chapter 3 the fourier series ee 207 adil s. balghonaim

52
Chapter 3 The Fourier Series EE 207 Adil S. Balghonaim

Upload: cora-goodin

Post on 16-Dec-2015

221 views

Category:

Documents


2 download

TRANSCRIPT

Chapter 3 The Fourier Series

EE 207

Adil S. Balghonaim

i

j

(3,4)V =3 + 4V = i j

x

y

3 + 6 + 4V = i j k

1 2 3+ + + + N 1 2 3 NV = i i i i

1 2 N 1 2 Ni= V = V = V i i

Vectors in 2D

3

4

Vectors in 3D

N-Dimension

3

4

i = V

= V j

Jean Baptiste Joseph Fourier (21 March 1768 – 16 May 1830) was a French mathematician and physicist best known for initiating the investigation of Fourier series and their applications to problems of heat transfer and vibrations

Fourier observed that the addition of Sinusoidal functions with different frequencies and amplitude resulted in other periodical functions

= 1n = 3n

= 21n

0 0 001sin( ) sin 1si1sin5 3

775

3 n tx t t tt

Example

01( ) sin x t t03 0( ) sin 1sin3

3 x t t t

n

0

1

sin(1/ )

n oddn

n tn

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

Fourier proposed the following:

For any periodical function of period 0T

0

0

1Tf

were

0

0

1fT

0 0 2 f

Then

Periodicals functions can be decomposed to sin and cosine functions

Similar to decompose a vector in terms of i,j,k,…

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

The coordinate with respect , to

3

4

i j

i= V

=

V

j 0 ,We will find the in a similar man , a rn nba a

3 + 4V = i j

i

j

(3,4)V =

x

y

3

4

Similar to the 2D vector

i

j

k

, spacei j i j

( , ) spacek i j

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

1

0

2

0 0

0

30

0

1

3

2

0

( ) cos cos cos sin

2sin

32 sin 3b b b

x t t t tt t t

a a a a

0cos n t space

0 0 0

0 0 0

0 01 1

cos cos2 cos3 ...

sin sin2 sin3 ...

{cos } {sin }n nn n

t t t

t t t

n t n t

Orthognalty ( ) in the functional space will be defined next

3

1k

kki j

i =j (1)(0) (0)(1) (0)(0) 0

In the 3D vector

Dot Product

In the functional space

0 00 0cos ,cos2 (cos )(cos 2 )To

t t t t dt 0

0 00 0

0 00 0

0 00 0

cos ,cos (cos )(cos ) 0

sin ,sin (sin )(sin ) 0

cos ,sin (cos )(sin ) 0

To

To

To

k t m t k t m t dt

k t m t k t m t dt

k t m t k t m t dt

0 0 0 0 = i j i k j k j= k = =

, spacei j i j

( , ) spacek i j

0cos n t space

1

0

2

0 0

0

30

0

1

3

2

0

( ) cos cos cos sin

2sin

32 sin 3b b b

x t t t tt t t

a a a a

We seek to find the coefficients or coordinates

Coefficients with respect to the Coefficients with respect to the

1 2 30 1 3, , 2, , , b b ba a a acos's sin's

0cos n t space

( )x t

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

Integrating both side over one period

0

( )

T

x t dt0

0 0 01 1

cos sinn n

n nT

dtbn t n ta a

0 0 0

0 01 1

0

cos sinn n

n nT T T

dt n tdt na tdtba

0 0 0

0 0

1 1

0

sin cos n

n

n

n

T T T

dt n tdt da b n t ta

0 0

0

0

T

dta 00 a T

0

0

0

( ) 1 =

T

x t dtT

a

0Finding a

0cos n t space

( )x t

i

j

(3,4)V = 3 + 4V = i j

x

y

3

43

4

i = V

= V j

1

0

2

0 0

0

30

0

1

3

2

0

( ) cos cos cos sin

2sin

32 sin 3b b b

x t t t tt t t

a a a a

By comparison to the 2D-vector ,

0dot product

1 ( ) cosa x t t

02 ( ) c 2ost ta x 0( ) cosn x ta t nSimilarly

0( ) sinn x tb t n

0Projection of x(t) on the direction of cos t

0Projection of x(t) on the direction of sinn t

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

Multiplying both side by cos5w0t and Integrating over one period

0

0

( )c 5os

T

x t tdt0

00 001 1

cos si 5n cosn n

nn

T

dtn t n t ta ba

0 0

0

0 0 01

0 01

0

cos cos cos

co

5 5

5s sin

n

n

n

n

T T

T

t

b

a adt t n tdt

t n tdt

5Finding a

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

0

0

( )c 5os

T

x t tdt0 0

0

0 0 01

0 01

0

cos cos cos

co

5 5

5s sin

n

n

n

n

T T

T

t

b

a adt t n tdt

t n tdt

0

Integrating sinusoidal over one period

take it inside summation

take it inside summation

0 0 0

00 00 01 1

( )cos cos cos sin cos5 5 5n

n

n

n

T T T

x t tdt n t tdt n t tb tda

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

0 0 0

00 00 01 1

( )cos cos cos sin cos5 5 5n

n

n

n

T T T

x t tdt n t tdt n t tb tda

0 0 0 0

0 0 0 0

1 12 21 12 2

cos cos cos( ) cos( )

