chapter 6 references - inflibnetshodhganga.inflibnet.ac.in/bitstream/10603/4112/13/13...chapter 6...

21
6

Upload: others

Post on 15-Mar-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

6

Chapter 6 References

Page| 125

Abalos, A., Maximo, F., Manresa, M.A., Bastida, J., 2002. Utilization of response surfacemethodology to optimize the culture media for the production of rhamnolipids byPseudomonas aeruginosa AT10. J. Chem. Tech. Biotechnol. 77, 777–784.

Abalos, A., Pinazo, A., Infante, M.R., Casals, M., Garcia, F., Manresa, A., 2001.Physicochemical and antimicrobial properties of new rhamnolipids produced byPseudomonas aeruginosa AT10 from soyabean oil refinery wastes. Langmuir 17,1367–1371.

Abdel-Mawgoud, A.M., Lépine, F., Déziel, E., 2010. Rhamnolipids: diversity ofstructures, microbial origins and roles. Appl. Microbiol. Biotechnol. 86, 1323-1336.

Abouseoud, M., Yataghene, A., Amrane, A., Maachi, R., 2008. Biosurfactant productionby free and alginate entrapped cells of Pseudomonas fluorescens. J. Ind. Microbiol.Biotechnol. 35, 1303–1308.

Abu-Ruwaida, A.S., Banat, I.M., Haditirto, S., Khamis, A., 1991. Nutritionalrequirements and growth characteristics of a biosurfactant producing Rhodococcusbacterium. World J. Microbiol. Biotechnol. 7, 53–61.

Ahuja, S.K., Ferreira, G.M., Moreira, A.R., 2004. Production of an endoglucanase by theshipworm bacterium Teredinobacter turnirae. J. Ind. Microbiol. Biotechnol. 31, 41-47.

Al-tahhan, R.A., Sandrin, T.R., Bodour, A.A., Maier, R.M., 2000. Rhamnolipid inducedremoval of lipopolysaccharide from Pseudomonas aeruginosa: effect on cellsurface properties and interaction with hydrophobic substrates. Appl. Environ.Microbiol. 66, 3262–3268.

Amezcua-Vega, C., Poggi-Varaldo, H., Esparza-Garcia, F., Rios-Leal, E., Rodriguez-Vazquez, R., 2007. Effect of culture conditions on fatty acids composition of abiosurfactant produced by Candida ingens and changes of surface tension of culturemedia. Bioresour. Technol. 98, 237-240.

Arguelles-Arias, A., Ongena, M., Halimi, B., Lara, Y., Brans, A., Joris, B., Fickers, P.,2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and othersecondary metabolites for biocontrol of plant pathogens. Microb. Cell Fact. 8, 63.

Arima, K., Kakinuma, A., Tamura, G., 1968. Surfactin, a crystalline peptide lipidsurfactant produced by Bacillus subtilis: isolation, characterization and itsinhibition of fibrin clot formation. Biochem. Biophys. Res. Commun. 31, 488–494.

Asselineau, C., Asselineau, J., 1978. Trehalose containing glycolipids. Prog. Chem. FatsLipids. 16, 59–99.

Atlas, R.M., Bartha, R., 1992. Hydrocarbon biodegradation and oil spill bioremediation.Adv. Microb. Ecol. 12, 287–338.

Baltz, R.H., Miao, V., Wrigley, S.K., 2005. Natural products to drugs: daptomycin andrelated lipopeptide antibiotics. Nat. Prod. Rep. 22, 717–741.

Banat, I.M., Makkar, S.R., Cameotra, S.S., 2000. Potential commercial application ofmicrobial surfactants. Appl. Microbiol. Biotechnol. 53, 495–508.

Banat, I.M., 1995a. Characterization of biosurfactants and their use in pollutionremoval—state of the art. Acta Biotechnol. 15, 251–267.

Banat, I.M., 1995b. Biosurfactants production and use in microbial enhanced oil recoveryand pollution remediation. Bioresour. Technol. 51, 1–12.

Banat, I.M., 1993. The isolation of a thermophilic biosurfactant producing Bacillus sp.Biotechnol. Lett. 15, 591–594.

Chapter 6 References

Page| 126

Banat, I.M., Samarah, N., Murad, M., Horne, R., Benerjee, S., 1991. Biosurfactantproduction and use in oil tank clean-up. World J. Microbiol. Biotechnol. 7, 80–84.

Beal, R., Betts, W.B., 2000. Role of rhamnolipid biosurfactants in the uptake andmineralization of hexadecane in Pseudomonas aeruginosa. J. Appl. Microbiol. 89,158-168.

Bednarski, W., Adamczak, M., Tomasik, J., Plaszczyk, M., 2004. Application of oilrefinery waste in biosynthesis of glycolipids by yeast. Bioresour. Technol. 95, 15–18.

Beeba, J.L., Umbreit, W.W., 1971. Extracellular lipid of Thiobacillus thiooxidans. J.Bacteriol. 108, 612–615.

Beahl, V., 2006. Mode of action of microbial bioactive metabolites. Folia Microbiol. 51,359-369.

Benerjee, S., 1991. Biosurfactant for desludging crude/fuel oil storage tank. Chem. Ind.Dig. 4, 75–78.

Benincasa, M., Abalos, A., Oliveira, I., Manresa, A., 2004. Chemical structure, surfaceproperties and biological activities of the biosurfactant produced by Pseudomonasaeruginosa LB1 from soapstock. Antonie Van Leeuwenhoek. 85, 1–8.

Biswas, M., Raichur, A.M., 2008. Electrokinetic and rheological properties of nanozirconia in the presence of rhamnolipid biosurfactant. J. Am. Ceram. Soc. 91,3197–3201.

Bodour, A.A., Drees, K.P., Maier, R.M., 2003. Distribution of biosurfactant-producingbacteria in undisturbed and contaminated arid southwestern soils. Appl. Environ.Microbiol. 69, 3280–3287.

Bondarenko, O., Rahman, P.K.S.M., Rahman, T.J., Kahru, A., Ivask, A., 2010. Effects ofrhamnolipid from Pseudomonas aeruginosa DS10-129 on luminescent bacteria:toxicity and modulation of cadmium bioavailability. Microb. Ecol. 59, 588-600.

Boothroyd, B., Thorn, J.A., Haskins, R.H., 1956. Biochemistry of the ustilaginales. XII.Characterization of extracellular glycolipids produced by Ustilago sp. Can. J.Biochem. Physiol. 34, 10–14.

Bordoloi, N.K., Konwar, B.K., 2009. Bacterial biosurfactants in enhancing solubility andmetabolism of petroleum hydrocarbons. J. Hazard. Mater. 170, 495–505.

Bouchez-Naitali, M., Rakatozafy, H., Marchal, R., Leveau, J.Y., Vandecasteele, J.P.,1999. Diversity of bacterial strains degrading hexadecane in relation to the mode ofsubstrate uptake. J. Appl. Microbiol. 86, 421-428.

Busscher, H.J., Geertsema-Doornbusch, G.I., Everaert, E.P., Verkerke, G.J., Van de Belt-Gritter, B., Kalicharan, R., van der Mei, H.C., 1996. Biofilm formation and siliconerubber surface modification in the development of a total artificial larynx. In:Algaba J (ed) Surgery and prosthetic voice restoration after total and subtotallaryngectomy. Elsevier, Amsterdam, pp 47–52.

Byeon, S.E., Lee, Y.G., Kim, B.H., Shen, T., Lee, S.Y., Park, H.J., Park, S.C., Rhee,M.H., Cho, J.Y., 2008. Surfactin blocks NO production in lipopolysaccharide-activated macrophages by inhibiting NF-κB activation. J. Microbiol. Biotechnol. 18, 1984–1989.

Cameotra, S.S., Singh, P., 2009. Synthesis of rhamnolipid biosurfactant and mode ofhexadecane uptake by Pseudomonas species. Microb. Cell Fact. 8, 16.

Chapter 6 References

Page| 127

Cameotra, S., Makkar, R., 2004. Recent applications of biosurfactants as biological andimmunological molecules. Curr. Opin. Microbiol. 7, 262–266.

Cao, X.H., Wang, A.H., Wang, C.L., Mao, D.Z., Lu, M.F., Cui, Y.Q., Jiao, R.Z., 2010.Surfactin induces apoptosis in human breast cancer MCF- 7 cells through aROS/JNK-mediated mitochondrial/caspase pathway. Chem. Biol. Interact. 183,357–362.

Cao, X.H., Liao, Z.Y., Wang, C.L., Yang, W.Y., Lu, M.F., 2009. Evaluation of alipopeptide biosurfactant from Bacillus natto TK-1 as a potential source of anti-adhesive, antimicrobial and antitumor activities. Braz. J. Microbiol. 40, 373-379.

Chandrasekaran, E.V., Bemiller, J.N., 1980. Constituent analyses of glycosaminoglycans.In: Methods in Carbohydrate Chemistry (Whistler R. L. ed). Academic press, NewYork, pp. 89-96.

Chen, L., Wang, N., Wanga, X., Hua, J., Wang, S., 2010. Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10. Bioresour.Technol. 101, 8822–8827.

Chen, S., Wei, Y., Chang, J., 2007. Repeated pH-stat fed-batch fermentation forrhamnolipid production with indigenous S2. Appl. Microbiol. Biotechnol. 76, 67-74.

Chitarra, G.S., Breeuwer, P., Nout, M.J., van Aelst, A.C., Rombousts, F.M., Abee, T.,2003. An antifungal compound produced by Bacillus subtilis YM 10-20 inhibitsgermination of Penicillium roqueforti conidiospores. J. Appl. Microbiol. 94, 159–166.

