chapter 6 - ordinary differential equation

Upload: jun005

Post on 03-Apr-2018

231 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    1/61

    MDC10103

    Advanced Engineering

    Mathematics

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    2/61

    Lectures Information

    Saifulnizan Jamian

    E5-001-06

    012-3247301 07-4537334

    [email protected]

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    3/61

    Contents

    Ordinary Differential Equation

    Partial Differential Equation Numerical Optimization

    Statistical Methods

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    4/61

    Chapter 6

    Ordinary Differential Equation

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    5/61

    Contents

    Fourth-order Runge-Kutta method

    Fourth-order Adams predictor-corrector method

    System of differential equation by Fourth-order Runge-Kutta method

    Boundary-value problem: linear shooting method and

    finite-difference method

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    6/61

    Introduction

    Ordinary differential equations arise in many different contextsthroughout mathematics and science (social and natural) one way

    or another, because when describing changes mathematically, the

    most accurate way uses differentials and derivatives (related,

    though not quite the same). Since various differentials,derivatives, and functions become inevitably related to each other

    via equations, a differential equation is the result, governing

    dynamical phenomena, evolution and variation. Often, quantities

    are defined as the rate of change of other quantities (time

    derivatives), or gradients of quantities, which is how they enter

    differential equations.

    (Wikipedia)

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    7/61

    Example

    Newton's second law of motion

    t

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    8/61

    n t a - a ue ro em oFirst-Order Differential

    EquationConsider an IVP of the first-order differential equation:

    )1.6.()(),,(' 00 Eqyxyyxfy ==

    Can be solved by:

    a)Fourth-order Runge-Kutta Method (RK4)

    b)Fourth-order Adam Predictor-Corrector Method

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    9/61

    Fourth-order Runge-KuttaMethod (RK4)

    The solution of Eq. (6.1) by RK4 method is:

    ( )43211 226

    1

    kkkkyy ii ++++=+

    ( )

    ( )342

    3

    1

    21

    ,;2

    ,2

    2,2;,

    kyhxhfkk

    yh

    xhfk

    k

    y

    h

    xhfkyxhfk

    iiii

    iiii

    ++=

    ++=

    ++==

    where:

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    10/61

    Example 6.1

    Solve the IVP y= x/y, y(0)=1 at x=0(0.2)1 using

    RK4 method. If the exact solution is y=(x2+1)0.5,

    find the absolute errors.

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    11/61

    Solution

    ( )43211

    226

    1kkkkyy

    ii ++++=+

    3

    42

    3

    121

    2.02.0;

    2

    1.02.0

    2

    1.02.0;2.0

    ky

    xk

    ky

    xk

    k

    y

    xk

    y

    xk

    i

    i

    i

    i

    i

    i

    i

    i

    ++

    =+

    +=

    +

    +==

    where:

    2.0,),(' === hyxyxfy

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    12/61

    Solution

    i xi yi k1 k2 k3 k4 Exact y error

    0 0 1.0000 0.0000 0.0200 0.0198 0.0392 1.0000 0.E+00

    1 0.2 1.0198 0.0392 0.0577 0.0572 0.0743 1.0198 6.E-07

    2 0.4 1.0770 0.0743 0.0898 0.0891 0.1029 1.0770 2.E-06

    3 0.6 1.1662 0.1029 0.1150 0.1144 0.1249 1.1662 3.E-06

    4 0.8 1.2806 0.1249 0.1340 0.1336 0.1414 1.2806 4.E-06

    5 1 1.4142 0.1414 0.1482 0.1478 0.1536 1.4142 4.E-06

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    13/61

    Example 6.2

    Solve the IVP y= x2(1-3y), y(0)=1 at x=0(0.2)1

    using RK4 method. Find the absolute errors if the

    exact solution is

    3

    1

    3

    2 3

    +=

    x

    ey

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    14/61

    Solution

    ( )43211

    226

    1kkkkyy

    ii

    ++++=+

    ( ) ( )

    ( )

    ( ) ( )( )32

    4

    22

    3

    12

    2

    2

    1

    312.02.0

    ;2

    311.02.0

    2311.02.0;312.0

    kyxk

    kyxk

    kyxkyxk

    ii

    ii

    iiii

    ++=

    ++=

    ++==

    where:

