .50 x 106 cm

s )=−2 . 40 x10−10 Acm2

j p=qnv p=(1. 60 x10−19C )(1017 1cm3 )(−6 . 00 x 105 cm

s )=−9.60 x103 Acm2

©R. C. Jaeger & T. N. Blalock 3/23/152 - 3

Page 4: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

2.15

(a ) E= 5 V5 x10−4 cm

=10 , 000 Vcm

(b ) V=(105 Vcm ) (5 x10−4 cm )=50 V

2.16

Using MATLAB as in Problem 2.6 yields T ≤ 316.6 K.

2.17For intrinsic silicon, σ=q (μnni+μ pni )=qni (μn+μp )σ≥1000 (−cm)−1 for a conductor

ni=σq (μn+μ p)

≥1000 (−cm)−1

1 .602 x10−19 C (120+60 ) cm2

v−sec

=3 . 468 x1019

cm3

ni2=1 .203 x1039

cm6 =BT 3exp(−EG

kT ) with

B=1 . 08 x 1031 K−3 cm−6 , k = 8 . 62x10-5 eV/K and EG=1. 12eVThis is a transcendental equation and must be solved numerically by iteration. Using the HP solver routine or a spread sheet yields T ≥ 2579.3 K. Note that this temperature is far above the melting temperature of silicon.

©R. C. Jaeger & T. N. Blalock 3/23/152-4

For intrinsic silicon, σ=q (μn ni+μ p ni )=qni (μn+μp )σ≤10−5 (−cm )−1 for an insulator

ni=σq (μn+μ p)

≤10−5 (−cm )−1

(1 .602 x10−19C ) (1800+700 )(cm2

v−sec )=2. 497x 1010

cm3

ni2=5 .152 x1020

cm6 =BT 3 exp(−EG

kT ) with

B=1 .08 x 1031 K−3 cm−6 , k =8 .62x10-5 eV/K and EG=1 . 12eV

Page 5: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

2.18

No free electrons or holes (except those corresponding to ni).

2.19Since Ge is also from column IV, acceptors come from column III and donors come from column V. (a) Acceptors: B, Al, Ga, In, Tl (b) Donors: N, P, As, Sb, Bi

2.20(a) Gallium is from column 3 and silicon is from column 4. Thus silicon has an extra electron and will act as a donor impurity.(b) Arsenic is from column 5 and silicon is from column 4. Thus silicon is deficient in one electron and will act as an acceptor impurity.

2.21(a) Germanium is from column IV and indium is from column III. Thus germanium has one extra electron and will act as a donor impurity.(b) Germanium is from column IV and phosphorus is from column V. Thus germanium has one less electron and will act as an acceptor impurity.

2.22

E=jσ = jρ=(5000 A

cm2) (0 .02−cm )=100 Vcm , a small electric field

2.23

N=(1016 atomscm3 ) (0 .180 μm ) (2 μm ) (0 .5μm )(10−4cm

μm )3

=1800 atoms

©R. C. Jaeger & T. N. Blalock 3/23/152 - 5

Page 6: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

2.24(a) Since boron is an acceptor, NA = 7 x 1018/cm3. Assume ND = 0, since it is not specified. The material is p-type.(b ) At room temperature, ni=1010 /cm3 and N A−N D=7 x1018 /cm3 >> 2n i

So p=7 x 1018 /cm3 and n=ni

2

p=1020 /cm6

7 x1018 /cm3 =14 . 3 /cm3

(c ) At 200K, ni2=1.08 x1031 (200 )3 exp (−1. 12

8 .62 x10−5 (200 ) )=5 .28 x 109 /cm6

ni=7 .27 x104 /cm3 N A−N D >>2ni , so p=7 x1018 /cm3 and n=5. 28 x109

7x 1018 =7 . 54 x 10−10 /cm3

2.25(a) Since arsenic is a donor, ND = 3 x 1017/cm3. Assume NA = 0, since it is not specified. The material is n-type.(b ) At room temperature, n i=1010 /cm3 and N D−N A=3 x1017 /cm3 >> 2ni