Ciapina, E.M.P., Melo, W.C., Santa Anna, L.M.M., Santos, A.S., Freire, D.M.G., Pereira,N., 2006. Biosurfactant production by Rhodococcus erythropolis grown on glycerolas sole carbon source. Appl. Biochem. Biotechnol. 880, 129–132.

Cirigliano, M.C., Carman G.M., 1984. Isolation of a bioemulsifier from Candidalipolytica. Appl. Environ. Microbiol. 48, 747–750.

Cooper, D.G., Eccles, E.R.A., Sheppard, J.D., 1988. The effect of surfactants on peatdewatering. Can. J. Chem. Eng. 66, 393–397.

Cooper, D.G., Paddock, D.A., 1984. Production of a biosurfactant from Torulopsisbombicola. Appl. Environ. Microbiol. 47, 173–176.

Cooper, D.G., Zajic, J.E., Gerson, D.F., 1978. Production of surface active lipids byCorynebacterium lepus. Appl. Environ. Microbiol. 37, 4–10.

Das, P., Mukherjee, S., Sen, R., 2009. Biosurfactant of marine origin exhibiting heavymetal remediation properties. Bioresour. Technol. 100, 4887–4890.

Das, P., Mukherjee, S., Sen, R., 2008. Improved bioavailability and biodegradation of amodel polyaromatic hydrocarbon by a biosurfactant producing bacterium of marineorigin. Chemosphere 72, 1229–1234.

Das, K., Mukherjee, A.K., 2006. Assessment of mosquito larvicidal potency of cycliclipopeptides produced by Bacillus subtilis strains. Acta. Tropica. 97, 168–173.

Dastgheib, S.M.M., Amoozegar, M.A., Elahi, E., Asad, A., Banat, I.M., 2008.Bioemulsifier production by a halothermophilic Bacillus strain with potentialapplications in microbially enhanced oil recovery. Biotechnol. Lett. 30, 263–270.

Daverey, A., Pakshirajan, K., 2009. Production, characterization, and properties ofsophorolipids from the yeast Candida bombicola using a low-cost fermentativemedium. Appl. Biochem. Biotechnol. 158, 663–674.

Chapter 6 References

Page| 128

Davis, D.A., Lynch, H.C., Varley, J., 2001. The application of foaming for the recoveryof surfactin from Bacillus subtilis ATCC 21332 cultures. Enzyme Microb. Technol.28, 346–354.

Dawkar, V.V., Jadhav, U.U., Jadhav, S.U., Govindwar, S.P., 2008. Biodegradation ofdisperse textile dye Brown 3REL by newly isolated Bacillus sp. VUS. J. Appl.Microbiol. 105, 14-24.

de Lima, C.J.B., Ribeiro, E.J., Sérvulo, E.F.C., Resende, M.M., Cardoso, V.L., 2009.Biosurfactant production by Pseudomonas aeruginosa grown in residual soybeanoil. Appl. Biochem. Biotechnol. 152, 156-168.

Debode, J., De Maeyer, K., Perneel, M., Pannecoucque, J., De Backer, G., Höfte, M.,2007. Biosurfactants are involved in the biological control of Verticilliummicrosclerotia by Pseudomonas spp. J. Appl. Microbiol. 103, 1184–1196.

Desai, J., Banat, I., 1997. Microbial production of surfactants and their commercialpotential. Microbiol. Molecul. Boil. 61, 47-64.

Desai, A.J., Patel, K.M., Desai J.D., 1988. Emulsifier production by Pseudomonasfluorescens during the growth on hydrocarbons. Curr. Sci. 57, 500–501.

Desai, J.D., 1987. Microbial surfactants: evaluation, types and future applications. J. Sci.Ind. Res. 46, 440–449.

Deshpande, M., Daniels, L., 1995. Evaluation of sophorolipid biosurfactant production byCandida bombicola using animal fat. Bioresour. Technol. 54, 143–150.

Deziel, E., Lepine, F., Dennie, D., Boismenu, D., Mamer, O.A., Villemur, R., 1999.Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipidsproduced by Pseudomonas aeruginosa strain 57RP grown on mannitol ornaphthalene. Biochim. Biophys. Acta. 1440, 244-252.

Deziel, E., Paquette, G., Villemur, R., Lepine, F., Bisaillon, J., 1996. Biosurfactantproduction by soil Pseudomonas strain growing on polycyclic aromatichydrocarbons. Appl. Environ. Microbiol. 62, 1908–1912.

Dubey, K.V., Juwarkar, A.A., Singh, S.K., 2005. Adsorption–desorption process usingwoodbased activated carbon for recovery of biosurfactant from fermented distillerywastewater. Biotechnol. Prog. 21, 860–867.

Dubey, K., Juwarkar, A., 2004. Determination of genetic basis for biosurfactantproduction in distillery and curd whey wastes utilizing Pseudomonas aeruginosastrain BS2. Indian J. Biotechnol. 3, 74–81.

Dubey, K., Juwarkar, A., 2001. Distillery and curd whey wastes as viable alternativesources for biosurfactant production. World J. Microbiol. Biotechnol. 17, 61-69.

Duvnjak, Z., Kosaric, N., 1985. Production and release of surfactant by Corynebacteriumlepus in hydrocarbon and glucose media. Biotechnol. Lett. 7, 793–796.

Duvnjak, Z., Cooper, D.G., Kosaric, N., 1983. Effect of nitrogen source on surfactantproduction by Arthrobacter paraffines ATCC 19558. p. 66–72. In: Microbialenhanced oil recovery. J. E. Zajic, D. G. Cooper, T. R. Jack, and N. Kosaric (ed.).Pennwell Books, Tulsa, Okla.

Duvnjak, Z., Cooper, D.G., Kosaric, N., 1982. Production of surfactant by Arthrobacterparaffineus ATCC 19558. Biotechnol. Bioeng. 24, 165–175.

Falatko, D.F., Novak, J.T., 1992. Effects of biologically produced surfactants on themobility and biodegradation of petroleum hydrocarbons. Water Environ. Res. 64,163-169.

Chapter 6 References

Page| 129

Felsenstein, J., 1985. Confidence limits on phylogenies: An approach using the bootstrap.Evolution 39, 783-791.

Ferraz, C., De Araujo, A.A., Pastore, G.M., 2002. The influence of vegetable oils onbiosurfactant production by Serratia marcescens. Appl. Biochem. Biotechnol. 98,841–847.

Fiechter, A., 1992. Biosurfactants: moving towards industrial application. TrendsBiotechnol. 10, 208-217.

Fontecave, M., Eliasson, R., Reichard, P., 1987. NAD (P)H: flavin oxidoreductase of E.coli: a ferric iron reductase participating in the generation of the free radical ofribonucleotide reductase. J. Biol. Chem. 262, 12325–12331.

Fox, S.L., Bala, G.A., 2000. Production of surfactant from Bacillus subtilis ATCC 21332using potato substrates. Bioresour. Technol. 75, 235–240.

Franzetti, A., Tamburini, E., Banat, I.M., 2010. Application of biological surface activecompounds in remediation technologies. In: Sen R (ed) Biosurfactants, ‘Advancesin experimental medicine and biology’, vol 672. Springer, Berlin, pp 121–134.

Franzetti, A., Caredda, P., La Colla, P., Pintus, M., Tamburini, E., Papacchini, M.,Bestetti, G., 2009. Cultural factor affecting biosurfactant production by Gordoniasp. BS29. Int. Biodeterior. Biodegrad. 63, 943–947.

Fusconi, R., Assunção, R.M.N., de Moura Guimarães, R., Rodrigues Filho, G., da HoraMachado, A.E., 2010. Exopolysaccharide produced by Gordoniapolyisoprenivorans CCT 7137 in GYM commercial medium and sugarcanemolasses alternative medium: FT-IR study and emulsifying activity. Carbohyd.Polym. 79, 403–408.

Galabova, D., Tuleva, B., Spasova, D., 1996. Permeabilization of Yarrowia lipolyticacells by triton X-100. Enzyme Microb. Technol. 18, 18-22.

George, S., Jayachandran, K., 2009. Analysis of rhamnolipid biosurfactants producedthrough submerged fermentation using orange fruit peelings as sole carbon source.Appl. Biochem. Biotechnol. 158, 694-705.

Goes, A.P., Sheppard, J.D., 1999. Effect of surfactants on α-amylase production in a solid substrate fermentation process. J. Chem. Technol. Biotechnol. 74, 709–712.

Golyshin, P.M., Fredrickson, H.L., Giuliano, L., Rothmel, R., Timmis, K.N., Yakimov,M.M., 1999. Effect of novel biosurfactants on biodegradation of polychlorinatedbiphenyls by pure and mixed bacterial cultures. Microbiologica 22, 257–267.

Grangemard, I., Wallach, J., Maget-Dana, R., Peypoux, F., 2001. Lichenysin: a moreefficient cation chelator than surfactin. Appl. Biochem. Biotechnol. 90, 199–210.

Grossman, A.D., 1995. Genetic networks controlling the initiation of sporulation and thedevelopment of genetic competence in Bacillus subtilis. Annu. Rev. Genet. 29, 477-508.

Grover, M., Nain, L., Singh, S.B., Saxena, A.K., 2010. Molecular and biochemicalapproaches for characterization of antifungal trait of a potent biocontrol agentBacillus subtilis RP24. Curr. Microbiol. 60, 99–106.

