chapter 6 rotation motion

56
Chapter 6 Rotation Motion Angular Position, Velocity, and Acceleration Rotational Kinetic Energy Torque and Rotational Dynamics Rotational Plus Translational Motion ; Rolling Angular Momentum of a Particle Conservation of Angular Momentum Angular Momentum of a Rotating Rigid Object

Upload: others

Post on 08-Dec-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Chapter 6 Rotation Motion

Angular Position, Velocity, and Acceleration

Rotational Kinetic Energy

Torque and Rotational Dynamics

Rotational Plus Translational Motion ; Rolling

Angular Momentum of a Particle

Conservation of Angular Momentum

Angular Momentum of a Rotating Rigid Object

2 1

2 1 t t t

6-1 Angular Position, Velocity, and Acceleration*

0lim

t

d

t dt

2 1

2 1t t t

0lim

t

d

t dt

10-04

rv

P

/S r 0( ) /180 (deg)rad

x

y

Unit: : /rad s : /f rev s; 2 f

P. 250 CCU Physics 6 - 1

d d

v R Rdt dt

t

dv da R R

dt dt

22

r

va R

R

2 4R

ta

P

x

y

ra

a

2 2

t ra a a

CCU Physics 6 - 2

2

0 0

1

2x x v t at

2 2

0 0 2 ( - )v v a x x

0v v at 0 t

2

0 0

1

2t t

2 2

0 02 ( )

Constant Angular

AccelerationConstant Acceleration

;d d

dt dt

;

dx dvv a

dt dt

CCU Physics 6 - 3

Moment of inertial

(轉動慣量 )

2

i i

i

I m r

21

2RK I

6-2 Rotational Kinetic Energy ( Rotation about a Fixed Axis)

21

2R i iK m v

Rotational

Kinetic Energy

2 21

2i im r ω

CCU Physics 6 - 4

The moment of inertial of a body is a measure of its

rotational inertia, that is ,its resistance to change in its

angular velocity.

If MA= MB= MC

IC > IB > IA

IA > IB

AB

dmrI 2

For continuous Bodies

CCU Physics 6 - 5

Example 6-1 Find the moment of inertia of a uniform thin hoop of

mass M and radius R about an axis perpendicular to the plane of the

hoop and passing through its center.

2 2R dm MR

2

zI r dm

P. 184 CCU Physics 6 - 6

Example 6-2 Calculate the moment of inertia of a uniform rigid rod

of length L and mass M about an axis perpendicular to the rod (the

y axis) and passing through its center of mass.

21

12ML

Mdm dx dx

L

/ 22 2

/ 2

L

yL

MI r dm x dx

L

/ 22

/ 2

L

L

Mx dx

L

CCU Physics 6 - 7

Example 6-3 (a) Show that the moment of inertia of a uniform

hollow cylinder of inner radius R1, outer radius R2, and mass M, is

½ M(R12 + R2

2), if the rotation axis is through the center along the

axis of symmetry. (b) Find the moment of inertia for a solid cylinder.

2 .dm dV hR dR

2

1

2 32R

RI R dm hR dR

4 44 42 12 12 ( ).

4 2

R R hh R R

2 2 2 2 2 2

2 1 2 1 1 2

1( )( ) ( ).

2 2

hI R R R R M R R

2 0R R

2 2

2 1( ) .M V R R h

1 0R For a solid cylinder, and 2

0

1.

2I MR

CCU Physics 6 - 8

2

0

1

2CMI MR

2

0CMI MR

21

12CMI M

6-3 Parallel-axis theorem (平行軸定理) : I = ICM + MD2

2

02I MR

Axis

Axis

Axis

2

0

3

2I MR

21

3I M

CCU Physics 6 - 9

m 2m 4m

0 1 2 3 4

O O’’ O’1 1 2 2 4 4

31 2 4

i i

cm

i

m xx

m

1 ( 2) 2 ( 1) 4 10

1 2 4

i i

cm

i

m xx

m

1 0 2 1 4 32

1 2 4

i i

cm

i

m xx

m

Position of the center of mass

from difference origin

Position of the center of mass from the

center of mass is always zero. 0 cmx x dm

在質心座標系統的質心位置為零。

CCU Physics 6 - 10

Proof of Parallel-Axis Theorem (平行軸定理)

2 2( )I x y dm ' 2 ' 2 ( ) ( ) x yD x D y dm

2 2 2 2 ( ) ( ) x yD D dm x y dm 2 2x yD x dm D y dm

2 CMI MD I

0 0

0 x dm 在質心座標系統的質心位置為零

CCU Physics 6 - 11

Example 6-4 A uniform disk (radius R) rotates freely

about a horizontal axis P. What is the angular velocity of

the disk as the disk passes through the vertical position.

