chapter-5: introduction to semi-conductors and diode...

29
1 Chapter-5: Introduction to Semi-Conductors and Diode Circuits Valence band Conduction band bound electrons When atoms form a crystalline structure (metals, semiconductors, ) the valence electrons loose their attraction to a local atom and form an band of ~equivalent charges- valence band. The conduction band lies within or above the valence band. 1s 2s 2p 3s 3p Energy gap

Upload: lenguyet

Post on 04-Apr-2018

220 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

1

Chapter-5: Introduction to Semi-Conductors and Diode Circuits

Valence band

Conduction band

bound electrons

When atoms form a crystalline structure (metals, semiconductors, ) the valence electrons loose their attraction to a local atom and form an band of ~equivalent charges- valence band. The conduction band lies within or above the valence band.

1s

2s

2p

3s

3p Energy gap

Page 2: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

2

Energy Bands

Semiconductor

Conduction Band

Valence Band

Energy Gap

Electron Energy

Conduction Band

Valence Band

Insulator

Energy Gap

Electron Energy

Conduction Band

Valence Band

Overlapping bands - little energy is needed for conduction

Conductor

Electron Energy

Page 3: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

3

Rf 104

Ha 105

Sg 106

Uns 107

Uno 108

Une 109

IA

IIA

IIIB IVB VB VIB VIIB IB IIB

IIIA IVA VA VIA VIIA

VIIIA

VIIIB

Hydrogen

H 1

1.008

Beryllium

Be 4 9.01

2

Na 11

Sodium

22.989

Li 3

Lithium

6.939

12 24.312

Mg Magnesium

19

K Potassiu

m

39.102

Ca 20 40.08

Calcium

Sc 21

Scandium

44.956

Ti 22

Titanium

47.90

V 23

Vanadium

50.942

Manganese Mn

25 54.938

Fe 26

Iron

55.847

Co 27

Cobalt

58.933

Ni 28

Nickel

58.71

Rh 45

Rhodium

102.91

Zn 30

Zinc

65.37

As 33

Arsenic

74.922

Se 34

Selenium

78.96

Br 35

Bromine

79.909

Kr 36

Krypton

83.80

Al 13

Aluminum

26.981

Si 14

Silicon

28.086

P 15

Phosphorus

30.974

S 16

Sulfur

32.064

Cl 17

Chlorine

35.453

Ar 18

Argon

39.948

B 5

Boron

10.811

C 6

Carbon

12.011

N 7

Nitrogen

14.007

O 8

Oxygen

15.999

F 9

Florine

18.998

Ne 10

Neon

20.183

He 2

Helium

4.0026

Rb 37

Rubidium

85.47

Sr 38

Strontium

87.62

Y 39

Yttrium

88.905

Zr 40

Zirconium

91.22

Nb 41

Niobium

92.906

Molybde- num

Mo 42 95.94

Cr 24

Chromium

51.996

Technitium

Tc 43 99

Ru 44

Ruthenium

101.07

Cd 48

Cadmium

112.40

Cu 29

Copper

63.54

Palladium

Pd 46 106.4

Silver Ag

47 107.87

Sm 62

Samarium

150.35

Ga 31

Gallium

69.72

In 49

Indium

114.82

Ge 32 72.59

Germanium

Sn 50

Tin

118.69

Sb 51

Antimony

121.75

Te 52

Tellurium

127.60

I 53

Iodine

126.904

Xe 54

Xenon

131.30

Cs 55

Cesium

132.90

Ba 56

Barium

1137.34

La 57

Lanthanum

138.91

Hf 72

Hafnium

178.49

Ta 73

Tantalum

180.95

W 74

Tungsten

183.85

Re 75

Rhenium

186.2

Os 76

Osmium

190.2

Ir 77

Iridium

192.2

Pt 78

Platinum

195.09

Au

79

Gold

196.967

Hg 80

Mercury

200.59

Tl 81

Thallium

204.37

Pb 82

Lead

207.19

Bi 83

Bismuth

208.98

Po 84

Polonium

210

At 85

Astatine

210

Rn 86

Radon

222

Uun 110

Fr 87

Francium

223

Ra 88

Radium

226

Ac 89 227

Actinium

Ce 58

Cerium

140.12 Pr

59

Praseodym-ium

140.91 60

Nd Neodym

-ium

144.24

Pm 61

Prome-thium

147

Europium

Eu 63 151.9

6 Gd 64

Gadolin-ium

157.25 Tb

65

Terbium

158.92 Dy

66

Dyspro-sium

162.50 Ho

67

Holmium

164.93 Er

68

Erbium

167.26 Tm

69

Thulium

168.93 Yb

70

Ytterbium

173.04

71

Lu Lutetium

174.97

Th 90