Gudi˜na, E.J., Teixeira, J.A., Rodrigues, L.R., 2010. Isolation and functionalcharacterization of a biosurfactant produced by Lactobacillus paracasei. Colloid.Surf. B Biointerfaces 76, 298–304.

Chapter 6 References

Page| 130

Guerra-Santos, L.H., Kappeli, O., Fiechter, A., 1984. Pseudomonas aeruginosabiosurfactant production in continuous culture with glucose as carbon source. Appl.Environ. Microbiol. 48, 301–305.

Gunther, N.W. IV., Nunez, A., Fett, W., Solaiman, D.K., 2005. Production ofrhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl.Environ. Microbiol. 71, 2288–2293.

Haba, E., Pinazo, P., Jauregui, O., Espuny, M.J., Infante, M.R., Manresa, A., 2003.Physicochemical characterization and antimicrobial properties of rhamnolipidsproduced by Pseudomonas aeruginosa 47T2 NCBIM 40044. Biotechnol. Bioeng.81, 316-322.

Haba, E., Esouny, M.J., Busquets, M., Manresa, A., 2000. Screening and production ofrhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste fryingoils. J. Appl. Microbiol. 88, 379–387.

Han, Y., Huang, X., Cao, M., Wang, Y., 2008. Micellization of surfactin and its effect onthe aggregate conformation of amyloid β (1-40). J. Phys. Chem. B 112, 15195–15201.

Harvey, S., Elashvili, I., Valdes, J.J., Kamely, D., Chakrabarty, A.M., 1990. Enhancedremoval of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant.Biotechnol. 8, 228–230.

Hatvani, N., Mecs, I., 2001. Production of laccase and manganese peroxidase by Lentinusedodes on malt containing by product of the brewing process. Process Biochem. 37,491–496.

Haussler, S., Nimtz, M., Domke, T., Wray, V., Steinmetz, I., 1998. Purification andcharacterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infect.Immun. 66, 1588-1593.

Hayes, M.E., Nestaas, E., Hrebenar, K.R., 1986. Microbial surfactants. Chemtech. 16,239–243.

Heinemann, C., Hylckama, V., van Johan, E.T., Janssen, D.B., Busscher, H.J., van derMei, H.C., Reid, G., 2000. Purification and characterization of a surface-bindingprotein from Lactobacillus fermentum RC-14 that inhibits adhesion ofEnterococcus faecalis 1131. FEMS Microbiol. Lett. 190, 177–180.

Herman, D.C., Artiola, J.F., Miller, R.M., 1995. Removal of cadmium, lead and zincfrom soil by rhamnolipid biosurfactant. Environ. Sci. Technol. 29, 2880-2285.

Hewald, S., Josephs, K., Bölker, M., 2005. Genetic analysis of biosurfactant productionin Ustilago maydis. Appl. Environ. Microbiol. 71, 3033–3040.

Hirata, Y., Ryu, M., Oda, Y., Igarashi, K., Nagatsuka, A., Furuta, T., Sugiura, M., 2009.Novel characteristics of sophorolipids, yeast glycolipid biosurfactants, asbiodegradable low-foaming surfactants. J. Biosci. Bioeng. 108, 142–146.

Hisatsuka, K., Nakahara, T., Yamada, K., 1972. Protein-like activator for n-alkaneoxidation by Pseudomonas aeruginosa S7B1. Agric. Biol. Chem. 36, 1361–1369.

Hommel, R.K., Stuwer, O., Stuber, W., Haferburg, D., Kleber, H.P., 1987. Production ofwater-soluble surface-active exolipids by Torulopsis apicola. Appl. Microbiol.Biotechnol. 26, 199–205.

Horowitz, S., Currie, J.K., 1990. Novel dispersants of silicon carbide and aluminiumnitride. J. Dispersion Sci. Technol. 11, 637–659.

Chapter 6 References

Page| 131

Horowitz, S., Gilbert, J.N., Griffin, W.M., 1990. Isolation and characterization of asurfactant produced by Bacillus licheniformis 86. J. Ind. Microbiol. 6, 243–248.

Hsueh, Y.H., Somers, E.B., Lereclus, D., Ghelardi, E., Lee Wong, A.C., 2007.Biosurfactant production and surface translocation are regulated by PlcR in Bacilluscereus ATCC 14579 under low-nutrient conditions. Appl. Environ. Microbiol. 73,7225–7231.

Hua, X., Wua, Z., Zhang, H., Lu, D., Wang, M., Liu, Y., Liu, Z., 2010. Degradation ofhexadecane by Enterobacter cloacae strain TU that secretes an exopolysaccharideas a bioemulsifier. Chemosphere 80, 951–956.

Huang, X., Lu, Z., Bie, X., Lü, F., Zhao, H., Yang, S., 2007. Optimization of inactivationof endospores of Bacillus cereus by antimicrobial lipopeptides from Bacillussubtilis fmbj strains using a response surface method. Appl. Microbiol, Biotechnol.74, 454–461.

Huang, X., Lu, Z., Zhao, H., Bie, X., Lü, F.X., Yang, S., 2006. Antiviral activity ofantimicrobial lipopeptide from Bacillus subtilis fmbj against pseudorabies virus,porcine parvovirus, newcastle disease virus and infectious bursal disease virus invitro. Int. J. Pept. Res. Ther. 12, 373–377.

Igarashi, S., Hattori, Y., Maitani, Y., 2006. Biosurfactant MEL-A enhances cellularassociation and gene transfection by cationic liposome. J. Control Release 112,362–368.

Inoue, S., Kimwa, Y., Kinta, M., 1979a. German patent 2905252 to Kao Soap Co., Japan.Inoue, S., Kimwa Y., Kinta, M., 1979b. German Patent 2905295 to Kao Soap Co., Japan.Itoh, S., Suzuki, T., 1972. Effect of rhamnolipids on growth of Pseudomonas aeruginosa

mutant deficient in n-paraffin utilizing ability. Agric. Biol. Chem. 36, 2233–2235.Jadhav, S.U., Kalme, S.D., Govindwar, S.P., 2008. Biodegradation of methyl red by

Galactomyces geotrichum MTCC 1360. Int. Biodeter. Biodegrad. 62, 135-142.Jadhav, U.U., Dawkar, V.V., Tamboli, D.P., Govindwar, S.P., 2009. Purification and

characterization of veratryl alcohol oxidase form Comamonas sp. UVS and its rolein dye decolorization. Biotechnol. Bioprocess Eng. 14, 369-376.

Janek, T., Łukaszewicz, M., Rezanka, T., Krasowska, A., 2010. Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonasfluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard.Bioresour. Technol. 101, 6118-6123.

Jarvis, F.G., Johnson, M.J., 1949. A glycolipid produced by Pseudomonas aeruginosa. J.Am. Chem. Soc. 71, 4124–4126.

Javaheri, M., Jenneman, G.E., McInnerney, M.J., Knapp, R.M., 1985. Anaerobicproduction of a biosurfactant by Bacillus licheniformis JF-2. Appl. Environ.Microbiol. 50, 698–700.

Jenny, K., Kappeli, O., Fiechter, A., 1991. Biosurfactant from Bacillus licheniformis:structural analysis and characterization. Appl. Microbiol. Biotechnol. 36, 5-13.

Jing C., Xin S., Hui, Z., Yinbo, Q., 2006. Production, structure elucidation and anticancerproperties of sophorolipid from Wickerhamiella domercqiae. Enzyme Microb.Technol. 39, 501–506.

Kalme, S., Jadhav, S., Jadhav, M., Govindwar, S., 2009. Textile dye degrading laccasefrom Pseudomonas desmolyticum NCIM 2112. Enzyme Microb. Technol. 44, 65–71.

Chapter 6 References

Page| 132

Kalme, S., Parshetti, G., Gomare, S., Govindwar, S., 2008. Diesel and kerosenedegradation by Pseudomonas desmolyticum NCIM 2112 and Nocardiahydrocarbonoxydans NCIM 2386. Curr. Microbiol. 56, 581-586.

Kalme, S.D., Parshetti, G.K., Jadhav, S.U., Govindwar, S.P., 2007. Biodegradation ofbenzidine based dye Direct blue 6 by Pseudomonas desmolyticum NCIM 2112.Bioresour. Technol. 98, 1405-1410.

Kappeli, O., Walther, P., Mueller, M., Fiechter, A., 1984. Structure of cell surface of theyeast Candida tropicalis and its relation to hydrocarbon tranport. Arch. Microbiol.138, 279–282.

Kappeli, O., Finnerty, W.R., 1979. Partition of alkane by an extracellular vesicle derivedfrom hexadecane-grown Acinetobacter. J. Bacteriol. 140, 707–712.

Kasture, M.B., Patel, P., Prabhune, A.A., Ramana, C.V., Kulkarni, A.A., Prasad, B.L.V.,2008. Synthesis of silver nanoparticles by sophorolipids: Effect of temperature andsophorolipid structure on the size of particles. J. Chem. Sci. 120, 515–520.

Katemai, W., Maneerat, S., Kawai, F., Kanzaki, H., Nitoda, T., H-Kittikun, A., 2008.Purification and characterization of a biosurfactant produced by Issatchenkiaorientalis SR4. J. Gen. Appl. Microbiol. 54, 79–82.

Katz, E., Demain, A.L., 1997. The peptide antibiotics of Bacillus: chemistry, biogenesisand possible functions. Bacteriol. Rev. 41, 449-474.

Kawai, Y., Yano, I., Kaneda, K., Yabuuchi, E., 1988. Ornithine-contaning lipids of somePseudomonas species. Eur. J. Biochem. 175, 633-641.

