chapter 7 multiple integral (chapter 14) double integral

16
University of Baghdad 2 nd Class College of Engineering Math II Electronics and Communications Engineering Dpt. Chapter 7 Chapter 7 Multiple Integral (Chapter 14) Double Integral (14.1) If (, ) is defined on the rectangular region given by R: ≀ ≀ , ≀ ≀ Then we can write ∬ (, ) = ∫ ∫ (, ) = ∫ ∫ (, ) The double integral represents the volume under the surface = (, ) within the region R Ex: Evaluate the integral ∬ (, ) Where (, ) = 1 βˆ’ 6 2 and R: 0 ≀ ≀ 2, βˆ’1 ≀ ≀ 1 Sol. ∬ (, ) = ∫ ∫(1 βˆ’ 6 2 ) 2 0 1 βˆ’1 = ∫ [ βˆ’ 2 3 ] 0 2 βˆ’1 βˆ’1 = ∫(2 βˆ’ 16) 1 βˆ’1 = 2 βˆ’ 8 2 | βˆ’1 1 = 2 βˆ’ 8 βˆ’ (βˆ’2 βˆ’ 8) = 4 This integral can be evaluated in the order of integration reversed ∬ (, ) = ∫ ∫(1 βˆ’ 6 2 ) 1 βˆ’1 2 0 = ∫[ βˆ’ 3 2 2 ] βˆ’1 1 2 0 = ∫((1 βˆ’ 3 2 ) βˆ’ (βˆ’1 βˆ’ 3 2 )) 2 0 = ∫(2) 2 0 = 2| 0 2 =4 Double Integral Over Bounded Nonrectangular Regions ∬ (, ) =∫ ∫ (, ) 2 () 1 () =∫ ∫ (, ) β„Ž 2 () β„Ž 1 ()

Upload: others

Post on 21-Dec-2021

5 views

Category:

Documents


0 download

TRANSCRIPT

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

Chapter 7 Multiple Integral (Chapter 14)

Double Integral (14.1)

If 𝑓(π‘₯, 𝑦) is defined on the rectangular region given by

R: π‘Ž ≀ π‘₯ ≀ 𝑏, 𝑐 ≀ 𝑦 ≀ 𝑑

Then we can write

∬ 𝑓(π‘₯, 𝑦)𝑑𝐴

𝑅

= ∫ ∫ 𝑓(π‘₯, 𝑦)𝑑𝑦𝑑π‘₯

𝑑

𝑐

𝑏

π‘Ž

= ∫ ∫ 𝑓(π‘₯, 𝑦)𝑑π‘₯𝑑𝑦

𝑏

π‘Ž

𝑑

𝑐

The double integral represents the volume under the surface 𝑧 = 𝑓(π‘₯, 𝑦) within the region R

Ex: Evaluate the integral

∬ 𝑓(π‘₯, 𝑦)𝑑𝐴

𝑅

Where 𝑓(π‘₯, 𝑦) = 1 βˆ’ 6π‘₯2𝑦 and R: 0 ≀ π‘₯ ≀ 2, βˆ’1 ≀ 𝑦 ≀ 1

Sol.

∬ 𝑓(π‘₯, 𝑦)𝑑𝐴

𝑅

= ∫ ∫(1 βˆ’ 6π‘₯2𝑦)𝑑π‘₯𝑑𝑦

2

0

1

βˆ’1

= ∫ [π‘₯ βˆ’ 2π‘₯3𝑦]02𝑑𝑦

βˆ’1

βˆ’1

= ∫(2 βˆ’ 16𝑦)𝑑𝑦

1

βˆ’1

= 2𝑦 βˆ’ 8𝑦2|βˆ’11 = 2 βˆ’ 8 βˆ’ (βˆ’2 βˆ’ 8) = 4

This integral can be evaluated in the order of integration reversed

∬ 𝑓(π‘₯, 𝑦)𝑑𝐴

𝑅

= ∫ ∫(1 βˆ’ 6π‘₯2𝑦)𝑑𝑦𝑑π‘₯

1

βˆ’1

2

0

= ∫[𝑦 βˆ’ 3π‘₯2𝑦2]βˆ’11 𝑑π‘₯

2

0

= ∫((1 βˆ’ 3π‘₯2) βˆ’ (βˆ’1 βˆ’ 3π‘₯2))𝑑π‘₯

2

0

= ∫(2)𝑑π‘₯

2

0

= 2π‘₯|02 = 4

Double Integral Over Bounded Nonrectangular Regions

∬ 𝑓(π‘₯, 𝑦)𝑑𝐴

𝑅

= ∫ ∫ 𝑓(π‘₯, 𝑦)𝑑𝑦𝑑π‘₯

𝑔2(π‘₯)