Thorium

232.04

Pa 91

Procat- inium

231

U 92

Uranium

238.03 Np

93

Neptunium

237

Pu 94

Plutonium

242

Americium Am

95 243

Cm 96

Curium

247

Berkelium

Bk 97 24

7 Cf 98

Califor-nium

249

Es 99

Einstein-ium

254

Fm 100

Fermium

253

Md 101

Mendelev-ium

256 102

No Nobeliu

m

253

Lr 103

Lawren-cium

257

Transition Metals

Nonmetals

Metalloids (semimetals)

Lanthanides

Actinides

Page 4: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

4

Group IVA Elemental Semiconductors

Carbon C 6 • Very Expensive • Band Gap Large: 6V • Difficult to produce without high contamination

Silicon Si 14 • Cheap • Ultra High Purity • Oxide is amazingly perfect for IC applications

Germanium Ge 32 • High Mobility (good) • High Purity Material (good) • Oxide is porous to water/hydrogen (disasterous!)

Tin Sn 50 • Only “White Tin” is semiconductor • Converts to metallic form under moderate heat

Lead Pb 82 • Only “White Lead” is semiconductor • Converts to metallic form under moderate heat

diamond

Page 5: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

5

Si

Si Si Si

Si

Si

Si Si

Si Si

Si

Si

Si

Si

Si

Si

Si

Si Si

Si Si

Si

Si

Si

Si

Silicon atoms share valence electrons to form insulator-like bonds.

Covalent Bonding of Pure Silicon

Page 6: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

6

Donor atoms provide excess electrons to form n-type silicon.

Phosphorus atom serves as n-type dopant

Excess electron (-)

Si

Si Si

Si

Si

Si

Si Si

Si

Si

Si

Si

Si

Si

Si

Si Si

Si

Si

Si

Si

Si

P

P

P

Electrons in N-Type Silicon with Phosphorus Dopant

Page 7: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

7

Acceptor atoms provide a deficiency of electrons to form p-type silicon.

+ Hole

Boron atom serves as p-type dopant

Si

Si Si

Si

Si

Si

Si Si

Si

Si

Si

Si

Si

Si

Si Si

B Si

Si Si

Si

Si

Si

B

B

Holes in p-Type Silicon with Boron Dopant

Page 8: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

8

Group III (p-type)

Boron 5

Aluminum 13

Gallium 31

Indium 49

Group IV

Carbon 6

Silicon 14

Germanium 32

Group V (n-type)

Nitrogen 7

Phosphorus 15

Arsenic 33

Antimony 51

Acceptor Impurities Donor Impurities Semiconductor

Silicon Dopants

Page 9: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

9

Conduction in n and p-Type Silicon

Electron Flow

Hole Flow

Positive terminal from voltage supply

Negative terminal from voltage supply

+Holes flow toward negative terminal

-Electrons flow toward positive terminal

Page 10: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

10

Silicon Resistivity Versus Dopant Concentration

Dop

ant C

once

ntra

tion

(ato

ms/

cm3 )

Electrical Resistivity (ohm-cm)

1021

1020

1019

1018

1017

1016

1015

1014

1013 10-3 10-2 10-1 100 101 102 103

n-type p-type

Page 11: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

11

n- and p-Type Silicon

The dominant charge carrier in n-type Si is the electron.

The dominant charge carrier in p-type Si is the hole

Important Facts: Not shown are the silicon atoms, which are present in vastly greater numbers than either arsenic or boron. Typical doping concentrations are 1016 arsenic or boron atoms per cm3. The concentration of silicon atoms is about 1022 atoms per cm3. For every "dopant" atom, there are about a million silicon atoms.

Page 12: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

12

} p-type Si n-type Si

Depletion Region !x

Cathode Anode

Metal contact

Potential step

Charge distribution of barrier voltage

across a pn Junction.