Kim, K.M., Lee, J.Y., Kim, C.K., Kang, J.S., 2009. Isolation and characterization ofsurfactin produced by Bacillus polyfermenticus KJS-2. Arch. Pharm. Res. 32, 711-715.

Kim, H.S., Jeon, J.W., Kim, B.H., Ahn, C.Y., Oh, H.M., Yoon B.D., 2006. Extracellularproduction of a glycolipid biosurfactant, mannosylerythritol lipid, by Candida sp.SY16 using fed batch fermentation. Appl. Microbiol. Biotechnol. 70, 391–396.

Kim, P., Kim, J.H., 2005. Characterization of a novel lipopolysaccharide from Klebsiellaoxitoca. Biotechnol. Bioprocess Engg. 10, 494-499.

Kim, P.I., Bai, H., Bai, D., Chae, H., Chung, S., Kim, Y., Park, R., Chi, Y.T., 2004.Purification and characterization of a lipopeptide produced by Bacillusthuringeinsis CMB26. J. Appl. Microbiol. 97, 942-949.

Kim, K., Yoo, D., Kim, Y., Lee, B., Shin, D., Kim, E.K., 2002. Characteristics ofsophorolipid as an antimicrobial agent. J. Microbiol. Biotechnol. 12, 235–241.

Kim, S.H., Lim, E.J., Lee, S.O., Lee, D.J., Lee, T.H., 2000. Purification andcharacterization of biosurfactant from Nocardia sp. L-417. Biotechnol. Appl.Biochem. 31, 249-253.

Kiran, S., Sabua, A., Selvina, J., 2010. Synthesis of silver nanoparticles by glycolipidbiosurfactant produced from marine Brevibacterium casei MSA19 G. J. Biotechnol.148, 221–225.

Kitamoto, D., Isoda, H., Nakahara, T., 2002. Functional and potential applications ofglycolipid biosurfactant from energy saving materials to gene delivery carriers. J.Biosci. Bioeng. 94, 187-201.

Kitamoto, D., Yanagishita, H., Shinbo, T., Nakane, T., Kamisawa, C., Nakahara, T.,1993. Surface active properties and antimicrobial activities of mannosylerythritollipids as biosurfactants produced by Candida antarctica. J. Biotechnol. 29, 91–96.

Chapter 6 References

Page| 133

Kitamoto, D., Akiba, S., Hioki, C., Tabuchi, T., 1990. Extracellular accumulation ofmannosylerythritol lipids by a strain of Candida antarctica. Agric. Biol. Chem. 54,31–36.

Klekner, V., Kosaric, N., 1993. Biosurfactants for cosmetics, p. 329–372. In N. Kosaric(ed.), Biosurfactants: production, properties, applications. Marcel Dekker, Inc.,New York, N.Y.

Kluge, B., Vater, J., Salnikow, J., Eckart, K., 1989. Studies on the biosynthesis ofsurfactin, a lipopeptide antibiotic from Bacillus subtilis ATCC 21332. FEBS Lett.231, 107-110.

Koch, A.K., Kappeli, O., Fiechter, A., Reiser, J., 1991. Hydrocarbon assimilation andbiosurfactant production in Pseudomonas aeruginosa mutants. J. Bacteriol. 173,4212-4219.

Kosaric, N., Choi, H.Y., Bhaszczyk, R., 1990. Biosurfactant production from NocardiaSFC-D. Tenside Surf. Det. 27, 294–297.

Kulakovskaya, T.V., Golubev, W.I., Tomashevskaya, M.A., Kulakovskaya, E.V.,Shashkov, A.S., Grachev, A.A., Chizhov, A.S., Nifantiev, N.E., 2010. Productionof antifungal cellobiose lipids by Trichosporon porosum. Mycopathologia 169,117–123.

Kumar, C.G., Mamidyala, S.K., Das, B., Sridhar, B., Devi, G.S., Karuna, M.S., 2010.Synthesis of biosurfactant-based silver nanoparticles with purified rhamnolipidsisolated from Pseudomonas aeruginosa BS-161R. J. Microbiol. Biotechnol. 20,1061–1068.

Kumar, M., Leon, V., Materano, A.D.S., Ilzins, O.A., Luis, L., 2008. Biosurfactantproduction and hydrocarbon-degradation by halotolerant and thermotolerantPseudomonas sp. World J. Microbiol. Biotechnol. 24, 1047-1057.

Kumar, S., Tamura, K., Jakobsen, I.B., Nei, M., 2001. MEGA2: molecular evolutionarygenetics analysis software. Bioinformatics 17, 1244–1245.

Lang, S., Wagner, F., 1987. Structure and properties of biosurfactants, p. 21–47. In N.Kosaric, W. L. Cairns, and N. C. C. Gray (ed.), Biosurfactants and biotechnology.Marcel Dekker, Inc., New York, N.Y.

Lang, S., Wullbrandt, D., 1999. Rhamnose lipids-biosynthesis, microbial production andapplication potential. Appl. Microbiol. Biotechnol. 51, 22-32.

Liang, Y.S., Yuan, X.Z., Zeng, G.M., Hu, C.L., Zhong, H., Huang, D.L., Tang, L., Zhao,J.J., 2010. Biodelignification of rice straw by Phanerochaete chrysosporium in thepresence of dirhamnolipid. Biodegradation 21, 615-624.

Lin, S.C., Carswell, K.S., Sharma, M.M., Georgiou, G., 1994. Continuous production ofthe lipopeptide biosurfactant of Bacillus licheniformis JF-2. Appl. Microbiol.Biotechnol. 41, 281–285.

Lin, S.C., Minton, M.A., Sharma, M.M., Georgiou, G., 1994. Structural andimmunological characterization of a biosurfactant produced by Bacilluslichenyformis JF-2. Appl. Environ. Microbiol. 60, 31-38.

Liu, J., Yuan, X., Zeng, G., Shi, J., Shi, C., 2006. Effect of biosurfactant on cellulase andxylanase production by Trichoderma viride in solid substrate fermentation. ProcessBiochem. 41, 2347–2351.

Liu, X., Ren, B., Chen, M., Wang, H., Kokare, C.R., Zhou, X., Wang, J., Dai, H., Song,F., Liu, M., Wang, J., Wang, S., Zhang, L., 2010. Production and characterization

Chapter 6 References

Page| 134

of a group of bioemulsifiers from the marine Bacillus velezensis strain H3. Appl.Microbiol. Biotechnol. DOI 10.1007/s00253-010-2653-9.

Liu, X.L., Zeng, G.M., Tang, L., Zhong, H., Wang, R.Y., Fu, H.Y., Liu, Z.F., Huang, H.,Zhang, J.C., 2008. Effects of dirhamnolipid and SDS on enzyme production byPhanerochaete chrysosporium in submerged fermentation. Process Biochem. 43,1300-1303.

MacDonald, C.R., Cooper, D.G., Zajic, J.E., 1981. Surface-active lipids from Nocardiaerythropolis grown on hydrocarbons. Appl. Environ. Microbiol. 41, 117–123.

Maier, M.R., Soberón-Chávez, G., 2000. Pseudomonas aeruginosa rhamnolipids:biosynthesis and potential applications. Appl. Microbiol. Biotechnol. 54, 625-633.

Makkar, R., Cameotra, S., 2002. An update on the use of unconventional substrates forbiosurfactant production and their new applications. Appl. Microbiol. Biotechnol.58, 428–434.

Makkar, R.S., Cameotra, S.S., 1998. Production of biosurfactant at mesophilic andthermophilic conditions by a strain of Bacillus subtilis. J. Industrial Microbiol.Biotechnol. 20, 48–52.

Makkar, R.S., Cameotra, S.S., 1997. Biosurfactant Production by a Thermophilic Bacillussubtilis strain. J. Ind. Microbiol. Biotechnol. 18, 37-42.

Mandviwala, T.N., Khire, J.M., 2000. Production of high activity thermostable phytasefrom thermotolerant Aspergillus niger in solid state fermentation. J. Ind. Microbiol.Biotechnol. 24, 237–243.

Marahiel, M., Denders, W., Krause, M., Kleinkauf, H., 1977. Biological role ofgramicidin S in spore functions. Studies on gramicidin-S negative mutants ofBacillus brevis 9999. Eur. J. Biochem. 99, 49–52.

Matsuyama, T., Sogawa, M., Yano, I., 1991. Direct colony thin-layer chromatographyand rapid characterization of Serratia marcescens mutants defective in productionof wetting agents. Appl. Environ. Microbiol. 53, 1186–1188.

McInerney, M.J., Javaheri, M., Nagle, D.P., 1990. Properties of the biosurfactantproduced by Bacillus licheniformis strain JF-2. J. Ind. Microbiol. 5, 95–102.

Mercade, M.E., Manresa, M.A., Robert, M., et al. 1993. Olive oil mill effluent (OOME).New substrate for biosurfactant production. Bioresour. Technol. 43, 1–6.

Meylheuc, T., Methivier, C., Renault, M., Herry, J.M., Pradier, C.M., Bellon-Fontaine,M.N., 2006a. Adsorption on stainless steel surfaces of biosurfactants produced bygram-negative and gram-positive bacteria: consequence on the bioadhesivebehavior of Listeria monocytogenes. Colloid. Surf. B Biointerfaces 52, 128–137.

Meylheuc, T., Renault, M., Bellon-Fontaine, M.N., 2006b. Adsorption of a biosurfactanton surfaces to enhance the disinfection of surfaces contaminated with Listeriamonocytogenes. Int. J. Food Microbiol. 109, 71–78.