    ( ) 2.0,31),(' 2 === hyxyxfy

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    15/61

    Solution

    i xi yi k1 k2 k3 k4 Exact y error0 0 1.0000 0.0000 -0.0040 -0.0040 -0.0159 1.0000 0.E+00

    1 0.2 0.9947 -0.0159 -0.0353 -0.0348 -0.0602 0.9947 1.E-06

    2 0.4 0.9587 -0.0600 -0.0893 -0.0871 -0.1163 0.9587 3.E-06

    3 0.6 0.8705 -0.1160 -0.1409 -0.1372 -0.1536 0.8705 5.E-06

    4 0.8 0.7329 -0.1534 -0.1569 -0.1560 -0.1461 0.7329 6.E-06

    5 1 0.5786 -0.1472 -0.1247 -0.1328 -0.0972 0.5786 4.E-05

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    16/61

    Fourth-order AdamsPredictor-Corrector Method

    The solution of Eq. (6.1) by this method is:

    ( )

    ( )2111

    3211

    519924

    9375955

    24

    ++

    +

    +++=

    ++=

    iiiiP

    iiC

    iiiiiiP

    ffffh

    yy

    ffffh

    yy

    Where superscript P and C are stands for predictor andcorrector equation, respectively.

    Note: RK4 method is a single point method, where the new approximation solution is just

    based on previous point, while Fourth-order Adams Predictor-corrector method is multiple

    point method, where the new approximation solution is based on previous four points. To get

    last three starting point we may approximate them by RK4 method.

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    17/61

    Example 6.3

    Solve the IVP y= x/y, y(0)=1 at x=0(0.2)1 using

    Fourth-order Adams Predictor-Corrector method.

    If the exact solution is y=(x2+1)0.5, find the

    absolute errors.

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    18/61

    Solution

    ( )43211 226

    1kkkkyy ii ++++=+

    3

    42

    3

    121

    2.02.0;

    2

    1.02.0

    2

    1.02.0;2.0

    ky

    xk

    ky

    xk

    k

    y

    xk

    y

    xk

    i

    i

    i

    i

    i

    i

    i

    i

    ++

    =+

    +=

    +

    +==

    where:

    2.0,),(' === hy

    xyxfy

    Obtain y1, y2 and y3 from RK4:

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    19/61

    Solution

    i xi yi k1 k2 k3 k4 Exact y error

    0 0 1.0000 0.0000 0.0200 0.0198 0.0392 1.0000 0.E+00

    1 0.2 1.0198 0.0392 0.0577 0.0572 0.0743 1.0198 6.E-07

    2 0.4 1.0770 0.0743 0.0898 0.0891 0.1029 1.0770 2.E-06

    3 0.6 1.1662 0.1029 0.1150 0.1144 0.1249 1.1662 3.E-06

    Obtain y4 and y5 using Fourth-order Adams Predictor-

    Corrector Method

    +++=

    ++=

    1

    1

    2

    2

    3

    3

    4

    434

    0

    0

    1

    1

    2

    2

    3

    3

    34

    519924

    2.0

    937595524

    2.0

    y

    x

    y

    x

    y

    x

    y

    xyy

    y

    x

    y

    x

    y

    x

    y

    x

    yy

    P

    C

    P

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    20/61

    Solution

    i xi yp yi=yc Exact y error

    0 0 1.0000 1.0000 0.E+00

    1 0.2 1.0198 1.0198 4.E-06

    2 0.4 1.0770 1.0770 3.E-05

    3 0.6 1.1662 1.1662 1.E-05

    4 0.8 1.2799 1.2807 1.2806 8.E-05

    5 1 1.4139 1.4143 1.4142 1.E-04

    +++=

    ++=

    2

    2

    3

    3

    4

    4

    5

    5

    45

    1

    1

    2

    2

    3

    3

    4

    445

    519924

    2.0

    9375955242.0

    y

    x

    y

    x

    y

    x

    y

    xyy

    yx

    yx

    yx

    yxyy

    P

    C

    P

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    21/61

    Example 6.4

    Solve the IVP y= x2(1-3y), y(0)=1 at x=0(0.2)1

    using Fourth-order Adams Predictor-Corrector

    method. Find the absolute errors if the exact

    solution is

    3

    1

    3

    2

    '