P

m

?

2 2 21 3

2 2PI MR MR MR

2 2 21 3

2 4PMgR I MR

4

3

g

R

CCU Physics 6 - 12

Example 6-5 A T-shape stick rotates freely about a

horizontal axis P. What is the angular velocity of the stick

as the stick passes through the vertical position?

( : 600 00 )

2 2 2 21 1 17

3 12 12PI ML ML ML ML

0 0 211 cos60 1 cos60

2 2P

LMg MgL I

36

34

g

L

2 23 17

4 24MgL ML

L

P

?

mm

L

1 cosh L

h

CCU Physics 6 - 13

6-4 Perpendicular-Axis Theorem : Iz = Ix + Iy

2 2( )zI x y dm 2 2 x dm y dm

y xI I 2 2 2 2 zI x z dm y z dm

( z = 0 for flat objects )

Valid only for flat objects

The sum of the moments of inertia of a plane object about any two

perpendicular axes in the plane of the object , is equal to the

moment of inertia about an axis through their point of intersection

perpendicular to the plane of the object.

CCU Physics 6 - 14

MR ?xI

21

2zI MR

2 21 1 1 1

2 2 2 4x zI I MR MR

x yI I (symmetry)

2z x y xI I I I

CCU Physics 6 - 15

6-5 Rotational Plus Translational Motion ; Rolling**

CM

ds dv R R

dt dt

CMCM

dv da R R

dt dt

Condition for pure rolling motion

S R

P. 267

CMv R CMa R

Pure rolling motion

;

CCU Physics 6 - 16

一轉動中物理之角速度,相對於其上各點均相同。

CCU Physics 6 - 17

The motion of a rolling object can be modeled

as a combination of pure translation and pure

rotation.

translation rotation rolling

CCU Physics 6 - 18

For pure rolling all points move in a direction

perpendicular to an axis through the instantaneous

point of contact P. All points rotate about P.

v r

r

CCU Physics 6 - 19

A object that both translational and rotational motion also has both

translational and rotational kinetic energy:

2 21 1

2 2tot CM CMK Mv I

A ring, a disk and a solid

sphere have the same

radius and same mass

Two solid sphere with

different radius

Which arrives at the bottom first ?

CMv

6-6 Rotational Kinetic Energy ( General Case )

CCU Physics 6 - 20

2 21 1' 0;

2 2i i i i C

i i

m v m v I

2 21 1

2 2CM C

K Mv I

21

2i iK m v

21( )

2i CM im v v

21 1 12

2 2 2i CM i i i CM i

i i

K m v m v m v v

21 1( )

2 2CM i i CM i i

i i

K Mv m v v m v

'

i cm ir r r

i CM iv v v ;

Proof

CCU Physics 6 - 21

21

2pK I

Method 2 :

2 21 1

2 2CM CMK Mv I

Method 1 :

Find the kinetic energy of a rolling disk

Vc

ω

P

2 21( )

2CMI MR

2 21 1

2 2CM CMI Mv

CCU Physics 6 - 22

2 21 1

2 2CM CMK Mv I

Example 6-6 What will be the speed of a disk of mass M and

radius R when it reaches the bottom of an incline if it starts from

rest at a vertical height h and rolls without slipping ?

23

4CMK Mv Mgh

4 v

3CM

gh

2 2 21 1 1( )

2 2 2

CMCM

vMv MR

R

h

CCU Physics 6 - 23

6-7 Torque (力矩 )

t : Torque

d : level arm

sinR F RFt

Torque is a vector, but we will consider only its magnitude

here and explore its vector nature in chapter 11.