Open-Circuit Condition of a p-n Junction Diode

Diffusing electrons and holes create an electric field Eo and potential step at the junction.

0

Eo

Barrier voltage

Page 13: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

13

Forward-Biased PN Junction Diode p n

V

Hole flow Electron flow

Lamp

Eapp

Eo

In forward bias the applied E-field cancels internal electric field and charges begin flowing across the junction when Eapp>Eo or Vapp>~0.6V.

Page 14: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

14

p n

3 V Lamp

Open-circuit condition (high resistance)

Reverse-Biased PN Junction Diode

Eapp

In the reverse bias the external E-field increases the size of the depletion zone until all charge carries are near the contacts - fully depleted.

Page 15: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

15

I-V Characteristic Curve

Reverse current exaggerated; typical reverse saturation current: IS ~10-(6-12)A.

This is the "characteristic" curve of a pn junction diode. It shows the slow, then abrupt, rise of current as the voltage is raised. Under reverse bias, even very large voltages will cause only very small currents, essentially constant reverse bias currents.

Shockley Diode Law (Ideal)I = IS (e

+eVD /kT −1) ~ IS  e+eVD /kT    

IS = reverse bias saturation currentVD = diode voltage        kT = 0.025eV  at  300o K 

Page 16: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

16

Turn-On Voltage

A pn junction diode "turns on" at about 0.6 V, but that varies according to the doping concentration, diode type. Notice the sharp rise in current near the turn-on voltage. This behavior will be exploited later in the construction of the transistor amplifier.

Use the Shockley Equation to det ermin e the  forward  diode current  VD = 1 V  T = 3000K  and  IS = 10pA.I = 10pA exp(1eV / 0.025eV ) = 2.4e9A !!

Page 17: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

17

Solving Diode Equation by Iteration

ε −Vd − IR = 0     Kirchhoff ' s law         

I = ε −VdR

= IS eeVd /nkT −1( )       n ≡ diode realty  factor  n ~ 1.5eVdnkT

= ln IIS

+1⎛⎝⎜

⎞⎠⎟   

Vd  =ne

⎛⎝⎜

⎞⎠⎟ kT ln

ε −VdISR

+1⎛⎝⎜

⎞⎠⎟     Solve by iteration

  

Vd(1)  = n

e⎛⎝⎜

⎞⎠⎟ kT ln

ε −Vd(0)

ISR+1

⎛⎝⎜

⎞⎠⎟

Vd(2)  = n

e⎛⎝⎜

⎞⎠⎟ kT ln

ε −Vd(1)

ISR+1

⎛⎝⎜

⎞⎠⎟

.

Stop when Vd(N+1) ~ Vd

(N )

I

http://en.wikipedia.org/wiki/Diode_modelling#Shockley_diode_model

DIODE EQ. ITERATIVE SOLUTION

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 5 10 15 20

Iteration Number

Vd

Is 2.00E-06 Ampsemf 10 VoltsR 1000 Ohmsn 1

ε

Page 18: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

18

A PN Junction Diode and Its Symbol

Black band corresponds to the "point" in the diode symbol on the right.

It points as "point" is spelled, with "p" first, and"n" later.

Page 19: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

19

p- Substrate

Cathode Anode

pn junction diode

Metal contact

Heavily doped p region Heavily doped n region

Basic Symbol and Structure of the pn Junction Diode

Page 20: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

20

Light Emitting Diodes As electrons and holes pass thru the forward biased junction, some annihilate and release hf = eUo of activation energy in to light.

E=hc/λ = 1240 eV-nm / λ(nm) Red light of 650nm would correspond to Uo = 1240/650 eV = 1.9 eV

Activation Voltage Uo

+ + + +

- - - -

- +

hf

Activation Energy

Forbidden zone

Fermi level

Fermi level

Page 21: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

21

Vdiode ! 0.6V

V >Vdiode       zd = r   and   VOUT = (R

r + R)V = ( 1

1+ r / R)V ! (1− r / R) V !V −Vdiode  

V <Vdiode     zd = ∞ and    VOUT = (R

∞ + R)V = 0

zd

R

~0.6V

V Vout

Vout

Simple Diode Circuit

~0.6V

zd

R V

Page 22: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

22

AC-DC ConverterCapacitor  charges to  peak  voltage VOUT ~VS − 0.6VVoltage decays on down − cycle  VOUT =VS  e

− t /RC

       VOUT (t) =VS  (1− t / RC + ...     )      t / RC <<1 

        ΔV = VOUT (t)−VS = VSRtC

= if  C

ripplevoltage

r = ΔV /VOUT     ripple   factorVOUT  ≅ VS − 0.6V    We have  produced  a DC   voltage  from  AC  input. 