Meylheuc, T., 2001. Adsorption of biosurfactant on solid surfaces and consequencesregarding the bioadhesion of Listeria monocytogenes LO28. J. Appl. Microbiol. 91,822-832.

Mimee, B., Pelletier, R., Bélanger, R.R., 2009. In vitro antibacterial activity andantifungal mode of action of flocculosin, a membrane-active cellobiose lipid. J.Appl. Microbiol. 107, 989–996.

Chapter 6 References

Page| 135

Mimee, B., Labbé, C., Pelletier, R., Bélanger, R.R., 2005. Antifungal activity offlocculosin, a novel glycolipid isolated from Pseudozyma flocculosa. Antimicrob.Agents Chemother. 49, 1597–1599.

Mireles, J.R., Toguchi, A., Harshey, R.M., 2001. Salmonella enterica serovartyphimurium swarming mutants with altered biofilm-forming abilities: surfactininhibits biofilm formation J. Bacteriol. 183, 5848-5854.

Monteiro, A.S., Bonfim, M.R.Q., Domingues, V.S., Correa, A., Siqueira, E.P., Zani,C.L., Santos, V.L., 2010. Identification and characterization of bioemulsifier-producing yeasts isolated from effluents of a dairy industry Bioresour. Technol.101, 5186–5193.

Morikawa, M., Daido, H., Takao, T., Murata, S., Shimonishi, Y., Imanaka, T., 1993. Anew lipopeptide biosurfactant produced by Arthrobacter sp. strain MIS38. J.Bacteriol. 175, 6459–6466.

Morita, T., Kitagawa, M., Suzuki, M., Yamamoto, S., Sogabe, A., Yanagidani, S., Imura,T., Fukuoka, T., Kitamoto, D., 2009. A yeast glycolipid biosurfactant,mannosylerythritol lipid, shows potential moisturizing activity toward culturedhuman skin cells: the recovery effect of MEL-A on the SDS-damaged human skincells. J. Oleo Sci. 58, 639-642.

Morita, T., Konishi, M., Fukuoka, T., Imura, T., Kitamoto, D., 2008. Production ofglycolipid biosurfactants, mannosylerythritol lipids, by Pseudozyma siamensis CBS9960 and their interfacial properties. J. Bioscience Bioengg. 105, 493–502.

Moussa, T.A.A., Ahmed, G.M., Abdel-hamid, S.M.S., 2006. Optimization of culturalconditions for biosurfactant production from Nocardia amarae. J. Appl. Sci. Res. 2,844-850.

Mukherjee, S., Das, P., Sivapathasekaran, C., Sen, R., 2009. Antimicrobial biosurfactantsfrom marine Bacillus circulans: extracellular synthesis and purification. Lett. Appl.Microbiol. 48, 281–288.

Mukherjee, S., Das, P., Sen, R., 2006. Towards commercial production of microbialsurfactants. Trends Biotechnol. 24, 509-515.

Mukherjee, A.K., Das, K., 2005. Correlation between diverse cyclic lipopeptidesproduction and regulation of growth and substrate utilization by Bacillus subtilisstrains in a particular habitat. FEMS Microbiol. Ecol. 54, 479–489.

Muthusamy, K., Gopalakrishnan, S., Ravi, T.K., Sivachidambaram, P., 2008.Biosurfactants: properties, commercial production and application. Curr. Sci. 94,736-747.

Nakanishi, M., Inoh, Y., Kitamoto, D., Furuno, T., 2009. Nano vectors with abiosurfactant for gene transfection and drug delivery. J. Drug Delivery Sci.Technol. 19, 165–169.

Naruse, N., Tenmyo, O., Kobaru, S., Kamei, H., Miyaki, T., Konishi, M., Oki, T., 1990.Pumilacidin, a complex of new antiviral antibiotics: production, isolation, chemicalproperties, structure and biological activity. J. Antibiot. 43, 267–280.

Navonvenezia, S., Zosim, Z., Gottlieb, A., Legmann, R., Carmeli, S., Ron, E.Z.,Rosenberg, E., 1995. Alasan, a new bioemulsifier from Acinetobacterradioresistens. Appl. Environ. Microbiol. 61, 3240–3244.

Chapter 6 References

Page| 136

Nayak, A.S., Vijaykumar, M.H., Karegoudar, T.B., 2009. Characterization ofbiosurfactant produced by Pseudoxanthomonas sp. PNK-04 and its application inbioremediation. Int. Biodeterior. Biodegrad. 63, 73-79.

Neu, T.R., Poralla, K., 1990. Emulsifying agent from bacteria isolated during screeningfor cells with hydrophobic surfaces. Appl. Microbiol. Biotechnol. 32, 521–525.

Nishikiori, T., Naganawa, H., Muraoka, Y., Aoyagi, T., Umezawa, H., 1986. Plipastatins:new inhibitors of phospholipase A2, produced by Bacillus cereus BMG302-fF67.II. Structure of fatty acid residue and amino acid sequence. J. Antibiot. (Tokyo) 39,745–754.

Nitschke, M., Costa, S.G.V.A.O., 2007. Biosurfactants in food industry. Trends Food Sci.Technol. 18, 252–259.

Nitschke, M., Pastore, G., 2006. Production and properties of a surfactant obtained fromBacillus subtilis grown on cassava wastewater. Bioresour. Technol. 97, 336–341.

Nitschke, M., Costa, S.G.V.A.O., Haddad, R., Goncü alves, L.A.G., Eberlin, M.N.,Contiero, J., 2005. Oil wastes as unconventional substrates for rhamnolipidbiosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol. Prog. 21,1562-1566.

Nitschke, M., Pastore, G.M., 2004. Biosurfactant production by Bacillus subtilis usingcassava-processing effluent. Appl. Biochem. Biotechnol. 112, 163–172.

Noah, K.S., Bruhn, D.F., Bala G.A., 2005. Surfactin production from potato processeffluent by Bacillus subtilis in a chemostat. Appl. Biochem. Biotechnol. 122, 465–474.

Noordman, W.H., Janssen, D.B., 2002. Rhamnolipid stimulates uptake of hydrophobiccompounds by Pseudomonas aeruginosa. Appl. Environ. Microbiol. 68, 4502–4508.

Ochsner, U.A., Reiser, J., 1995. Autoinducer-mediated regulation of rhamnolipidbiosurfactant synthesis in Pseudomonas aeruginosa. J. Biotechnol. 12, 199-210.

Ochsner, U.A., Reiser, J., Fiechter, A., Witholt, B., 1995. Production of Pseudomonasaeruginosa rhamnolipid biosurfactant in heterologus hosts. Appl. Environ.Microbiol. 61, 3503-3506.

Ochsner, U.A., Fiechter, A., Reiser, J., 1994a. Isolation, characterization, and expressionin Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding arhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. J. Biol.Chem. 269, 19787-19795.

Ochsner, U.A., Koch, A.K., Fiechter, A., Reiser, J., 1994b. Isolation and characterizationof regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonasaeruginosa. J. Bacteriol. 176, 2044-2054.

OECD 1995. Surface Tension of Aqueous Solutions OECD Guideline 115. Paris:Organisation for Economic Cooperation and Development.

Ohno, A., Ano, T., Shoda, M., 1995. Production of a lipopeptide antibiotic, surfactin, byrecombinanat Bacillus subtilis in solid state fermentation. Biotechnol. Bioeng. 47,209-214.

Palanisamy, P., Raichur, A.M., 2009. Synthesis of spherical NiO nanoparticles through anovel biosurfactant mediated emulsion technique. Mater. Sci. Eng. C Biomim.Supramol. Syst. 29, 199–204.

Chapter 6 References

Page| 137

Palanisamy, P., 2008. Biosurfactant mediated synthesis of NiO nanorods. Mat. Lett. 62,743–746.

Pardo, A.G., 1996. Effect of surfactants on cellulose production by Nectria catalinensis.Curr. Microbiol. 33, 275–278.

Park, S.Y., Kim, Y., 2009. Surfactin inhibits immunostimulatory function ofmacrophages through blocking NK-κB, MAPK and Akt pathway. Int. Immunopharmacol. 9, 886–893.

Patel, M.N., Gopinath, K.P., 1986. Lysozyme sensitive bioemulsifier for immiscibleorganophosphorus pesticide. Appl. Environ. Microbiol. 52, 1224-1226.

Patel, R.M., Deasi, A.J., 1997. Biosurfactant production by Pseudomonas aeruginosaGS3 from molasses. Lett. Appl. Microbiol. 25, 91-94.

Pekin, G., Vardar-Sukan, F., Kosariac, N., 2005. Production of sophorolipids fromCandida bombicola ATCC 22214 using Turkish corn oil and honey. Eng. Life Sci.5, 357–362.

Pellerin, N.B., Graff, G.L., Treadwell, D.R., Staley, J.T., Aksay, I.A., 1992. Alginate as aceramic processing aid. Biomimetics 1, 119–130.

Pellerin, N.B., Staley, J.T., Ren, T., Graff, G.L., Treadwell, D.R., Aksay, I.A., 1991.Acidic biopolymers as dispersants for ceramic processing. Mater. Res. Soc. Sym.Proc. 218, 123–128.

Perfumo, A., Smyth, T.J.P., Marchant, R., Banat, I.M., 2010a. Production and roles ofbiosurfactants and bioemulsifiers in accessing hydrophobic substrates. In: TimmisKN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp1501–1512.