1 2 1 1 2 2net F R F Rt t t t The sign of the torque is positive if the

turning tendency is counterclockwise

10-14

1F

2F

1R

2R

CCU Physics 6 - 24

2

i i i

i i

m Rt I

inti ext extt t t t

2

i i im Rt

ext It 2

i iiI m R

6-8 Rotational Dynamics

/ /

i i it i iF m a m R

iR im

iF / / 2

i i i iR F m R

CCU Physics 6 - 25

ext

CM CMIt

Even center of mass reference frame is noninertial

m 2m1x

2x

cm

F

1fF

2fF

m 2m1x

2x

F

1fF

2fF

( )a ( )b

a aInertial Force ( Ff )

1

22

f

f

F ma

F ma

2 1 1 2 2 2( )CM Fx m gx m gx Fxt

2 1 1 2 2 2( )Fx m gx m gx Fxt

Case (a)

Case (b)

The net torque, relative to the center of mass, contributed by

the inertial force is always equal to zero.

0;a g g a

CCU Physics 6 - 26

CMCM

dL

dtt

Even center of mass reference frame is noninertial

The spin motion of the earth

CCU Physics 6 - 27

RM

1m 2m

1T 2T

2 1m m

Example 6-7 Find the acceleration of m2 (ICM = ½ MR2)

a) Draw free body diagram for

the pulley and each block .

b) Write down the equations for

each diagram you draw in part

a). (Newton’sd 2nd law for

linear motion and rotational

motion)

c) What is the relation between a

and ?

d) Solve the acceleration a.

CCU Physics 6 - 28

RM

1T2T

2 2 2m g T m a

1 1 1T m g m a

2 1 CMT T R I

2 1 2

1

2

CMIT T a Ma

R

2 1

1 2

( )

/ 2

m m ga

m m M

1m 2m

1T 2T

1m g2m g

/a R

2 1m m

aa

CCU Physics 6 - 29

sin Smg f ma

Example 6-8 A sphere rolls without slipping down an incline.

(a) Find the linear acceleration of the CM. (b) what is the minimum

coefficient of friction required for the sphere to roll without slipping?

R CMf R I 2 2( )5

aMR

R

2

5Sf ma

5 sin

7a g

2 sin

7Sf mg

max

2 cos sin

7s sf N mg mg

2tan

7S

10-30

Sf

mg

N

x

y

= 0 fS = 0, a = 0

CCU Physics 6 - 30

SF f Ma

21

2S CM

aFr f R I MR

R F

rR

Sf

P2( )

3

R r Fa

R M

2

3S

R rf F

R

Example 6-9 A constant force (F) is applied to a yo-yo

(Icm = ½ MR2). The yo-yo rolls without slipping. What is the

acceleration of the yo-yo ? What is the minimum coefficient of

friction required for the yo-yo to roll without slipping

1

2S

rF f Ma

R

0;S

Ff a

M / 2r R

/ 2r R 0Sf

maxS Sf mg2

3S

R r F

R mg

CCU Physics 6 - 31

Fr

Rf

21

2S CM

af R Fr I MR

R

2( )

3

R r Fa

R M

2

3S

R rf F

R

SF f Ma

1

2S

rf F Ma

R

maxS Sf mg2

3S

R r F

R mg

CCU Physics 6 - 32

Example 6-10 A bowling ball of mass M and radius r0 is thrown

along a level surface so the initially it slides with a linear speed v0

but does not rotate. As it slides, it begin to spin, and eventually

rolls without slipping. How long does it take to begin rolling

without slipping ?

kmg ma

0k CMmg r I

ka g

0

2

5

kg

r

0CM kv v gt

0

2

5

kgt

r

0CMv r 02

7 k

vt

g

CCU Physics 6 - 33

What is the direction of the static friction force on the disk in the

figure (rolls without slipping)?

F

rR

21; 0.6

2CI mR r R

Direction of the static friction force (I)

Sf

C

C C

C C

C C

Fr FrRFr I R

I I

FF Ma a

M

if R a R v

(Spin too fast)

(points to the right )

Sf

21.2 1.2

Fr FR a a

MR M

Sf

Without static friction force

R Cv

CCU Physics 6 - 34

What is the direction of the static friction force on the disk

in the figure (rolls without slipping)?