    3

    +=

    x

    ey

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    22/61

    Solution

    ( ) ( ) ( ) ( )( )

    ( ) ( ) ( ) ( )( )12

    2

    2

    3

    24

    2

    434

    001

    2

    2

    2

    3

    2

    34

    31315311931924

    2.0

    31931373159315524

    2.0

    123

    123

    yxyxyxyxyy

    yxyxyxyxyy

    PC

    P

    +++=

    ++=

    Obtain y1, y2 and y3 from RK4.

    Obtain y4 and y5 using Fourth-order Adams Predictor-

    Corrector Method

    ( ) ( ) ( ) ( )( )

    ( ) ( ) ( ) ( )( )22

    3

    2

    4

    25

    2

    545

    112

    2

    3

    2

    4

    2

    45

    31315311931924

    2.0

    31931373159315524

    2.0

    234

    234

    yxyxyxyxyy

    yxyxyxyxyy

    PC

    P

    +++=

    ++=

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    23/61

    Solution

    i xi yp yi=yc Exact y error

    0 0 1.0000 1.0000 0.E+00

    1 0.2 0.9947 0.9947 1.E-05

    2 0.4 0.9587 0.9587 3.E-05

    3 0.6 0.8705 0.8705 1.E-05

    4 0.8 0.7277 0.7337 0.7329 8.E-04

    5 1 0.5800 0.5782 0.5786 4.E-04

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    24/61

    System of First-OrderDifferential Equations

    Consider the initial-value problem of first-order differential

    equations

    ( )

    ( )yxtgdt

    dy

    yxtfdt

    dx

    ,,

    ,,

    =

    =

    with ( ) ( ) 0000 , ytyxtx ==

    The solution of both ODEs using RK4 method will

    be given by:( )

    ( )43211

    43211

    226

    1

    226

    1

    ggggyy

    ffffxx

    ii

    ii

    ++++=

    ++++=

    +

    +

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    25/61

    System of First-OrderDifferential Equations

    7 - 25

    ( )

    ( )

    ( )

    ( )33422

    3

    121

    33422

    3

    121

    ,,;2

    ,2

    ,2

    2

    ,

    2

    ,

    2

    ;,,

    ,,;2

    ,2

    ,2

    2,

    2,

    2;,,

    gyfxhthggg

    yf

    xh

    thgg

    gy

    fx

    hthggyxthgg

    gyfxhthffgyfxhthff

    gy

    fx

    hthffyxthff

    iiiiii

    ii

    iiiii

    iiiiii

    ii

    iiiii

    +++=

    +++=

    +++==

    +++=

    +++=

    +++==

    where:

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    26/61

    Example 5

    A simple RL-electrical circuit consists of electrical current i (in

    ampheres), resistanceR (in ohms), inductanceL (in hengrys), and

    electromotive forceE(t) (in volts), as shown in Figure below.

    Given that q (in coulombs) is the charge, and R, and L are assumed

    constants. Given that i = dq/dtand di/dt= d2q/dt2. According toKirchoffs second law, the current I satisfies the differential equation

    Given thatR = 15,L = 3,E(t) = 120 and the initial condition q = 0 and i

    = 0 when t= 0. Find i and q for 0t 2 with t= 0.25 using RK4

    method. If the exact solution are q = 8(e-5t 1)/5 +8tand i = 8(1-e-5t),

    find the absolute errors fori and q.