si

5 5 5

5 5n cos sin( ) sin( )5

n t t n t n t

n t t n t n t

From Trigonometric Identity

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

0 0

0

00 01

001

( )cos cos cos

sin c s5o

5 5n

n

n

n

T T

T

x t tdt n t tdt

b t

a

n t dt

0

0

0 01

0 01

1 1cos( ) cos( )2 2

1 1si

5 5

5n( ) sin( )2 2

5

n

nn

n

T

T

a

b

n t n t dt

n t n t dt

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

0 0

0

0 001

0 01

1 1( )cos cos( ) cos( )2 2

1 1 sin( ) sin( )2

5 5 5

5 52

n

n

n

n

T T

T

a

b

x t tdt n t n t dt

n t n t dt

0 01 1

since n nTT

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

0 0 0

0 0

0 001

0 01

1( )cos cos( ) cos( )2

1 sin

5

( ) sin( )2

5 5

5 5

n

nn

n

T

b

ax t tdt n tdt n t dt

T T

n tdt n t dt

T T

0 for all n except n = 5

cos(0)

at n = 5 cos(0) = 1

odt T

To

0 for all n 0 for all n

0 for all n

0

0

55( )cos 1( )2

T

ox t tdt a T 0

0

5 ( )cos52oT

x t tdtaT

05 is the projection of ( ) in the direction of cos 5x ta t

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

0

0

5 ( )cos52oT

x t tdtaT

05 is the projection of ( ) in the direction of cos 5x ta t

We can repete the same procedure for any n

0

0

( )cos2oT

n x t tdtnT

a 5We can repete the same procedure for and we will get b

0

0

5 ( )sin52oT

x t tdtbT

Then for any n we get

0

0

( )cos2oT

n x t tdtnT

b

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

0

0

0

1 ( )T

x t dtT

a The average of x(t)

0

00

cos2 ( ) 0n

T

a n tx t dt nT

00

0sin2 ( )n

T

b nx t dt tT

Therefor

Example 3-4

The average value of x(t) = 00 0 a

00

0cos2 ( )n

T

a nx t dt tT

20

0

0 0 20

0

0

0

2 2co c)s o( s T T

T

A dt A dtT T

n t n t

0 0

0 0

20 0

0 0 20

sin sin2 T T

T

n t n tn n

AT

0

Thus all the coefficients are ro zena

Note : ( ) oddx t 0( ) is oddcos n tx t 0na

00T

0

2

T

A

A

( )x t

t

00

0sin2 ( )n

T

b nx t dt tT

20

0

0 0 20

0

0

0

2 2si s)n i( n T T

T

A dt A dtT T

n t n t

2 1 cosnAn

2 odd

even0

An

n

n

0 0 01 14( ) sin sin3 sin53 5

Ax t t t t

oddn cos 1n

evenn cos 1n

2 1 cosnbn

nA

= 1n = 3n = 21n

00

/ 2sin ( 1) ( 1)2

nn / 2sin ( 1) ( 1)

2nn

Now for n =`1

/ 2

2

11

2

2( 1) even

( 1)

0 odd

n

n

n

a nn

n

00 0cos sin

jn te n t j n t

00 0cos sin

jn te n t j n t

0 0

0cos 2

jn t jn te en t

0 0

0sin 2

jn t jn te etj

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

0 0 0 0

1 10( )

2 2

jn t jn t jn t jn t

n

nn

n

e e e ex t ba a

j

0 0

10

1

1 1

2 2( ) ( ) ( )jn t jn t

n n n

n n

n ba a ax t j e j eb

0 0

1 11 2

0

1 1

2 2( ) ( ) ( )nn

jn t jn n

n t

n n

x t b bj e j ea a a

term 1 and term 2 are complex conjugate of each other

Then we can write x(t) as

1 1 2 21 21 1( ) ( )2 2

j jX a X ab b

11 221 21 1( ) ( )2 2

a aj jX b X b

1( )2

n n nja bX

1( )2

n nnX a bj

0 0

X a

0 010 20 02 12 2 {( )

{ }} jj t tj jt tX e X e X X et X ex

Where

0 0

1 11 2

0

1 1

2 2( ) ( ) ( )nn

jn t jn n

n t

n n

x t b bj e j ea a a

0 0100 202 1

2 2( )