𝑔1(π‘₯)

𝑏

π‘Ž

= ∫ ∫ 𝑓(π‘₯, 𝑦)𝑑π‘₯𝑑𝑦

β„Ž2(𝑦)

β„Ž1(𝑦)

𝑑

𝑐

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

Ex: Find the volume of the prism whose base is the triangle in the xy-plane bounded by the x-axis

and the lines y=x and x=1 and whose top lies in the plane z=3xy.

Sol.

𝑉 = ∫ ∫(3 βˆ’ π‘₯ βˆ’ 𝑦)𝑑𝑦𝑑π‘₯

π‘₯

0

1

0

= ∫ [3𝑦 βˆ’ π‘₯𝑦 βˆ’π‘¦2

2]

0

π‘₯

𝑑π‘₯

1

0

= ∫ (3π‘₯ βˆ’ π‘₯2 βˆ’π‘₯2

2) 𝑑π‘₯

1

0

= ∫ (3π‘₯ βˆ’3

2π‘₯2) 𝑑π‘₯

1

0

= [3

2π‘₯ βˆ’

1

2π‘₯3]

0

1

=3

2βˆ’

1

2= 1

By reversing the order of integration

𝑉 = ∫ ∫(3 βˆ’ π‘₯ βˆ’ 𝑦)𝑑π‘₯𝑑𝑦

1

𝑦

1

0

= ∫ [3π‘₯ βˆ’π‘₯2

2βˆ’ π‘₯𝑦]

𝑦

1

𝑑𝑦

1

0

= ∫ ((3 βˆ’1

2βˆ’ 𝑦) βˆ’ (3𝑦 βˆ’

𝑦2

2βˆ’ 𝑦2)) 𝑑𝑦

1

0

= ∫ (5

2βˆ’ 4𝑦 +

3

2𝑦2) 𝑑𝑦

1

0

= [5

2𝑦 βˆ’ 2𝑦2 +

1

2𝑦3]

0

1

=5

2βˆ’ 2 +

1

2= 1

Ex: Find

∬sin π‘₯

π‘₯𝑑𝐴

𝑅

Where R is the triangular region in the xy-plane bounded by the lines y=x, x=1 and x-axis

Sol.:

∫ ∫sin π‘₯

π‘₯𝑑𝑦𝑑π‘₯

π‘₯

0

= ∫ [𝑦sin π‘₯

π‘₯]

0

π‘₯1

0

1

0

= ∫ sin π‘₯

1

0

= βˆ’ cos π‘₯|01 = 1 βˆ’ cos 1

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

Ex: Find the value of the integration

∫ ∫ (4π‘₯ + 2)𝑑𝑦𝑑π‘₯

2π‘₯

π‘₯2

2

0

With the order of the integration reversed

Sol.:

First it is better to find the points of intersection of the curves.

π‘₯2 = 2π‘₯ β‡’ π‘₯2 βˆ’ 2π‘₯ = 0

π‘₯(π‘₯ βˆ’ 2) = 0

π‘₯ = 0 β‡’ 𝑦 = 0

π‘₯ = 2 β‡’ 𝑦 = 4

𝑦 = π‘₯2 β‡’ π‘₯ = βˆšπ‘¦

𝑦 = 2π‘₯ β‡’ π‘₯ = 𝑦/2

∫ ∫ (4π‘₯ + 2)𝑑𝑦𝑑π‘₯

2π‘₯

π‘₯2

2

0

= ∫ ∫ (4π‘₯ + 2)𝑑π‘₯𝑑𝑦

βˆšπ‘¦

𝑦/2

4

0

= ∫[2π‘₯2 + 2π‘₯]𝑦/2βˆšπ‘¦

4

0

= ∫ (2𝑦 + 2βˆšπ‘¦ βˆ’π‘¦2

2βˆ’ 𝑦) 𝑑𝑦

4

0

= ∫ (𝑦 + 2βˆšπ‘¦ βˆ’π‘¦2

2) 𝑑𝑦

4

0

= [𝑦2

2+

4

3𝑦3/2 βˆ’