    ( )tEdt

    dqR

    dt

    xdL =+

    2

    2

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    27/61

    SolutionGiven

    hencedt

    qd

    dt

    diand

    dt

    dqi

    2

    2

    == ( )tEdt

    dqR

    dt

    qdL =+

    2

    2

    becomes

    ( )tERidt

    diL =+

    The second order differential becomes system of first ODE below:

    ( )

    ( ) iiiqtgL

    RitEdtdi

    iqtfidt

    dq

    540315120,,)(

    ,,

    ====

    ==

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    28/61

    SolutionUsing RK4 method,

    ( ) ( )4321143211 226

    1;22

    6

    1ggggiiffffqq kkkk ++++=++++= ++

    ( )

    ( )

    ( )( )342

    3

    1

    21

    342

    31

    21

    54025.0;2

    54025.0

    254025.0;54025.0

    25.0;2

    25.0;2

    25.0;25.0

    gigg

    ig

    g

    igig

    gifg

    ifg

    ifif

    +=

    +=

    +==

    +=

    +=

    +==

    where:

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    29/61

    Solutionk t q i f1 g1 f2 g2 f3

    0 0 0.0000 0.0000 0.0000 10.0000 1.2500 3.7500 0.4688

    1 0.25 0.8919 5.5404 1.3851 3.0745 1.7694 1.1530 1.5292

    2 0.5 2.5512 7.2438 1.8109 0.9453 1.9291 0.3545 1.8553

    3 0.75 4.4465 7.7675 1.9419 0.2906 1.9782 0.1090 1.9555

    4 1 6.4143 7.9285 1.9821 0.0894 1.9933 0.0335 1.9863

    5 1.25 8.4044 7.9780 1.9945 0.0275 1.9979 0.0103 1.9958

    6 1.5 10.4014 7.9932 1.9983 0.0084 1.9994 0.0032 1.9987

    7 1.75 12.4004 7.9979 1.9995 0.0026 1.9998 0.0010 1.9996

    8 2 14.4001 7.9994 1.9998 0.0008 1.9999 0.0003 1.9999

    g3 f4 g4 exact q exact i error q error i

    7.6563 1.9141 0.4297 0.0000 0.0000 0.0000 0.0000

    2.3539 1.9736 0.1321 0.8584 5.7080 0.0335 0.1676

    0.7237 1.9919 0.0406 2.5313 7.3433 0.0199 0.0995

    0.2225 1.9975 0.0125 4.4376 7.8119 0.0089 0.04440.0684 1.9992 0.0038 6.4108 7.9461 0.0035 0.0176

    0.0210 1.9998 0.0012 8.4031 7.9846 0.0013 0.0065

    0.0065 1.9999 0.0004 10.4009 7.9956 0.0005 0.0023

    0.0020 2.0000 0.0001 12.4003 7.9987 0.0002 0.0008

    0.0006 2.0000 0.0000 14.4001 7.9996 0.0001 0.0003

    oun ary a ue ro em

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    30/61

    oun ary- a ue ro em(BVP) of Second-Order

    Differential EquationConsider a linear second-order differential equation)2.6.()()()()(')()(")( Eqxdxyxcxyxbxyxa =++

    Can be solved by:

    a)Shooting method

    b)Finite-Difference Method (FDM)

    With the boundary conditions (BCs)nn yxyyxy == )(;)( 00

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    31/61

    Shooting Method

    Let

    ?)(;)()()()(')(

    )(;)('

    0

    00

    ==++==

    xzxdyxczxbxzxa

    yxyzxy

    Since so we can use it as our initial

    guess of z(x0). Then, the system of IVP can be solved usingRK4 method. After the first trial, we will notice that the BC

    y(xn) is not equal to yn, so we have to adjust (shoot) the initial

    guess of z(x0) until it matches the BC y(xn)=yn. Therefore this

    method is called shooting method.

    Here Eq. (6.2) can be transformed into a system of IVP

    as below:

    )(')(")(' xzxythenzxy n ==

    ,'0

    0

    xx

    yyyz

    n

    n

    ==

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    32/61

    Example 6

    A simple RL-electrical circuit consists of electrical current i (in

    ampheres), resistanceR (in ohms), inductanceL (in hengrys), and

    electromotive forceE(t) (in volts), as shown in Figure below.

    Given that q (in coulombs) is the charge, and R, and L are assumed

    constants. Given that i = dq/dtand di/dt= d2q/dt2. According toKirchoffs second law, the current I satisfies the differential equation

    Given thatR = 15,L = 3,E(t) = 120 and the BCs as follow:

    q = 0 at t= 0 and q = 14.4 at t= 2

    Find i and q for 0t 2 with h = 0.25 using Shooting method.

