chapter 4 phase transitions - royal holloway,...

24
4211 Statistical Mechanics 1 Week 4 Chapter 4 Phase Transitions 4.1 Phenomenology 4.1.1 Basic ideas Partition function ?!?! Thermodynamic limit

Upload: truongdat

Post on 07-Apr-2018

222 views

Category:

Documents


5 download

TRANSCRIPT

Page 1: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 1 Week 4

Chapter 4 Phase Transitions 4.1 Phenomenology 4.1.1 Basic ideas

Partition function ?!?!

Thermodynamic limit

bcowan
Typewritten Text
bcowan
Typewritten Text
Page 2: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 2 Week 4

4.1.2 Phase diagrams

S

L

G

G

L+G

S+G

S+L

S+G

p

V

T

solid

liquid

gas

triplepoint

criticalpoint

p

T

P V T system

bcowan
Typewritten Text
Phase plane
bcowan
Typewritten Text
bcowan
Typewritten Text
Phase diagram `look down the extensive variable'
bcowan
Typewritten Text
bcowan
Typewritten Text
Page 3: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 3 Week 4

up

down

critical point

phase boundary

B

T

magnetic system

bcowan
Typewritten Text
Phase plane
bcowan
Typewritten Text
Phase diagram `look down the extensive variable'
Page 4: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 4 Week 4

4.1.3 Symmetry

• Crystal Translational symmetry • Ferromagnet Rotational symmetry • Ferroelectric Inversion symmetry • Superfluid Gauge symmetry

bcowan
Typewritten Text
Symmetry broken upon going into this phase
Page 5: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 5 Week 4

4.1.4 Order of phase transitions

G phase 1

phase 2

kink in at transitionG

actual state:minimum G

1/T Fig. 4.5 Variation of Gibbs free energy for two phases

bcowan
Typewritten Text
Move between `analytically distinct' regions of the phase diagram.
Page 6: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 6 Week 4

4.1.5 The order parameter

System Order parameter ● Ferromagnet magnetisation M vector ● Ferroelectric polarisation along

displacement axis P Scalar !!!

● Fluid density difference (n – nc) real scalar ● Superfluid 4He ground state

wavefunction Ψ0 complex scalar

● Superconductor pair wavefunction Ψs complex scalar ● Ising Ising ‘magnetisation’ m real scalar ● Binary alloy species concentration x real scalar

Page 7: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 7 Week 4

In terms of the order parameter . . . . .

Order parameter in first and second order transitions

Page 8: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 8 Week 4

4.1.6 Conserved and non-conserved order parameters

System Order parameter

Section

● Ferromagnet magnetisation M non-cons. 4.3 ● Ferroelectric polarisation P non-cons. 4.6 ● Fluid density

difference (n – nc) conserved 4.2

● Superfluid 4He ground state wavefunction

Ψ0 non-cons.

● Superconductor pair wavefunction

Ψs non-cons.

● Ising Ising ‘magnetisation’

m non-cons. 4.4

● Binary alloy species concentration

x conserved 4.7

Page 9: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 9 Week 4

4.1.7 Critical exponents In terms of the reduced temperature

c

c

T TtT−=

they are defined (using the ferromagnet variables for example) through

1c

heat capacity ~

order parameter ~

susceptibility ~

equation of state at ~

C t

M t

t

T M B

α

β

γ

δ

χ

There are two more critical exponents, which are connected with the spatial variation of fluctuations in the order as the critical point is approached…………

Page 10: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 10 Week 4

The spatial correlation function for the order parameter is written as

( ) ( )0 ~ p r lM r M r e− −

where M (in the ferromagnetic case) is the magnetisation per unit volume. From this we obtain two more exponents, ν and η. These describe the divergence in the correlation length l and the power law decay p that remains at t = 0, when l has diverged. The exponents are defined through

c

correlation length ~power law decay at 2

l tT p d

ν

η

= − +

where d is the dimensionality of the system.

Page 11: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 11 Week 4

4.1.8 Scaling theory

( )2γ ν η= − Fisher law 2 2α β γ+ + = Rushbrooke law ( )1γ β δ= − Widom law 2dν α= − Josephson law

The experimental verification of these results is strong evidence in favour of the scaling hypothesis. Thus it would appear that the correlation length is the only length of importance in the vicinity of the critical point. A consequence of the hypothesis is that only two critical exponents need be calculated for a specific system. Note the Josephson law is the only one to make explicit mention of the spatial dimensionality d.