So n=3x 1017 /cm3 and p=ni

2

n=1020 /cm6

3 x1017 /cm3 =333 /cm3

(c ) At 250K, ni2=1.08 x1031 (250 )3 exp (−1.12

8 .62 x10−5 (250 ) )=4 .53 x 1015 /cm6

ni=6.73 x107 /cm3 N D−N A >> 2n i , so n=3 x1017 /cm3 and n= 4 . 53x1015

3x1017 =0 .0151/cm3

2.26 (a) Arsenic is a donor, and boron is an acceptor. ND = 3 x 1018/cm3, and NA = 8 x 1018/cm3. Since NA > ND, the material is p-type.(b ) At room temperature, n i=1010 /cm3 and N A−N D=5 x1018/cm3 >> 2n i

So p=5 x 1018 /cm3 and n=ni

2

p=1020 /cm6

5 x1018 /cm3 =20 .0 /cm3

2.27 (a) Phosphorus is a donor, and boron is an acceptor. ND = 2 x 1017/cm3, and NA = 6 x 1017/cm3. Since NA > ND, the material is p-type.(b ) At room temperature, ni=1010 /cm3 and N A−N D=4 x 1017/cm3 >> 2n i

So p=4 x1017 /cm3 and n=ni

2

p=1020 /cm6

4 x 1017 /cm3 =250 /cm3

©R. C. Jaeger & T. N. Blalock 3/23/152-6

Page 7: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

2.28N D>N A : The material is n-type . N D−N A=3 x 1017−2 x1017=1 x1017 /cm3

2 ni=2x 1017 /cm3 ; Need to use Eq .(2.11)

n=1017+√ (1017 )2+4 (1017 )2

2 =1 . 62 x1017 /cm3

p=ni

2

n=1034

1. 62 x1017 =6 .18 x1016 /cm3

2.29N A>N D : N A−N D=5 x1016−1016=4 x 1016 /cm3>> 2 ni=2 x1011 /cm3

p=N A−N D=4 x1016 /cm3 | n=ni

2

p=1022

4 x 1016 =2 .50 x105 /cm3

The material is p-type.

2.30ND = 5 x 1016/cm3. Assume NA = 0, since it is not specified.N D>N A : The material is n-type . | N D−N A=5 x1016/cm3>>2ni=2 x 1010/cm3

n = 5 x1016 /cm3 | p=n i

2

n=1020

5 x 1016 =2 x103/cm3

N D+N A=5x 1016 /cm3 | Using the equations in Fig . 2 .8, μn=885cm2

V −s and μp=198 cm2

V −s

ρ=1qμn n =

1

(1 .602x 10−19C )(885cm2

V −s )(5 x1016

cm3 )=0.141−cm

2.31NA = 2.5x1018/cm3. Assume ND = 0, since it is not specified.

N A>N D : The material is p-type . | N A−ND=2. 5 x1018 /cm3 >>2 ni=2 x1010 /cm3

p=2.5 x 1018 /cm3 | n=ni

2

p=1020

2 .5 x1018 =40 /cm3

N D+N A=2.5 x1018/cm3 | Using the equations from Fig . 2 .8, μn=187 cm2

V−s and μp=58 .7 cm2

V −s

ρ=1qμp p =1

1 .602 x10−19 C(58. 7cm2

V−s )(2.5 x1018

cm3 )=42.5 m −cm

©R. C. Jaeger & T. N. Blalock 3/23/152 - 7

Page 8: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

2.32Indium is from column 3 and is an acceptor. NA = 8 x 1019/cm3. Assume ND = 0, since it is not specified.