    ( )tEdt

    dqR

    dt

    xdL =+

    2

    2

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    33/61

    Solution

    7 - 33

    STEP 1

    Since the second initial condition i is unknown at t= 0, we can

    guess this equal to 2.7

    02

    04.14)0( =

    ==dt

    dqi

    Solving by RK4 as in Example 5 gives the results in following

    table.

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    34/61

    Solutionk t q i f1 g1 f2 g2 f3

    0 0 0.0000 7.2000 1.8000 1.0000 1.9250 0.3750 1.8469

    1 0.25 1.8892 7.7540 1.9385 0.3075 1.9769 0.1153 1.9529

    2 0.5 3.8551 7.9244 1.9811 0.0945 1.9929 0.0354 1.9855

    3 0.75 5.8447 7.9767 1.9942 0.0291 1.9978 0.0109 1.9955

    4 1 7.8414 7.9929 1.9982 0.0089 1.9993 0.0034 1.9986

    5 1.25 9.8404 7.9978 1.9995 0.0027 1.9998 0.0010 1.9996

    6 1.5 11.8401 7.9993 1.9998 0.0008 1.9999 0.0003 1.9999

    7 1.75 13.8400 7.9998 1.9999 0.0003 2.0000 0.0001 2.00008 2 15.8400 7.9999 2.0000 0.0001 2.0000 0.0000 2.0000

    g3 f4 g4

    0.7656 1.9914 0.0430

    0.2354 1.9974 0.0132

    0.0724 1.9992 0.0041

    0.0223 1.9998 0.00120.0068 1.9999 0.0004

    0.0021 2.0000 0.0001

    0.0006 2.0000 0.0000

    0.0002 2.0000 0.0000

    0.0001 2.0000 0.0000

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    35/61

    Solution

    7 - 35

    STEP 2

    Since q(2) = 15.84 is higher than the value of BC given, so we

    have to reduce our initial guess ofi(0). Let try i(0) = 1 and resolve

    again using RK4.

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    36/61

    Solutionk t q i f1 g1 f2 g2 f3

    0 0 0.0000 1.0000 0.2500 8.7500 1.3438 3.2813 0.6602

    1 0.25 1.0304 5.8478 1.4620 2.6902 1.7982 1.0088 1.5881

    2 0.5 2.7323 7.3383 1.8346 0.8271 1.9380 0.3102 1.8733

    3 0.75 4.6407 7.7966 1.9491 0.2543 1.9809 0.0954 1.9611

    4 1 6.6125 7.9375 1.9844 0.0782 1.9941 0.0293 1.9880

    5 1.25 8.6038 7.9808 1.9952 0.0240 1.9982 0.0090 1.9963

    6 1.5 10.6012 7.9941 1.9985 0.0074 1.9994 0.0028 1.9989

    7 1.75 12.6004 7.9982 1.9995 0.0023 1.9998 0.0009 1.99978 2 14.6001 7.9994 1.9999 0.0007 1.9999 0.0003 1.9999

    g3 f4 g4

    6.6992 1.9248 0.3760

    2.0597 1.9769 0.1156

    0.6333 1.9929 0.0355

    0.1947 1.9978 0.01090.0599 1.9993 0.0034

    0.0184 1.9998 0.0010

    0.0057 1.9999 0.0003

    0.0017 2.0000 0.0001

    0.0005 2.0000 0.0000

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    37/61

    Solution

    STEP 3Again this time, q(2) = 14.6 is still higher than the value of BC

    given. If we try to reduce the initial guess ofi(0) slowly, we will

    achieve at one stage that the result ofq(2) match the BC given.

    However, a faster way rather than slowly adjusting the initial

    guess is using the linear interpolation based on the data obtainedin step 1 and step 2 ( or after two trials).

    j 0 1 2

    q(2) 15.84 14.6 14.4

    i(0) 7.2 1?

    0006.0

    )1(84.156.14

    84.154.14)2.7(

    6.1484.15

    6.144.14)4.14(

    )( 101

    00

    10

    1

    =

    +

    =

    +

    =

    f

    iqq

    qqi

    qq

    qqqf

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    38/61

    Solution

    STEP 4So in the third trial we use the initial guess ofi(0) = -0.0006 and

    resolve again using RK4. This time we will see the BCs is

    fulfilled.