Perfumo, A., Rancich, I., Banat, I.M., 2010b. Possibilities and challenges forbiosurfactants use in petroleum industry, vol 672. In: Sen R (ed) Biosurfactants’advances in experimental medicine and biology. Springer, Berlin, pp 135–157.

Perfumo, A., Banat, I.M., Canganella, F., Marchant, R., 2006. Rhamnolipid productionby a novel thermophilic hydrocarbon-degrading Pseudomonas aeruginosa APO2-1.Appl. Microbiol. Biotechnol. 72, 132–138.

Persson, A., Oesterberg, E., Dostalek, M., 1988. Biosurfactant production byPseudomonas fluorescens 378: Growth and product characteristics. Appl.Microbiol. Biotechnol. 29, 1–4.

Peypoux, F., Michel, G., 1992. Control biosynthesis of Val-7 and Leu-7 surfactins. Appl.Microbiol. Biotechnol. 36, 515–517.

Pornsunthorntawee, O., Arttaweeporn, N., Paisanjit, S., Somboonthanate, P., Abe, M.,Rujiravanit, R., Chavadej, S., 2008. Isolation and comparison of biosurfactantsproduced by Bacillus subtilis PT2 and Pseudomonas aeruginosa SP4 for microbialsurfactant enhanced oil recovery. Biochem. Eng. J. 42, 172–179.

Pornsunthorntawee, O., Wongpanit, P., Chavadej, S., Abe, M., Rujiravanit, R., 2008.Structural and physicochemical characterization of crude biosurfactant produced byPseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil.Bioresour. Technol. 99, 1589–1595.

Powalla, M., Lang, S., Wray, V., 1989. Penta- and disaccharide lipid formation byNocardia corynebacteroides grown on n-alkanes. Appl. Microbiol. Biotechnol.31,473-479.

Chapter 6 References

Page| 138

Rahim, R., Ochsner, U.A., Olvera, C., Graninger, M., Messner, P., Lam, J.S., Soberón-Chávez, G., 2002. Cloning and functional characterization of the Pseudomonasaeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsiblefor di-rhamnolipid biosynthesis. Mol. Microbiol. 40, 708-718.

Rahman, K.S.M., Rahman, T.J., Kourkoutas, Y., Petsas, I., Marchant, R., Banat, I.M.,2003. Enhanced bioremediation of n-alkane in petroleum sludge using bacteriumconsortium amended with rhamnolipid and micronutrients. Bioresour. Technol. 90,159-168.

Rahman, K.S.M., Rahman, T.J., McClean, S., Marchant, R., Banat, I.M., 2002.Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa usinglow-cost raw materials. Biotechnol. Prog. 18, 1277–1281.

Ramnani, P., Kumar, S.S., Gupta, R., 2005. Concomitant production and downstreamprocessing of alkaline protease and biosurfactant from Bacillus licheniformis RG1:bioformulation as detergent additive. Process Biochem. 40, 3352–3359.

Rasband, W.S. Natioanl Institute of Health, Bethesda, MD, http://rsb.info.nih.gov/ij/,1997-2004.

Raza, Z.A., Rehman, A., Khan, M.S., Khalid, Z.M., 2007. Improved production ofbiosurfactant by a Pseudomonas aeruginosa mutant using vegetable oil refinerywastes. Biodegrad. 18, 115–121.

Reddy, A.S., Chen, C.Y., Baker, S.C., Chen, C.C., Jean, J.S., Fan, C.W., Chen, H.R.,Wang, J.C., 2009. Synthesis of silver nanoparticles using surfactin: a biosurfactantstabilizing agent. Mat. Lett. 63, 1227–1230.

Reddy, A.S., Chen, C.Y., Chen, C.C., Jean, J.S., Fan, C.W., Chen, H.R., Wang, J.C.,Nimje, V.R., 2009. Synthesis of gold nanoparticles via an environmentally benignroute using a biosurfactant. J. Nanosci. Nanotechnol. 9, 6693–6699.

Reiling, H.E., Thanei-Wyss, U., Guerra-Santos, L.H., Hirt, R., Kappeli, O., Fiechter, A.,1986. Pilot plant production of rhamnolipid biosurfactant by Pseudomonasaeruginosa. Appl. Environ. Microbiol. 51, 985–989.

Remichkova, M., Galabova, D., Roeva, I., Karpenko, E., Shulga, A., Galabova, A.S.,2008. Anti-herpesvirus activities of Pseudomonas sp. S-17 rhamnolipid and itscomplex with alginate. Z. Naturforsch. C 63, 75–81.

Reznik, G.O., Vishwanath, P., Pynn, M.A., Sitnik, J.M., Todd, J.J., Wu, J., Jiang, Y.,Keenan, B.G., Castle, A.B., Haskell, R.F., Smith, T.F., Somasundaran, P., Jarrell,K.A., 2010. Use of sustainable chemistry to produce an acyl amino acid surfactant.Appl. Microbiol. Biotechnol. 86, 1387–1397.

Richter, M., Willey, J.M., Sussmuth, R., Jung, G., Fiedler, H.P., 1998. Streptofacin, novelbiosurfactant with aerial mycelium inducing activity from Streptomyces tendae Tu901/8c. FEMS Microbiol. Lett. 163, 165–171.

Rivardo, F., Turner, R.J., Allegrone, G., Ceri, H., Martinotti, M.G., 2009. Anti-adhesionactivity of two biosurfactants produced by Bacillus spp. prevents biofilm formationof human bacterial pathogens. Appl. Microbiol. Biotechnol. 83, 541–553.

Robert, M., Mercade, M.E., Bosch, M.P., Parra, J.L., Espuny, M.J., Manresa, M.A.,Guinea, J., 1989. Effect of the carbon source on biosurfactant production byPseudomonas aeruginosa 44T. Biotechnol. Lett. 11, 871–874.

Chapter 6 References

Page| 139

Rodrigues, L., Banat, I.M., Teixeira, J., Oliveira, R., 2007. Strategies for the preventionof microbial biofilm formation on silicone rubber voice prostheses. J. Biomed.Mater. Res. B Appl. Biomater. 81, 358–370.

Rodrigues, L., Teixeira, J., Oliveira, R., Henny, C., van der, M., 2006a. Response surfaceoptimization of the medium components for production of biosurfactants byprobiotic bacteria. Process Biochem. 41, 1–10.

Rodrigues, L., van der Mei, H., Banat, I.M., Teixeira, J., Oliveira, R., 2006b. Inhibition ofmicrobial adhesion to silicone rubber treated with biosurfactant from Streptococcusthermophilus A. FEMS Immunol. Med. Microbiol. 46, 107–112.

Rodrigues, L., van der Mei, H.C., Teixeira, J., Oliveira, R., 2004. Influence ofbiosurfactants from probiotic bacteria on formation of biofilms on voice prostheses.Appl. Environ. Microbiol. 70, 4408–4410.

Ron, E.Z., Rosenberg, E., 2001. Natural roles of biosurfactants. Environ. Microbiol. 3,229−236.

Rosen, M.J. 2004. Surfactants and interfacial phenomena (3rd ed.). Hoboken, New Jersey:John Wiley and Sons.

Rosenberg, E., Ron, E.Z., 1999. High and low-molecular mass microbial surfactants.Appl. Microbial. Biotechnol. 52, 154-162.

Rosenberg, E., Schwartz, Z., Tenenbaum, A., Rubinovitz, C., Legmann, R., Ron, E.Z.,1989. A microbial polymer that changes the surface properties of limestone: Effectof biodispersan in grinding limestone and making paper. J. Dispersion Sci. Technol.10, 241–250.

Rosenberg, E., Rubinovitz, C., Legmann, R., Ron, E.Z., 1988. Purification and chemicalproperties of Acinetobacter calcoaceticus A2 biodispersan. Appl. Environ.Microbiol. 54, 323–326.

Rosenberg, E., 1986. Microbial surfactants. Crit. Rev. Biotechnol. 3, 109–132.Rosenberg, M., Rosenberg, E., 1981. Role of adherence in growth of Acinetobacter

calcoaceticus RAG-1 on hexadecane. J. Bacteriol. 148, 51–57.Rosenberg, E., Zuckerberg, A., Rubinovitz, C., Gutnick, D.L., 1979. Emulsifier

Arthrobacter RAG-1: isolation and emulsifying properties. Appl. Environ.Microbiol. 37, 402–408.

Saini, H.S., Barragán-Huerta, B.E., Lebrón-Paler, A., Pemberton, J.E., Vázquez, R.R.,Burns, A.M., Marron, M.T., Seliga, C.J., Gunatilaka, A.A., Maier, R.M., 2008.Efficient purification of the biosurfactant viscosin from Pseudomonas libanensisstrain M9-3 and its physicochemical and biological properties. J. Nat. Prod. 71,1011–1015.

Saitou, N., Nei, M., 1987. The neighbor-joining method: A new method forreconstructing phylogenetic trees. Mol. Bio. Evol. 4, 406-425.

Salokhe, M.D., Govindwar, S.P., 1999. Effect of carbon source on the biotransformationenzymes in Serratia marcescens. World J. Microbiol. Biotechnol. 15, 229–232.

Sánchez, M., Aranda, F.J., Teruel, J.A., Espuny, M.J., Marqués, A., Manresa, Á., Ortiz,A., 2010. Permeabilization of biological and artificial membranes by a bacterialdirhamnolipid produced by Pseudomonas aeruginosa. J. Colloid Interface Sci. 341,240–247.

Chapter 6 References

Page| 140

Sandrin, T.R., Chech, A.M., Maier, R.M., 2000. A rhamnolipid biosurfactant reducescadmium toxicity during naphthalene biodegradation. Appl. Environ. Microbiol.66, 4585-4588.