21; 0.2 ; 2

2CI mR r R F mg

F

rR P

037

Direction of the static friction force (II)

20.8

FrR mg

mR

R a Spin too slowSf

cos sinF mg ma

4 32

5 5a mg mg mg

21

2cFr I mR

Sf

CCU Physics 6 - 35

6-9 The vector product and Torque

ˆ sin C A B AB n

A B B A

sinr F rFt

r

CCU Physics 6 - 36

( ) A B C A B A C

ˆˆ ˆ

i j k

A Bx y z

x y z

A A A

B B B

x y z z y

y z x x y

z x y y x

C A B A B

C A B A B

C A B A B

or

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ; ;i j k j k i k i j

ˆ ˆˆ ˆ ˆ ˆ 0i i j j k k

C A B ˆ ˆˆ ˆ ˆ ˆx y z x y zA i A j A k B i B j B k

CCU Physics 6 - 37

11-01

r Ft TorqueˆsinrF n

r Ft / /rFt

/ /F

r

or

CCU Physics 6 - 38

L r p

dv dpF m

dt dt

( )dp d dL

r F r r pdt dt dt

t

Linear momentum p mv

Angular Momentum

0

( )d dr dp dp

r p mv r mv v rdt dt dt dt

note

11-04

6-10 Angular Momentum of a Particle

CCU Physics 6 - 39

( ) ( )'( ) ( )e e

i i ij i i

i i j i

dL

dtt t t t

12 21 1 12 2 21 1 2 12

1 2 12

( ) 0

[ ( ) // ]

r F r F r r F

if r r F

t t

r1

r2

r1 - r2

( )e ttot

dL

dtt

t iiL L0τ

(e)tot

if conserved

6-11 Conservation of Angular Momentum

( )e

i i ji i

dL

dtt t t

( ) ( )e e

tot i

i

t twhere

L conserv.

CCU Physics 6 - 40

The angular momentum of the particle relative to point O

1 1 1 1ˆL m v a z

O

1v

1m

1a2m

2v

3a

3v3m

x

y

2 0L

3 3 3 3ˆL m v a z

ˆL mvrzoz

CCU Physics 6 - 41

cosi i i i

i i

L L m rv

6-12 Angular Momentum of a Rotating Rigid Object

i i i iL m r v

L I

dL dI I

dt dt

ext It text

dL

dtt 11-03

2

i i i i i

i i

m R v m R

CCU Physics 6 - 42

p mv L I

P : Momentum L : Angular Momentum

dPF ma

dt

dLI

dtt

0 constantF P 0 constantLt Conservation of

Linear MomentumConservation of

Angular Momentum

CCU Physics 6 - 43

; / 2i fr R r R

Example 6-11 A circular platform of mass M and radius R rotates

about a frictionless vertical axle. A man of mass m walks slowly

from R to R/2. If the angular speed of the system is when the

man is at R, what is the angular speed when he reaches R/2 ? What

is the change of the kinetic energy of the system K? ( M = 4m )

i

22 2 21 1

2 2 4i f

mRMR mR MR

No external torque ( r = 0 ) Li = Lf

2 4 4

2 3f i i

M m

M m

2

2 2 2 2 21 9 4 1 13

2 4 3 2 2i i iK mR mR mR

Work done

by the man

CCU Physics 6 - 44

CMCM

dL

dtt

Even center of mass reference frame is noninertial

The spin motion of the earth

CCU Physics 6 - 45

CM i i iL m r v

CM i

i i i i i CMi i

dL dr dm v m r v v

dt dt dt

i CM ir r r

i CM iv v v ;

i

i i i i CMi i

dvr m m r v

dt

i ii

r F

CMCM

dL

dtt

x y

z

ri

CMr

ir

Proof (Option)

CCU Physics 6 - 46

Spin and Orbital Angular Momentum

( )i i CM i i i

m r v m r v i CM CM CM i i

i

m r v r m v 0

0

CM CM i iL r p r p 0 CM

L L L or

where CM CM i

i

p Mv M m Let

i i iL m r v

( ) ( )i CM i CM i

i

m r r v v xy

z

ri

CMr

iri CM i

r r r i CM i

v v v ;