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    39/61

    Solutionk t q i f1 g1 f2 g2 f3

    0 0 0.0000 -0.0006 -0.0002 10.0008 1.2499 3.7503 0.4686

    1 0.25 0.8918 5.5402 1.3850 3.0748 1.7694 1.1530 1.5292

    2 0.5 2.5511 7.2437 1.8109 0.9454 1.9291 0.3545 1.8552

    3 0.75 4.4464 7.7675 1.9419 0.2907 1.9782 0.1090 1.9555

    4 1 6.4142 7.9285 1.9821 0.0894 1.9933 0.0335 1.9863

    5 1.25 8.4043 7.9780 1.9945 0.0275 1.9979 0.0103 1.9958

    6 1.5 10.4012 7.9932 1.9983 0.0084 1.9994 0.0032 1.9987

    7 1.75 12.4003 7.9979 1.9995 0.0026 1.9998 0.0010 1.99968 2 14.4000 7.9994 1.9998 0.0008 1.9999 0.0003 1.9999

    g3 f4 g4

    7.6568 1.9141 0.4297

    2.3541 1.9736 0.1321

    0.7238 1.9919 0.0406

    0.2225 1.9975 0.01250.0684 1.9992 0.0038

    0.0210 1.9998 0.0012

    0.0065 1.9999 0.0004

    0.0020 2.0000 0.0001

    0.0006 2.0000 0.0000

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    40/61

    Example 7

    The radial temperature distribution in a cylinder is governed by

    Using shooting method to find the radial temperature distribution if the

    inner radius is 5 units and outer radius is 10 units. The inner and outersurface are maintained at 120C and 60 C respectively with h = 1.

    01

    2

    2

    =+dt

    dT

    rdr

    Td

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    41/61

    Solution

    7 - 41

    STEP 1

    T(5) =120, T(10) =60

    ( )

    ?)5(;),,(

    ,,

    2

    2

    ====

    ==

    ssTrgr

    s

    dr

    ds

    dr

    Td

    sTrfsdr

    dT

    Since we do not have the information of s(5), we can guess that

    12510

    12060)5( =

    ==dr

    dTs

    Solving by RK4.

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    42/61

    SolutionUsing RK4 method,

    ( ) ( )4321143211 226

    1;22

    6

    1ggggssffffTT iiii ++++=++++= ++

    hr

    gsg

    hr

    gs

    g

    hr

    gs

    g

    r

    sg

    gsfg

    sfg

    sfsf

    +

    +=

    +

    +=

    +

    +==

    +=+=+==

    14

    2

    3

    1

    21

    3423121

    ;

    2

    2;

    2

    2;

    ;2;2;

    where:

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    43/61

    Solutioni r T s f1 g1 f2 g2 f3

    0 5 120.0000 -12.0000 -12.0000 2.4000 -10.8000 1.9636 -11.01821 6 109.0612 -10.0000 -10.0000 1.6667 -9.1667 1.4103 -9.2949

    2 7 99.8123 -8.5714 -8.5714 1.2245 -7.9592 1.0612 -8.0408

    3 8 91.8005 -7.5000 -7.5000 0.9375 -7.0313 0.8272 -7.0864

    4 9 84.7336 -6.6667 -6.6667 0.7407 -6.2963 0.6628 -6.3353

    5 10 78.4120 -6.0000 -6.0000 0.6000 -5.7000 0.5429 -5.7286

    g3 f4 g4

    2.0033 -9.9967 1.6661

    1.4300 -8.5700 1.2243

    1.0721 -7.4993 0.9374

    0.8337 -6.6663 0.7407

    0.6669 -5.9998 0.6000

    0.5456 -5.4544 0.4959

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    44/61

    Solution

    7 - 44

    STEP 2

    Since T(10) = 78.412 is higher than the value of BC given, so we

    have to reduce our initial guess of s(5). Let try s(5) = -15 and

    resolve again using RK4.