Santos, A.S., Sampaio, A.P.W., Vasquez, G.S., Santa Anna, L.M., Pereira, N., Freire,D.M.J., Evaluation of different carbon and nitrogen sources in production ofrhamnolipids by a strain of Pseudomonas aeruginosa. Appl. Biochem. Biotechnol.98, 1025-1035.

Sarachat, T., Pornsunthorntawee, O., Chavadej, S., Rujiravanit, R., 2010. Purification andconcentration of a rhamnolipid biosurfactant produced by Pseudomonas aeruginosaSP4 using foam fractionation. Bioresour. Technol. 101, 324–330.

Saravanakumari, P., Mani, K., 2010. Structural characterization of a novel xylolipidbiosurfactant from Lactococcus lactis and analysis of antibacterial activity againstmulti-drug resistant pathogens. Bioresour. Technol. 101, 8851-8854.

Satpute S.K., Banpurkar, A.G., Dhakephalkar, P.K., Banat I.M., Chopade, B.A., 2010.Methods for investigating biosurfactants and bioemuslifiers. Crit. Rev. Biotechnol.30, 127-144.

Scheibenbogen, K., Zytner, R.G., Lee, H., Trevors, J.T., 1994. Enhanced removal ofselected hydrocarbons from soil by Pseudomonas aeruginosa UG2 biosurfactantsand some chemical surfactants. J. Chem. Technol. Biotechnol. 59, 53–59.

Sen, R., 2008. Biotechnology in petroleum recovery: the microbial EOR. Prog. Energ.Combust. 34, 714–724.

Sen, R., 1997. Response surface optimization of the critical media components forproduction of surfactin. J. Chem. Tech. Biotechnol. 68, 263–270.

Sen, R., Swaminathan, T., 2005. Characterization of concentration and purificationparameters and operating conditions for the small scale recovery of surfactin.Process Biochem. 40, 2953–2958.

Sen, R., Swaminathan, T., 2004. Response surface modeling and optimization toelucidate the effects of inoculum age & size on surfactin production. Biochem. Eng.J. 21, 141–148.

Seydlová, G., Svobodová, J., 2008. Review of surfactin chemical properties and thepotential biomedical applications. Cent. Eur. J. Med. 3, 123–133.

Shah, V., Doncel, G.F., Seyoum, T., Eaton, K.M., Zalenskaya, I., Hagver, R., Azim, A.,Gross, R., 2005. Sophorolipids, microbial glycolipids with anti-humanimmunodeficiency virus and sperm immobilizing activities. Antimicrob. AgentsChemother. 49, 4093–4100.

Shanmugam, V., Kumari, M., Yadav, K.D., 1999. n-propanol as a substrate for assayingthe lignin peroxidase activity of Phanerochaete chrysoporium. Ind. J. Biochem.Biophys. 36, 39–43.

Shephord, R., Rockey, J., Shutherland, I.W., Roller, S., 1995. Novel bioemulsifier frommicroorganisms for use in foods. J. Biotechnol. 40, 207–217.

Siegmund, I., Wagner, F., 1991. New method for detecting rhamnolipids excreted byPseudomonas species during growth on mineral agar. Biotechnol. Tech. 5, 265-268.

Silvaa, S.N.R.L., Farias, C.B.B., Rufinob, R.D., Lunab, J.M., Sarubbob, L.A., 2010.Glycerol as substrate for the production of biosurfactant by Pseudomonasaeruginosa UCP0992. Colloid. Surf. B Biointerfaces.doi:10.1016/j.colsurfb.2010.03.050

Chapter 6 References

Page| 141

Singh, M., Saini, V., Adhikari, D.K., Desai, J.D., Sista, V.R., 1990. Production ofbioemulsifier by SCP producing strain of Candida tropicalis during hydrocarbonfermentation. Biotechnol. Lett. 12, 743–746.

Singh, P., Cameotra, S., 2004. Potential applications of microbial surfactants inbiomedical sciences. Trends Biotechnol. 22, 208-214.

Smyth, T.J., Perfumo, A., Marchant, R., Banat, I.M., Chen, M., Thomas, R.K., Penfold,J., Stevenson, P.S., Parry, N.J., 2010. Directed microbial biosynthesis of deuteratedbiosurfactants and potential future application to other bioactive molecules. Appl.Microbiol. Biotechnol. (In press).

Snook, M.E., Mitchell, T., Hinton, D.M., Bacon, C.W., 2009. Isolation andcharacterization of Leu7-surfactin from the endophytic bacterium Bacillusmojavensis RRC 101, a biocontrol agent for Fusarium verticillioides. J. Agric.Food Chem. 57, 4287–4292.

Soberón-Chávez, G., Lépine, F., Déziel, E., 2005. Production of rhamnolipids byPseudomonas aeruginosa. Appl. Microbiol. Biotechnol. 68, 718-725.

Souto, G.I., Correa, O.S., Montecchia, M.S., Kerber, N.L., Pucheu, N.L., Bachur, M.,Garcı´a, A.F., 2004. Genetic and functional characterization of a Bacillus sp. strainexcreting surfactin and antifungal metabolites partially identified as iturin-likecompounds. J. Appl. Microbiol. 97, 1247–1256.

Stanghellini, M.E., Miller, R.M., 1997. Biosurfactants: their identity and potentialefficacy in the biological control of zoosporic plant pathogens. Plant Dis. 81, 4-12.

Sutthivanitchakul, B., Thaniyavaran, J., Thaniyavaran, S., 1999. Biosurfactant productionby Bacillus licheniformis F2.2. Thai J. Biotechnol. 1, 46-53.

Suzuki, T., Tanaka, H., Itoh, S., 1974. Sucrose lipids of Arthrobateria, Corynebacteria,and Nocardia grown on sucrose. Agric. Biol. Chem. 38, 557-563.

Suzuki, T., Hayashi, K., Fujikawa, K., Tsukamoto, K., 1965. The chemical structure ofpolymyxin E. The identies of polymyxin E1 with colistin A and polymyxin E2 withcolistin B. J. Biol. Chem. 57, 226–227.

Syldatk, C., Wagner, F., 1987. Production of biosurfactants. p. 89–120. In N. Kosaric, W.L. Cairns, and N. C. C. Gray (ed.), Biosurfactants and biotechnology. MarcelDekker, Inc., New York.

Takezaki, N., Rzhetsky, A., Nei, M., 2004. Phylogenetic test of the molecular clock andlinearized trees. Mol. Bio. Evol. 12, 823-833.

Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular EvolutionaryGenetics Analysis (MEGA) software version 4.0. Mol. Bio. Evol. 24, 1596-1599.

Tamura, K., Nei, M., Kumar, S., 2004. Prospects for inferring very large phylogenies byusing the neighbor-joining method. PNAS 101, 11030-11035.

Telke, A., Kalyani, D., Jadhav, J., Govindwar, S., 2008. Kinetics and mechanism ofreactive red 141 degradation by a bacterial isolate Rhizobium radiobacter MTCC8161. Acta. Chim. Solv. 55, 320-329.

Thanomsub, B., Watcharachaipong, T., Chotelersak, K., Arunrattiyakorn, P., Nitoda, T.,Kanzaki, H., 2004. Monoacylglycerols: glycolipid biosurfactants produced by athermotolerant yeast, Candida ishiwadae. J. Appl. Microbiol. 96, 588–592.

Thavasi, R., Nambaru, V.R.M.S., Jayalakshmi, S., Balasubramanian, T., Banat I.M.,2009. Biosurfactant production by Azotobacter chroococcum isolated from themarine environment. Mar. Biotechnol. 11, 551–556.

Chapter 6 References

Page| 142

Thavasi, R., Jayalakshmi, S., Balasubramanian, T., Banat, I.M., 2008. Production andcharacterization of a glycolipid biosurfactant from Bacillus megaterium usingeconomically cheaper sources. World J. Microbiol. Biotechnol. 24, 917–925.

Thimon, L., Peypoux, F., Wallach, J., Michel, G., 1995. Effect of the lipopeptideantibiotic iturin A, on morphology and membrane ultrastructure of yeast cells.FEMS Microbiol. Lett. 128, 101-106.

Thompson, D.N., Fox, S.L., Bala, G.A., 2001. The effects of pretreatments on surfactinproduction from potato process effluent by Bacillus subtilis. Appl. Biochem.Biotechnol. 91–93, 487–502.

Tran, H., Ficke, A., Asiimwe, T., Höfte, M., Raaijmakers, J.M., 2007. Role of cycliclipopeptide massetolide A in biological control of Phytophthora infestans and incolonization of tomato plants by Pseudomonas fluorescens. New Phytol. 175, 731–742.

Trummler, K., Effenberger, F., Syldatk, C., 2003. An integrated microbial/enzymaticprocess for production of rhamnolipids and l-(+)-rhamnose from rapeseed oil withPseudomonas sp. DSM 2874. Eur. J. Lipid. Sci. Tech. 105, 563–571.

Tugrul, T., Cansunar, E., 2005. Detecting surfactant-producing microorganisms by thedrop-collapse test. World J. Microbiol. Biotechnol. 21, 851-853.

Tuleva, B., Christova, N., Cohen, R., Antonova, D., Todorov, T., Stoineva, I., 2009.Isolation and characterization of trehalose tetraester biosurfactants from a soil strainMicrococcus luteus BN56. Process Biochem. 44, 135-141.