𝑦3

6]

0

4

= 8 +32

3βˆ’

32

3βˆ’ 0 = 8

Areas, Moments and Center of Mass

Areas of Bounded Region in the Plane

The area of a bounded region R can be expressed in terms of double integral

𝐴 = ∬ 𝑑𝐴

𝑅

= ∬ 𝑑𝑦𝑑π‘₯

𝑅

= ∬ 𝑑π‘₯𝑑𝑦

𝑅

Ex: Find the area of the region R bounded by the parabola 𝑦 = π‘₯2 and the line y=x+2

Sol.:

First we find the points of intersections

π‘₯2 = π‘₯ + 2

π‘₯2 βˆ’ π‘₯ βˆ’ 2 = 0

(π‘₯ + 1)(π‘₯ βˆ’ 2) = 0

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

π‘₯ = βˆ’1 β‡’ 𝑦 = 1

π‘₯ = 2 β‡’ 𝑦 = 4

𝐴 = ∫ ∫ 𝑑𝑦𝑑π‘₯

π‘₯+2

π‘₯2

2

βˆ’1

= ∫[𝑦]π‘₯2π‘₯+2𝑑π‘₯

2

βˆ’1

= ∫(π‘₯ + 2 βˆ’ π‘₯2)𝑑π‘₯

2

βˆ’1

= [π‘₯2

2+ 2π‘₯ βˆ’

π‘₯3

3]

βˆ’1

2

= (2 + 4 βˆ’8

3) βˆ’ (

1

2βˆ’ 2 +

1

3) = 8 βˆ’ 3 βˆ’

1

2=

9

2

First and Second Moments and Center of Mass

Density: 𝛿(π‘₯, 𝑦)

Mass: 𝑀 = ∬ 𝛿(π‘₯, 𝑦)𝑑𝐴

First Moments:

Moment about x-axis: 𝑀π‘₯ = ∬ 𝑦𝛿(π‘₯, 𝑦)𝑑𝐴

Moment about y-axis: 𝑀𝑦 = ∬ π‘₯𝛿(π‘₯, 𝑦)𝑑𝐴

Center of Mass: οΏ½Μ…οΏ½ =𝑀𝑦

𝑀, οΏ½Μ…οΏ½ =

𝑀π‘₯

𝑀

Moments of Inertia (Second Moments)

About x-axis: 𝐼π‘₯ = ∬ 𝑦2𝛿(π‘₯, 𝑦)𝑑𝐴

About y-axis: 𝐼𝑦 = ∬ π‘₯2𝛿(π‘₯, 𝑦)𝑑𝐴

About origin: πΌπ‘œ = 𝐼π‘₯ + 𝐼𝑦 = ∬(π‘₯2 + 𝑦2)𝛿(π‘₯, 𝑦)𝑑𝐴

Centroids of Geometric Figures

When the density of an object is constant, it cancels out of the numerator and denominator of the

formulas for οΏ½Μ…οΏ½ and οΏ½Μ…οΏ½. So, we can take =1 in calculating οΏ½Μ…οΏ½ and οΏ½Μ…οΏ½.

Ex: Find the centroid of the region in the first quadrant that is bounded by the line y=x and the curve

𝑦 = π‘₯2.

Sol.:

𝑀 = ∫ ∫(1)𝑑𝑦𝑑π‘₯

π‘₯

π‘₯2

1

0

= ∫[𝑦]π‘₯2π‘₯

1

0

𝑑π‘₯ = ∫(π‘₯ βˆ’ π‘₯2)

1

0

𝑑π‘₯ = [π‘₯2

2βˆ’

π‘₯3

3]

0

1

=1

2βˆ’

1

3=

1

6

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

𝑀π‘₯ = ∫ ∫(1)𝑦𝑑𝑦𝑑π‘₯

π‘₯

π‘₯2

1

0

= ∫ [𝑦2

2]

π‘₯2

π‘₯1

0

𝑑π‘₯ =1

2∫(π‘₯2 βˆ’ π‘₯4)

1

0

𝑑π‘₯ =1

2[π‘₯3

3βˆ’