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    45/61

    Solutioni r T s f1 g1 f2 g2 f3

    0 5 120.0000 -15.0000 -15.0000 3.0000 -13.5000 2.4545 -13.77271 6 106.3264 -12.5000 -12.5000 2.0833 -11.4583 1.7628 -11.6186

    2 7 94.7654 -10.7143 -10.7143 1.5306 -9.9490 1.3265 -10.0510

    3 8 84.7506 -9.3750 -9.3750 1.1719 -8.7891 1.0340 -8.8580

    4 9 75.9170 -8.3333 -8.3333 0.9259 -7.8704 0.8285 -7.9191

    5 10 68.0150 -7.5000 -7.5000 0.7500 -7.1250 0.6786 -7.1607

    g3 f4 g4

    2.5041 -12.4959 2.0826

    1.7875 -10.7125 1.5304

    1.3401 -9.3741 1.1718

    1.0421 -8.3329 0.9259

    0.8336 -7.4997 0.7500

    0.6820 -6.8180 0.6198

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    46/61

    Solution

    STEP 3Again this time, T(10) = 68.015 is still higher than the value of

    BC given. Use a faster way rather than slowly adjusting the initial

    guess, using the linear interpolation based on the data obtained in

    step 1 and step 2 ( or after two trials).

    j 0 1 2

    T 78.412 68.015 60

    s -12 -15?

    3127.17

    )15(412.78015.68

    412.7860)12(

    015.68412.78

    015.6860)60(

    )( 101

    00

    10

    1

    =

    +

    =

    +

    =

    f

    sTT

    TTsTT

    TTTf

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    47/61

    SolutionSTEP 4

    So in the third trial we use the initial guess ofs(5) = -17.3127 and

    resolve again using RK4. This time we will see the BCs is

    fulfilled.

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    48/61

    Solutioni r T s f1 g1 f2 g2 f3

    0 5 120.0000 -17.3127 -17.3127 3.4625 -15.5814 2.8330 -15.89621 6 104.2183 -14.4273 -14.4273 2.4045 -13.2250 2.0346 -13.4099

    2 7 90.8747 -12.3662 -12.3662 1.7666 -11.4829 1.5311 -11.6007

    3 8 79.3159 -10.8204 -10.8204 1.3526 -10.1442 1.1934 -10.2237

    4 9 69.1203 -9.6182 -9.6182 1.0687 -9.0838 0.9562 -9.1401

    5 10 59.9999 -8.6564 -8.6564 0.8656 -8.2235 0.7832 -8.2648

    g3 f4 g4

    2.8902 -14.4225 2.4037

    2.0631 -12.3642 1.7663

    1.5468 -10.8195 1.3524

    1.2028 -9.6176 1.0686

    0.9621 -8.6561 0.8656

    0.7871 -7.8692 0.7154

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    49/61

    Example 8

    Solve the BVP ofexy+xy-5(1 +x)y =x3

    with the following BCs

    y(0) = 2 , y(2) = 5

    Atx = 0(0.5)2 using shooting method.

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    50/61

    Solution

    BVP Fi it Diff

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    51/61

    BVP: Finite-DifferenceMethod

    To solve Eq. (6.2) using FDM, the interval ofx is divided inton subintervals with width = h such thatxi =x0 + ih. Then

    substitute

    Into the Eq. (6.2) yields a tridiagonal system ofn - 2 equations

    to be solved (solve for y from i = 1 to n - 10

    h

    yy

    xyandh

    yyy

    xy

    iiiii

    2)('

    2

    )("

    11

    2

    11 ++

    =

    +

    =

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    52/61

    Example 9

    Solve the BVP ofexy+xy-5(1 +x)y =x3

    with the following BCs

    y(0) = 2 , y(2) = 5

    Atx = 0(0.5)2 using FDM.

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    53/61

    Solution

    7 - 53

    STEP 1

    ( )

    ( ) 3112

    11

    3

    15

    2

    2

    5.0,15'"

    iiiii

    iiiix

    x

    xyx

    h

    yyx

    h

    yyye

    hxyxxyye

    i =+

    +

    +==++

    ++

    Multiply by h2 = 0.25 at both hand-side yields

    ( ) ( ) ( ) 31111 25.0125.125.02 iiiiiiiiix xyxyyxyyye i =+++ ++

    Rearranged this equation

    ( ) ( )( ) ( )3

    11 25.025.0125.1225.0 iiix

    ii

    x

    ii

    x xyxeyxeyxe iii =++++ +

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    54/61

    SolutionSTEP 2

    Put in the BCs in the table below

    l xi yi

    0 0 2

    1 0.5 y1

    2 1.0 y2

    3 1.5 y3

    4 2 5There are 3 value of y to be solved. Therefore 3

    simultaneous equations are required.