Uchida, Y., Misava, S., Nakahara, T., Tabuchi, T., 1989. Factors affecting the productionof succinoltrehalose lipids by Rhodococcus erythropolis SD-74 grown on n-alkanes. Agric. Biol. Chem. 53, 765–769.

Ueno, Y., Hirashima, N., Inoh, Y., Furuno, T., Nakanishi, M., 2007a. Characterization ofbiosurfactant-containing liposomes and their efficiency for gene transfection. Biol.Pharm. Bull. 30, 169–172.

Ueno, Y., Inoh, Y., Furuno, T., Hirashima, N., Kitamoto, D., Nakanishi, M., 2007b.NBD-conjugated biosurfactant (MEL-A) shows a new pathway for transfection. J.Control Release 123, 247–253.

Van der Vegt, W., van der Mei, H.C., Noordmans, J., Busscher, H.J., 1991. Assessmentof bacterial biosurfactant production through axisymmetric drop shape analysis byprofile. Appl. Microbiol. Biotechnol. 35, 766–770.

Van Hamme, J.D., Singh, A., Ward, O.P., 2006. Physiological aspects, part 1 in a seriesof papers devoted to surfactants in microbiology and biotechnology. Biotechnol.Adv. 24, 604–620.

Vance-Harrop, M.H., de Gusmão, N.B., Campos-Takaki, G.M., 2003. Newbioemulsifiers produced by Candida lipolytica using D-Glucose and Babassu oil ascarbon sources. Braz. J. Microbiol. 34, 120–123.

Varnier, A.L., Sanchez, L., Vatsa, P., Boudesocque, L., Garcia-Brugger, A., Rabenoelina,F., Sorokin, A., Renault, J.H., Kauffmann, S., Pugin, A., Clement, C., Baillieul, F.,Dorey, S., 2009. Bacterial rhamnolipids are novel MAMPs conferring resistance toBotrytis cinerea in grapevine. Plant Cell Environ. 32, 178–193.

Vasileva-Tonkova, E., Gesheva, V., 2007. Biosurfactant production by antarcticfacultative anaerobe Pantoea sp. during growth on hydrocarbons. Curr. Microbiol.54, 136–141.

Chapter 6 References

Page| 143

Vater, J., Kablitz, B., Wilde, C., Frank, P., Mehta, N., Cameotra, S.S., 2002. Matrix-assisted laser desorption ionization time of flight mass spectrometry of lipopeptidebiosurin whole cells and culture filtrates of Bacillus subtilis C-1 isolated frompetroleum sludge. Appl. Environ. Microbiol. 68, 6210–6219.

Velmurugan, N., Choi, M.S., Han, S.S., Lee, Y.S., 2009. Evaluation of antagonisticactivities of Bacillus subtilis and Bacillus licheniformis against wood-stainingfungi: in vitro and in vivo experiments. J. Microbiol. 47, 385–392.

Velraeds, M.M., van de Belt-Gritter, B., Busscher, H.J., Reid, G., Van der Mei, H.C.,2000. Inhibition of uropathogenic biofilm growth on silicone rubber in human urineby Lactobacilli—a teleologic approach. World J. Urol. 18, 422–426.

Velraeds, M.M., 1998. Interference in initial adhesion of uropathogenic bacteria andyeasts to silicone rubber by a Lactobacillus acidophilus biosurfactant. J. Med.Microbiol. 47, 1081-1085.

Vinh, D.C., Embil, J.M., 2005. Device-related infections: a review. J. Long Term Eff.Med. Implants 15, 467–488.

Vollenbroich, D., Ozel, M., Vater, J., Kamp, R.M., Pauli, G., 1997. Mechanism ofinactivation of enveloped viruses by the biosurfactant surfactin from Bacillussubtilis. Biologicals 25, 289–297.

Wang, S.L., Mulligan, C.N., 2009. Arsenic mobilization from mine tailings in thepresence of a biosurfactant. Appl. Geochem. 24, 928–935.

Wang, J., Liu, J., Chen, H., Yao, J., 2007. Characterization of Fusarium graminearuminhibitory lipopeptide from Bacillus subtilis IB. Appl. Microbiol. Biotechnol. 76,889-894.

Wattanaphon, H.T., Kerdsin, A., Thammacharoen, C., Sangvanich, P., Vangnai, A.S.,2008. A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancementof pesticide solubilization. J. Appl. Microbiol. 105, 416–423.

Wayman, M., Jenkins, A.D., Kormady, A.G., 1984. Biotechnology for oil and fatindustry. J. Am. Oil Chem. Soc. 61, 129–131.

Wei, Y.H., Cheng, C.L., Chien, C.C., Wan, H.M., 2008. Enhanced di-rhamnolipidproduction with an indigenous isolate Pseudomonas aeruginosa J16. ProcessBiochem. 43, 769–774.

Wei, Y.H., Chien, L.C., Chang, J.S., 2005. Rhamnolipid production by indigenousPseudomonas aeruginosa J4 originating from petrochemical wastewater.Biochemical Eng. J. 27, 146-154.

Wei, Y.H., Wang, L.F., Chang, J.S., Kung, S.S., 2003. Identification of inducedacidification in iron enriched cultures of Bacillus subtilis during biosurfactantfermentation. J. Biosci. Bioeng. 96, 174–178.

White, R.T., Damm, D., Miller, J., Spratt, K., Schilling, J., Howgood, S., Benson, B.,Cordell, B., 1985. Isolation and characterization of the human pulmonary surfactantapoprotein gene. Nature 317, 316–320.

Wilkinson, S.G., Galbraith, L., 1975. Studies on lipopolysaccharides from Pseudomonasaeruginosa. Eur. J. Biochem. 52, 331–343.

Williams, P., Cámara, M., 2009. Quorum sensing and environmental adaptation inPseudomonas aeruginosa: a tale of regulatory networks and multifunctional signalmolecules. Curr. Opin. Microbiol. 12, 182-191.

Chapter 6 References

Page| 144

Wu, J.Y., Yeh, K.L., Lu, W.B., Lin, C.L., Chang, J.S., 2008. Rhamnolipid productionwith indigenous Pseudomonas aeruginosa EM1 isolated from oil contaminatedsoil. Bioresour. Technol. 99, 1157-1164.

Xiao, B., Sun, X.F., Sun, R.C., 2001. Chemical, structural and thermal characterization ofalkali-soluble lignins and hemicellulose from maize stems, rye straw and rice straw.Polym. Degrad. Stabil. 74, 307–319.

Xie, Y., Ye, R., Honglai, L., 2006. Synthesis of silver nanoparticles in reverse micellesstabilized by natural biosurfactant. Colloid. Surf. A Physicochem. Eng. Aspects279, 175–178.

Yakimov, M.M., Fredrickson, H.L., Timmis, K.N., 1996. Effect of heterogeneity ofhydrophobic moieties on surface activity of lichenysin A, a lipopeptidebiosurfactant from Bacillus licheniformis BAS50. Biotechnol. Appl. Biochem. 23,13–18.

Yakimov, M.M., Timmis, K.N., Wray, V., Fredrickson, H.L., 1995. Characterization of anew lipopeptide surfactant produced by thermotolerant and halotolerant subsurfaceBacillus licheniformis BAS50. Appl. Environ. Microbiol. 61, 1706–1713.

Yamane, T., 1987. Enzyme technology for the lipid industry: an engineering overview. J.Am. Oil Chem. Soc. 64, 1657-1662.

Yin, H., Qiang, J., Jia, Y., Ye, J., Peng, H., Qin, H., Zhang, N., He, B., 2009.Characteristics of biosurfactant produced by Pseudomonas aeruginosa S6 isolatedfrom oil-containing wastewater. Process Biochem. 44, 302-308.

Youssef, N.H., Duncan, K.E., Nagle, D.P., Savage, K.N., Knapp, R.M., McInerney, M.J.,2004. Comparison of methods to detect biosurfactant production by diversemicroorganisms. J. Microbiol. Methods 56, 339-347.

Zang, X., Flurkey, W., 1997. Phenol oxidases in Portabella Mushrooms. J. Food Sci. 62,97–100.

Zeng, G.M., Shi, J.G., Yuan, X.Z., Liu, J., Zhang, Z.B., Huanga, G.H., Li, J.B., Xi, B.D.,Liu, H.L., 2006. Effects of Tween 80 and rhamnolipid on the extracellular enzymesof Penicillium simplicissimum isolated from compost. Enzyme Microb. Technol.39, 1451-1456.

Zhang, Y., Miller, R.M., 1995. Effect of rhamnolipid (biosurfactant) structure onsolubilization and biodegradation of n-alkanes. Appl. Environ. Microbiol. 61, 2247-2251.

Zhang, Y., Miller, R.M., 1994. Effect of Pseudomonas rhamnolipid biosurfactant on cellhydrophobicity and biodegradation of octadecane. Appl. Environ. Microbiol. 60,2101–2106.

Zhang, Y., Miller, R.M., 1992. Enhanced octadecane dispersion and biodegradation by aPseudomonas rhamnolipid surfactant (biosurfactant). Appl. Environ. Microbiol. 58,3276–3282.

Zosim, Z., Gutnick, D.L., Rosenberg, E., 1982. Properties of hydrocarbon- in-wateremulsions stabilized by Acinetobacter RAG-1 emulsan. Biotechnol. Bioeng. 24,281–292.

Zukerberg, A., Diver, A., Peeri, Z., Gutnick, D.L., Rosenberg, E., 1979. Emulsifier ofArthrobacter RAG-1: chemical and physical properties. Appl. Environ. Microbiol.37, 414–420.