Half Wave Rectifier - AC-to-DC Conversion zd

R Vs C

Vout

Vout

Page 23: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

23

Full Wave Rectifier - AC-to-DC Conversion

120VAC

- In a Full Wave Rectifier two diodes act to rectify both positive and negative cycles.

- A transformer is generally used to isolate the 120VAC (20A) from the secondary.

- Less power wasted and a reduced ripple factor:

C R

V2= (N2/N1)V1 Vout = 12 V2

r =12

if  C( )

Vout

Page 24: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

24

Cockroft -Walton Voltage Multipliers

4-stage Multiplier 1. On the positive halfcycle C1,C2,C,C4 charge to +Us thru D2 and D4. D1 and D3 are blocking. 2. On the negative halfcycle C1,C3, charge to -Us, but C2 and C4 can not discharge. 3. On the 2nd cycle C1,C2,C,C4 charge again to +Us thru D2 and D4. and C2 and C4 coming each chargeing to 2 Us. 4. The total potential difference across the output C2+C4 is Vout= +4Us. 5. Practically speaking Vout < +4Urms. 6. You can hear your digital camera charge up the capacitor banks for the flash. The cockroft walton concept can only supply a short burst of charge and must be modified for high DC current use.

http://www.blazelabs.com/e-exp15.asp

+ +

++ ++

Page 25: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

25

Voltage Doubler Circuit

V=2Vo

C

C

D1

D2 Q

Q

Vo

•  Capacitors are charged to Q by Vo sin(wt) after a few cycles.

•  Charge can not leak off due to diodes. T

•  Total Voltage sum is V=2Vo (doubler)!

Page 26: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

26

Zener Diode / Voltage regulator

Zener breakdown Voltage ~ -VZ

0.6 V +V -V

• A Zener works in reverse bias mode. It is be designed to break down at the precise voltage called VZener ~10-100V eg. •  Point a in the circuit is fixed to the Zener voltage when Vin > Vz. •  The Zener diode is used for tight DC voltage regulation.

V Vout

R

RL

Vz a

ChooseRto limit the current thru the Zener diode (IZmax ≈ 50ma)

IL =VZ / RL

I = (V −VZ ) / RIZ = I − IL < IZmax

(V −VZ ) / R −VZ / RL < IZmax

(V −VZ ) / R< IZmax +VZ / RL

R > (V −VZ )RL

IZmaxRL +VZ> (10V − 5V )1000Ω

0.005A ⋅1000Ω + 5V= 91Ω

Page 27: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

27

Input/Output Protection with Diodes

A diode placed in series with the positive side of the power supply is called a reverse protection diode. It ensures that current can only flow in the positive direction, and the power supply only

applies a positive voltage to your circuit.

Page 28: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

28

Input/Output Protection with Diodes

•  The 470Ω resistor in series with the LED limits the forward bias current flowing through the LED typically Ilimit< 20ma. •  9V - 470 I – 0.6V = 0 so I = 8.4V/470Ω =18ma (safe).

•  Id = 0 in most cases where point a is maintained with a positive voltage.

•  If someone attached the battery in the reverse directions the LED would blow out w/o the protection diode. The diode allows the current to bypass the LED!

i

id a

Page 29: Chapter-5: Introduction to Semi-Conductors and Diode …cremaldi/PHYS321/Chapter5-DiodeBasics.pdf · Chapter-5: Introduction to ... electrons When atoms form a crystalline structure

29

•  Consider a circuit with a power supply and an inductive load (e.g. motor) on it. From the instant the switch is closed, the inductive load will accumulate stored energy. When the switch is opened this energy will generate a high reverse voltage and arc across the contacts of the switch. This could damage the switch, load and other circuit components.

•  A power diode placed across the inductive load will provide a path for the release

of energy stored in the inductor while the inductive load voltage drops to zero.

Load Protection with Diodes

- +

- +