CCU Physics 6 - 47

L I2( )

CML I Mh

2 CM

Mh I

0 CML L

2

CMI I Mh

Example 6-12 Find the angular momentum of the body

L0 : The angular moment of the CM motion about origin O

in an inertial frame (Orbital angular momentum)

LCM : The angular momentum relative to CM

(Spin angular momentun)

0 CML L L

CCU Physics 6 - 48

Example 6-13 Find the angular momentum relative to O of a pure

rolling disk (radius R) .

O vm

1 3ˆ ˆ

2 2L mvR mvR z mvRz

0 CML L L

ˆCM CMmr v I z

x

y

r

21ˆ ˆ

2

vmvRz mR z

R

CCU Physics 6 - 49

Example 6-14 A wheel is given an initial angular speed 0. A

kinetic friction force acts the on wheel as it initially skids across the

floor. Find the magnitude of the velocity of the wheel when the

wheel is rolling without slipping ( pure rolling ).

f

f CM

vmRv I

R

0

2

CM

f

CM

I Rv

I mR

, ,S i S fL L

0CM f CM fI mRv I

Choose O as the origin, the

torque by fk is equal to zero.

f

fv

S d

,CM Sr

R

0v

0

00v

Pure rolling

direction of L

CCU Physics 6 - 50

Example 6-15 : On a level billiards table a cue ball, initially at rest

at points O on the table, is struck so that it leaves the cue stick with

a center of mass speed v0 and a “ reverse” spin of angular speed 0.

A kinetic friction force acts the on ball as it initially skids across the

table. If 0 = 3 v0/R , determine the ball’s CM velocity when it

starts to roll without slipping ?

0

1

7V V

2 2

0 0

2 2( ) ( )5 5

MV R MR MVR MR

Choose O as the origin, t = 0 Li = Lf

v0

O

0

xy

2 20

0

32 2( ) ( )5 5

V VMV R MR MVR MR

R R

0

1 7

5 5MV R MVR

Direction of L

CCU Physics 6 - 51

What is the direction of the kinetic friction force on the disk in the

figure (rolls with slipping) ?

00 1.2

v

R

Direction of the kinetic friction force

0 0R v Spin too fast

(points to the right )

kf ma

kf

x

y

kf

Move faster

Spin slowerk CMf R I

v0

0

0R 0vP

Velocity of point P

relative to the ground

0Pv v R

0Pv kf

0Pv kf

CCU Physics 6 - 52

vm

1 4M m6R

Friction force

is negligible

R2 5M m

4R

Example 6-16 Describe the motion after the collision

( friction force is negligible )

No external force

Conservation of linear

momentum

Conservation of

angular momentum

about point O.

vcm = constant

Find the position of the

center of mass of the

system after collision ycm

Choose an origin (e.g. center of the ring )

tot CM cm CMmvr M v r I

ringO

CCU Physics 6 - 53

4 4 42

10CM

m R m Ry R

m

0.110

CM

mvv v

m

4iL mvR

After collision

2 2 2 2 2 21(2 ) (4 )(6 ) 4 (2 ) 5 ( ) 5 (2 ) 57

12CMI m R m R m R m R m R mR

2(10 )(2 ) 2 57f CM CM iL m R v I mRv mR L

2

2 2

57 57

mvR v

mR R ; 0.1CMv v( clockwise )

vm

1 4M m6R

R2 5M m

direction of L

CCU Physics 6 - 54

4 4 42

10CM

m R m Ry R

m

0.110

CM

mvv v

m

2iL mvR

After collision

2 2 2 2 2 21(2 ) (4 )(6 ) 4 (2 ) 5 ( ) 5 (2 ) 57

12CMI m R m R m R m R m R mR

257f CM iL I mR L

2

2 2

57 57

mvR v

mR R ; 0.1CMv v( clockwise )

vm

1 4M m6R

R2 5M m

P

Method 2 :

Angular moment relative to P

angular moment relative to P

( P : center of mass of the system ) direction of L

CCU Physics 6 - 55