N A>N D : material is p-type | N A−N D=8 x1019 /cm3 >>2 ni=2 x 1010 /cm3

p=8 x 1019 /cm3 | n=ni

2

p=1020

8 x 1019 =1 .25 /cm3

N D+N A=7 x 1019/cm3 | Using Fig . 2 .8, μn=66.2 cm2

V−s and μ p=46 . 1cm2

V −s

ρ=1qμp p =

1

1 .602 x10−19 C(46 .1 cm2

V −s )(8 x1019

cm3 )=1.69 m −cm

2.33Phosphorus is a donor: ND=4 .5 x1016 /cm3| Boron is an acceptor: N A=5 .5 x 1016 /cm3

N A>N D : The material is p-type . | N A−N D=1016 /cm3 >> 2 ni=2 x 1010 /cm3

p=1016 /cm3 | n=ni

2

p=1020

1016 =104 /cm3

N D+N A=1017 /cm3 | Using Fig . 2 .8, μn=727 cm2

V −s and μp=153 cm2

V−s

ρ=1qμn n

=1

1 . 602 x 10−19C (153 cm2

V−s )(1016

cm3 )=4 . 08−cm

2.34

ρ= 1qmp p

| mp p= 1(1.602 x10−19 C ) (0 . 054−cm )

=1 .16 x1020

V−cm−sAn iterative solution is required. Using the equations from Fig. 2.8 and trial and error:

NA p p p1018 70.8 7.08 x 1019

2 x1018 61.0 1.22 x 1020

1.90 x 1018 61.6 1.17 x 1020

1.89 x 1018

61.6 1.16 x 1020

©R. C. Jaeger & T. N. Blalock 3/23/152-8

Page 9: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

2.35

ρ= 1qmp p

| mp p= 1(1. 602 x10−19 C ) (0 .5−cm )

=1 . 25 x 1019

V −cm−sAn iterative solution is required. Using the equations in Fig. 2.8 and trial and error:

NA p p p1016 318 3.18 x 1018

4 x 1016 214 8.55 x 1018

7.5 x 1016 170 1.28 x 1019

7.2 x 1016

173 1.25 x 1019

2.36Yes, by adding equal amounts of donor and acceptor impurities the mobilities are reduced, but the hole and electron concentrations remain unchanged. See Problem 2.39 for example. However, it is physically impossible to add exactly equal amounts of the two impurities.

2.37

ρ= 1qmn n

| mnn » mn N D= 1(1.602 x10−19 C ) (3−cm )

=2 .08 x 1018

V−cm−sAn iterative solution is required. Using the equations in Fig. 2.8 and trial and error:

ND n nn1015 1360 1.36 x 1018

1.5 x 1015 1340 2.01 x 1018

1.6 x 1015 1340 2.14 x 1018

1.55 x 1015 1340 2.08 x 1018

2.38Based upon the value of its resistivity, the material is an insulator. However, it is not intrinsic because it contains impurities. The addition of the impurities has increased the resistivity.Since N D−N A=0 , n=p=ni , and σ=q (μn ni+μp ni )=qni (μn+μp )N A+N D=1020/cm3 which yields μ p=45 .9 and μn=64 . 3 using theequations from Fig . 2 .8 .

σ=1qni (μn+μp )

≤1

(1 .602 x10−19 C ) (1010cm− 3) (64 .3+45 . 9 )(cm2

v−sec )=5. 66 x106 -cm

©R. C. Jaeger & T. N. Blalock 3/23/152 - 9

Page 10: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

2.39 (a)

ρ= 1qmn n

| mn n» mn N D=1

(1. 602 x10−19 C ) (0 . 001−cm )=6. 24 x 1021

V −cm−sAn iterative solution is required. Using the equations in Fig. 2.8 and trial and error:

ND n nn1019 108 1.08 x 1021

7 x 1019 67.5 4.73 x 1021

1 x 1021 64.3 6.43 x 1021

9.67 x 1019

64.5 6.24 x 1021

(b)

ρ= 1qm p p

| mp p » mp N A=1

(1 .602 x 10−19C ) ( 0.001−cm )=6 .24 x 1021

V−cm−s

An iterative solution is required using the equations in Fig. 2.8 and trial and error:

NA p p p1 x1020 45.9 4.96 x 1021

1.2 x1020 45.8 5.93 x 1021

1.4 x1020 45.7 6.17 x 1021

1.37 x 1020 45.7 6.26 x 1021

©R. C. Jaeger & T. N. Blalock 3/23/152-10

Page 11: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

2.40(a) For the 1 ohm-cm starting material:

ρ= 1qmp p

| mp p » mp N A=1

(1 .602 x10−19C ) (1−cm )=6 . 25 x1018

V−cm−sTo change the resistivity to 0.25 ohm-cm:

ρ= 1qmp p

| mp p » mp N A=1

(1 .602 x10−19C ) ( 0. 25−cm )= 2 . 5x 1019

V−cm−s

Iterative solutions are required using the equations with Fig. 2.8 aand trial and error:

NA p p p

1 Ohm-cm 2.51x1016 249 6.25 x 1018

0.25 Ohm-cm

2.2 x 1017 147 2.5 x 1018

Additional acceptor concentration = 2.2 x 1017- 2.5 x 1016 = 1.95 x 1016/cm3

(b) If donors are added:

ND ND + NA n ND - NA nn3 x 1016 5.5 x 1016 864 0.5 x 1015 4.32 x 1018

5 x 1016 7.5 x 1016 794 2.5 x 1016 1.98 x 1019

6 x 1016 8.5 x 1016 765 3.5 x 1016 2.68 x 1019

5.74 x 1016 8.24 x 1016

772 3.24 x 1016 2.50 x 1019

So ND = 5.7 x 1016/cm3 must be added to change achieve a resistivity of 0.25 ohm-cm. The silicon is converted to n-type material.

©R. C. Jaeger & T. N. Blalock 3/23/152 - 11

Page 12: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

2.41

Boron is an acceptor: NA = 1016/cm3 and p = 318 cm2/V-s from equations with Fig. 2.8.

σ=qμ p p≈qμp N A=(1 .602 x10−19C ) (318 ) (1016 )= 0 . 509−cm

Now we add donors until = 4.5 (-cm) -1:

σ=qμnn | μn n≈μn (N D−N A )=4 . 5 (−cm)−1

1 .602 x10−19 C=2 .81 x1019

V−cm−s

Using trial and error:

ND ND + NA n ND - NA n n8 x 1016 9 x 1016 752 7 x 1016 5.26 x 1019

5 x 1016 6 x 1016 845 4 x 1016 3.38 x 1019

4 x 1016 5 x 1016 885 3 x 1016 2.66 x 1019

4.2 x 1016 5.2 x 1016 877 3.2 x 1016 2.81 x 1019

2.42Phosphorus is a donor: ND = 1016/cm3 and n = 1180 cm2/V-s from Fig. 2.8.

σ=qμn n≈qμn N D=(1.602 x 10−19C ) (1180 ) (1016 )= 1 .89−cm

Now we add acceptors until = 5.0 (-cm) -1:

σ=qμ p p | μp p≈μ p (N A−ND )=5 (−cm )−1

1. 602 x10−19 C= 3 .12 x 1019

V −cm−s

Using trial and error:

NA ND + NA p NA - ND p p1.00E+17 1.10E+17 147 9.00E+16 1.33E+192.00E+17 2.10E+17 116 1.90E+17 2.20E+193.50E+17 3.60E+17 95.6 3.40E+17 3.25E+193.30E+17 3.40E+17 97.4 3.20E+17 3.12E+19

2.43

V T = kTq

= 1. 38 x 10−23 T1 .602 x10−19 =8. 62 x 10−5 T

T (K) 50 75 100 150 200 250 300 350 400VT (mV) 4.31 6.46 8.61 12.9 17.2 21.5 25.8 30.1 34.5

©R. C. Jaeger & T. N. Blalock 3/23/152-12

Page 13: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

2.44

j=−qDn (−dndx )=qV T μn

dndx

j=(1.602 x10−19 C ) (0 . 025 V )(350 cm2

V−s )(0−1018

0 .25 x10−4−0 )1cm4 =−56 .1kA

cm2

2.45

j =-qD pdpdx

=(−1 .602 x10−19C )(15 cm2

s )(−1019/cm3

2 x10−4cm )exp(−x2 x10−4 cm )

j=1. 20 x105 exp(−5000 xcm )A

cm2

I (0 )= j (0 ) A=(1 .20 x 105 Acm2 )( 10 mm2)(10−8 cm2

mm2 )=12 . 0mA

2.46

j p=qmp pE−qD pdpdx

=qm p p(E−V T1p

dpdx )=0→E=V T

1p

dpdx

E »V T1N A

dN A

dx=0.025−1022 exp (−104 x )