Page 12: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 12 Week 4

4.2 First order transition – an example 4.2.1 Coexistence

liquid - gascoexistence

criticalpoint

gasliquid

p

V Coexistence region, showing p-V isotherms for liquid–gas system

Page 13: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 13 Week 4

phase 1(liquid)

phase 2(gas)

F

vvolume per particle

v0v1 v2

F2

F1

F0

F′

Helmholtz free energy curve

bcowan
Typewritten Text
(We have F for the vdW model)
Page 14: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 14 Week 4

Thus if a fraction α1 of the particles is in regions of specific volume v1 and a fraction α2 = 1 – α1 in regions of specific volume v2 then

1 1 2 2 0v v vα α+ = so that the fractions are given by

2 0 0 11 2

2 1 2 1

,v v v vv v v v

α α− −= =− − .

Then the free energy of the inhomogeneous system will be given by

1 1 2 2

2 1 1 2 1 20

2 1 2 1

.

F F Fv F v F F F vv v v v

α α= +− −= −− −

Page 15: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 15 Week 4

fractionα2

fractionα1

this would be thesingle-phase statephase 1

(liquid)

phase 2(gas)

this is a point oflower made upfrom fraction ofphase 1 and fraction

= 1 - of phase 2

α α1

2 1

F

vvolume per particle

v0v1 v2

Double tangent construction for phase coexistence

Page 16: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 16 Week 4

d d dF S T p V= − −

so that

T

FpV∂= −∂ ;

equality of pressure.

Page 17: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 17 Week 4

4.2.2 Van der Waals fluid

( )2

2

aNp V Nb NkTV

⎛ ⎞+ − =⎜ ⎟

⎝ ⎠

liquid

gas

criticalpoint

superheatedliquid

supercooledgas

forbiddenregion

V

p

Isotherms of the van der Waals equation

Page 18: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 18 Week 4

4.2.3 The Maxwell construction

Fb = Fa +∂F∂V T

dVVa

Vb

= Fa − pdV .Va

Vb

Integral independent of path:

pdVVa

Vb

∫ = pdV .Va

Vb

so that

pdVVa

Vb

∫ = 0, ∴ pdVVa

Vb

∫ = 0.

Page 19: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 19 Week 4

4.2.4 The critical point

2

20 and 0T T

p pV V∂ ∂= =∂ ∂ .

c c c2

83 , ,27 27a aV Nb p kTb b

= = = . -- Elegant derivation of Stanley.

Page 20: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 20 Week 4

4.2.5 Corresponding states

c c c

, ,V p Tv tV p T

π= = =

then the van der Waals equation takes on the universal form:

2

3 1 83 3

tvv

π⎛ ⎞⎛ ⎞+ − =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠ .

‘Critical compressibility ratio’ zc = pcVc / NkTc is predicted to have the universal value 3/8 = 0.375 for all liquid–gas systems. 4He Ne A Kr Xe N2 O2 CO CH4 pcVc/NkTc 0.308 0.305 0.290 0.291 0.290 0.291 0.292 0.294 0.290

Page 21: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 21 Week 4

NeAKrXeN2

O2

COCH4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

1.00

0.90

0.80

0.70

0.60

T T/ c

c

liquidgas

Liquid - gas coexistence

Page 22: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 22 Week 4

4.2.7 Quantum mechanical effects

Ne4He

3He

AKrXeN2

O2

COCH4

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

1.00

0.90

0.80

0.70

0.60

T T/ c

c

liquidgas

Liquid - gas coexistence including data for helium

Page 23: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 23 Week 4

Λ = ! 2π

mkT . Here m is the mass of the particles. This shows how Λ increases when m is small. At the critical temperature we can write Λ as

Λc =

34!

6πmε

where ε is the energy parameter of the Lennard Jones potential, since

c1627

kT ε= . Then the ratio Λc/σ compares the thermal deBroglie wavelength with the interparticle spacing; σ is the length parameter of the Lennard Jones potential. We tabulate values of this ratio:

3He 4He Ne A Kr Xe N2 O2 Λc/σ 1.595 1.388 0.307 0.096 0.053 0.033 0.119 0.103

Page 24: Chapter 4 Phase Transitions - Royal Holloway, …personal.rhul.ac.uk/UHAP/027/PH4211/PH4211_files/slides4.pdf4211 Statistical Mechanics 2 Week 4 4.1.2 Phase diagrams S L G G L+G S+G

4211 Statistical Mechanics 24 Week 4