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    55/61

    SolutionSTEP 3

    Obtain the equations by inserting value ofx based on ii (exi

    0.25xi)yi-

    1

    + (-2exi-1.25(1+xi)

    yi + (exi

    0.25xi)Yi+1 = 0.25xi

    3

    1 1.524 y0 + -5.172 y1 + 1.774 y2 = 0.031

    2 2.468 y1 + -7.937 y2 + 2.968 y3 = 0.250

    3 4.107 y2 + -12.088 y3 + 4.857 y4 = 0.844

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    56/61

    SolutionSTEP 4

    Substituting BCs, y(0)=2=y0; y(2)=5=y4i (exi

    0.25xi)yi-

    1

    + (-2exi-1.25(1+xi)

    yi + (exi

    0.25xi)yi+1 = 0.25xi

    3

    1 1.524 2 + -5.172 y1 + 1.774 y2 = 0.031

    2 2.468 y1 + -7.937 y2 + 2.968 y3 = 0.250

    3 4.107 y2 + -12.088 y3 + 4.857 5 = 0.844

    i (exi 0.25xi)

    yi-

    1

    + (-2exi-1.25(1+xi)

    yi + (exi

    0.25xi)yi+1 = 0.25xi

    3

    1 -5.172 y1 + 1.774 y2 = -3.017

    2 2.468 y1 + -7.937 y2 + 2.968 y3 = 0.250

    3 4.107 y2 + -12.088 y3 = -23.441

    yields

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    57/61

    Solution

    STEP 5

    Solve by Gauss-Seidel Iteration method

    =

    441.23

    250.0

    017.3

    088.12107.40

    968.2937.7468.2

    0774.1172.5

    3

    2

    1

    y

    y

    y

    088.12

    107.4441.23

    937.7

    968.2468.2250.0

    172.5

    774.1107.3

    )1(

    2)1(

    3

    )(

    1

    )1(

    1)1(

    2

    )(

    2)1(

    1

    =

    =

    =

    ++

    ++

    +

    kk

    kkk

    kk

    yy

    yy

    y

    yy

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    58/61

    Solutionk y1 y2 y3

    0 0.000 0.000 0.000

    1 0.583 0.150 1.990

    2 0.635 0.910 2.248

    3 0.895 1.088 2.309

    4 0.956 1.129 2.323

    5 0.971 1.139 2.326

    6 0.974 1.141 2.327

    Since max{|y(6) y(5)|} = max {0.003,0.002,0.001} = 0.003 < =0.005,

    so the solution is y1 = 0.974, y2 = 1.141 and y3=2.327.

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    59/61

    Exercise

    7 - 59

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    60/61

    SolutionSTEP 3

    Obtain the equations by inserting value ofx based on ii yi-

    1

    + yi + Yi+1 =

    1 0.976 y0 + -1.7681 y1 + 0.888 y2 = 0.9924

    2 1.0814 y1 + -1.8589 y2 + 0.8894 y3 = 0.0135

    3 1.1556 y2 + -1.8711 y3 + 0.8436 y4 = 0.0112

    4 1.1978 y3 + -1.8037 y4 =

    -1.4902

  • 7/28/2019 Chapter 6 - Ordinary Differential Equation

    61/61

    SolutionSTEP 3

    Obtain the equations by inserting value ofx based on ii yi-

    1

    + yi + Yi+1 =

    1 y0 + -1.7681 y1 + 0.888 y2 = 0.9924

    2 1.0814 y1 + -1.8589 y2 + 0.8894 y3 = 0.0135

    3 1.1556 y2 + -1.8711 y3 + 0.8436 y4 = 0.0112

    4 1.1978 y3 + -1.8037 y4 =

    -1.4902