1014+1018 exp (−104 x )

E (0 ) =-0 . 025 1022

1014+1018 =- 250Vcm

E (5 x10−4 cm ) =-0 .025 1022exp (−5 )1014+1018exp (−5 )

=- 246 Vcm

2.47At x = 0:

j ndrift=qμnnE=(1.60 x 10−19C )(350 cm2

V−s )(1016

cm3 )(+25Vcm )=14 .0 A

cm2

j pdrift=qμ p pE=( 1.60 x10−19 C )(150 cm2

V −s )(1.01 x1018

cm3 )(+25 Vcm )=+ 606 A

cm2

j ndiff=qDn

dndx

=( 1.60 x10−19 C )(350⋅0 .025 cm2

s )(104−1016

2 x 10−4 cm4 )=−70 . 0 Acm2

j pdiff=−qD p

dpdx

=(−1 .60 x 10−19C )(150⋅0 .025 cm2

s )(1018−1. 01 x 1018

2 x10−4 cm4 )=30 . 0 Acm2

jT=14 .0+607−70 .0+30 . 0 =+580 Acm2

©R. C. Jaeger & T. N. Blalock 3/23/152 - 13

Page 14: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

At x=1 μm assuming linear distributions:p (1 μm )=1 .005 x 1018 /cm3 , n (1 μm )=5 x 1015 /cm3

j ndrift=qμnnE=(1.60 x 10−19 C )(350 cm2

V−s )(5 x1015

cm3 )(+25Vcm )=+7 .00 A

cm2

j pdrift=qμ p pE=( 1.60 x10−19 C )(150 cm2

V −s )(1.005 x1018

cm3 )(+25 Vcm )=+603 A

cm2

j ndiff=qDn

dndx

=( 1.60 x10−19 C )(350⋅0 .025 cm2

s )(104−1016

2 x 10−4 cm4 )=−70 . 0 Acm2

j pdiff=−qD p

dpdx

=(−1 .60 x 10−19 C )(150⋅0 .025 cm2

s )(1018−1. 01 x 1018

2 x10−4 cm4 )=30 . 0 Acm2

jT+7 .00+603−70 .0+30. 0=−570 Acm2

2.48 NA = 2ND

2.49

λ=hcE

=(6 . 626 x10−34 J−s ) (3 x 108 m / s )

(1 . 12eV ) (1 . 602 x 10−19 J /eV )=1 .108 mm

2.50

©R. C. Jaeger & T. N. Blalock 3/23/152-14

Page 15: Chapter 2 Solutions · Web viewCHAPTER 2 2.1 Based upon Table 2.1, a resistivity of 2.82 -cm < 1 m -cm, and aluminum is a conductor. 2.2 Based upon Table 2.1, a resistivity of

2.51An n-type ion implantation step could be used to form the n+ region following step (f) in Fig. 2.17. A mask would be used to cover up the opening over the p-type region and leave the opening over the n-type silicon. The masking layer for the implantation could just be photoresist.

2.52

(a ) N=8 (18 )+6 (12 )+4 (1 )=8 atoms

(b )V =l3=(0 .543 x10−9 m )3=(0 .543 x 10−7 cm )3=1 .60 x 10−22 cm3

(c ) D=8 atoms1.60 x 1022 cm3 =5 .00 x 1022 atoms

cm3

(d ) m=(2 .33 gcm3 )1 .60 x1022cm3=3 . 73 x10−22 g

(e ) From Table 2 .2, silicon has a mass of 28 . 086 protons.

mp=3.73 x 10−22 g28. 082 (8 ) protons

=1 .66 x 10−24 gproton

Yes, near the actual proton rest mass .

©R. C. Jaeger & T. N. Blalock 3/23/152 - 15