{ } { } j t jj t j t tXX e X ex et XX e

0 00

1 1

( ) jn t jn t

n

n

n

nXx e X eXt

0jn t

n

nX e

0

1

jn tn

n

X e

0

1

jn tn

n

eX

0

1

jn t

n

neX

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

0jn t

n

nX e

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

0jn t

n

nX e

How to find ? nX

1( )2

n n njbX a Since

0

00 00

021 2 ( ) ( )cos sin

2 TT

n n tx t dt j x tn tTT

X dt

00

00

1 ( ) scos inT

n tx t n tj dtT

0

00

1 ( ) jn t

T

x t e dtT

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

0jn t

n

nX e

1( )2

n n njbX a 0

00

1 ( ) jn t

T

x t e dtT

Another method to find ? nX0jm t

0Multiplying both side of x(t) by e and integrating over T

0

0

( ) jm t

T

x t e dt

0

0

0 jn t

T

njm t

ne e dtX

0

( ) 0 j n m t

nT

n e dtX

0( ) jn tn

n

Xx t e

1( )2

n n njbX a 0

00

1 ( ) jn t

T

x t e dtT

0

0

( ) jm t

T

x t e dt

0

0

0 jn t

T

njm t

ne e dtX

0

( ) 0 j n m t

nT

n e dtX

0

( ) 0

0

0 if m n

if m nj n m t

T

e dtT

0

0

0

( ) ( )jnm t

m

T

x t e dt X T 0

00

1 ( ) jm t

m

T

X x t e dtT

Since it is true for all m then it is true for all n

0

00

1 ( ) jn t

n

T

X x t e dtT

0

( )x t

0

2

T0T t

A

00

00

sin 02( )

02

TA t t

x tT

t T

Example 3-6 Find the complex Fourier series coefficients for A half-rectified sine wave

0

2

T0T

00

00

sin 02( )

02

TA t t

x tT

t T

0

00

1 ( ) jn tn

T

X x t e dtT

1n

0 0

0since sin 2

j t j te etj

0 02 /T

00

00

sin 02( )

02

TA t t

x tT

t T

(1 ) 1since j n j j ne e e

1 ( 1)n

( 1)n

2

0 odd

n 1 evenA

(1 )

n

n

Xn

n

00

00

sin 02( )

02

TA t t

x tT

t T

2

0 odd

n 1 evenA

(1 )

n

n

Xn

n

0 / 2

0 00

1

00

2

Tj t j t j tAX e e e dt

jT

0 / 2

2 0

00

1 2

Tj tA e dt

jT

4

Aj

Similarly

1 4AXj

0

00

1 ( ) jn tn

T

X x t e dtT

00

00

sin 02( )

02

TA t t

x tT

t T

First Entry in Table 3-1

Table 3-1(old Book)

0jn tn

n

X e

0

0

1 ( ) jn tnX x t eT

0 0

10

1

( ) cos sinnn

n n

x t n ta a b n t

0

00

cos2 ( ) 0n

T

a n tx t dt nT

00

0sin2 ( )n

T

b nx t dt tT

1( )2

nnnX a jb

00X a

1( )2

n nn aX bj *nX

*n n na X X

*n nnb XjX

Symmetry Properties of Fourier Series coefficients

0

0

0

1 ( )T

x t dtT

a

2Re[ ]n na X 2Im[ ]n nb X

Line Spectra

00 02 1 0 01 2

2 2

{ }

{

}

j t j tt t jj X X eX e X eX e

0( ) jn tn

n

Xx t e

where

| |n nnX X In general a complex number that can be represented as a phasor

0tn

jnX e Is a rotating phasor of frequency 0n

Therefore, x(t) consists of a summation of rotating phasors

| |k kkC C

| |kC

10

0 1 2 3

1.52.5

2.01.52.5

2.0

123 k

10

0 1 2

3

12

3 k

30o

30o

90o

90o

k

since ( ) is an odd function 0o

x t C

kC

Time domain Fourier domain or Frequency domain

one to one

Let ( ) = ( ) + y t Ax t B

Known

0

kyjk t

k

C e

unknown

what are the coefficients interms of the coefficientsky kxC CQuestion unknown known

Writing y(t) as

0

y

C

kyC

0 0y xC AC B 0

ky kxC AC k

Let ( ) be as shownx t

Let ( ) = ( ) + y t Ax t B

Let ( ) be as showny t

one to one

one to onewhat are and

oy kyC C

0( ) kyjk t

k

Cy t e

unknown

We wish to find the Fourier series for the sawtooth signal ( ) y t

First, note that the total amplitude variation of ( ) is while the total variation of ( ) is 4. x t X y to4Also note that we invert x(t) to get y(t), yielding =o

AX

4 ( ) = ( ) + ( ) + 1o

y t Ax t B x tX

one to one

one to onewhat are and

oy kyC C

0( ) kyjk t

k

Cy t e

unknown

4 ( ) = ( ) + ( ) + 1o

y t Ax t B x tX