π‘₯5

5]

0

1

=1

2(

1

3βˆ’

1

5) =

1

15

𝑀𝑦 = ∫ ∫(1)π‘₯𝑑𝑦𝑑π‘₯

π‘₯

π‘₯2

1

0

= ∫[π‘₯𝑦]π‘₯2π‘₯

1

0

𝑑π‘₯ = ∫(π‘₯2 βˆ’ π‘₯3)

1

0

𝑑π‘₯ = [π‘₯3

3βˆ’

π‘₯4

4]

0

1

= (1

3βˆ’

1

4) =

1

12

οΏ½Μ…οΏ½ =𝑀𝑦

𝑀=

1/12

1/6=

1

2

οΏ½Μ…οΏ½ =𝑀π‘₯

𝑀=

1/15

1/6=

2

5

Ex: Evaluate the integral

∫ ∫ cos(𝑦3) 𝑑𝑦𝑑π‘₯

2

√π‘₯

4

0

Sol.:

The integral cannot be solved in the given order, so, we have

to reverse the order of integration. The limits of the y variable are

𝑦 = √π‘₯ (π‘₯ = 𝑦2) and y=2, the intersection point is (2,4), the integral in the reversed order will be

∫ ∫ cos(𝑦3) 𝑑π‘₯𝑑𝑦

𝑦2

0

2

0

= ∫[π‘₯ cos(𝑦3)]0𝑦2

𝑑𝑦

2

0

= ∫ 𝑦2cos(𝑦3) 𝑑𝑦

2

0

=1

3sin(𝑦3)|

0

2

=1

3sin(8)

Exercises 14.2

Sketch the region bounded by the given lines and curves, then find the area by double integration.

6- The parabola π‘₯ = 𝑦 βˆ’ 𝑦2 and the line π‘₯ + 𝑦 = 0

Sol.

π‘₯ + 𝑦 = 0 β‡’ π‘₯ = βˆ’π‘¦

βˆ’π‘¦ = 𝑦 βˆ’ 𝑦2

2𝑦 βˆ’ 𝑦2 = 0 β‡’ 𝑦(2 βˆ’ 𝑦) = 0

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

𝑦 = 0 β‡’ π‘₯ = 0

𝑦 = 2 β‡’ π‘₯ = βˆ’2

𝐴 = ∬ 𝑑𝐴 = ∫ ∫ 𝑑π‘₯𝑑𝑦

π‘¦βˆ’π‘¦2

βˆ’π‘¦

2

0

𝐴 = ∫(𝑦 βˆ’ 𝑦2 βˆ’ (βˆ’π‘¦))𝑑𝑦

2

0

= ∫(2𝑦 βˆ’ 𝑦2)𝑑𝑦

2

0

= 𝑦2 βˆ’π‘¦3

3|

0

2

= 4 βˆ’8

3βˆ’ 0 =

4

3

36- Find the centroid of the region in the xy-plane bounded by the curves =1

√1βˆ’π‘₯2 , 𝑦 =

βˆ’1

√1βˆ’π‘₯2 and

the lines x=0 and x=1.

Sol.:

From symmetry οΏ½Μ…οΏ½ = 0

𝑀 = ∬(1)𝑑𝐴

𝑀 = ∫ ∫ 𝑑𝑦𝑑π‘₯

1/√1βˆ’π‘₯2

βˆ’1/√1βˆ’π‘₯2

1

0

= ∫ (1

√1 βˆ’ π‘₯2βˆ’

βˆ’1

√1 βˆ’ π‘₯2)

1

0

𝑑π‘₯

= ∫ (2𝑑π‘₯

√1 βˆ’ π‘₯2)

1

0

= 2sinβˆ’1(π‘₯)|01

2 (πœ‹

2= 0) = πœ‹

𝑀𝑦 = ∫ ∫ π‘₯𝑑𝑦𝑑π‘₯

1/√1βˆ’π‘₯2

βˆ’1/√1βˆ’π‘₯2

1

0

= ∫[π‘₯𝑦]βˆ’1/√1βˆ’π‘₯2

1/√1βˆ’π‘₯2

1

0

𝑑π‘₯

= ∫ (2π‘₯

√1 βˆ’ π‘₯2)

1

0

𝑑π‘₯ = βˆ’βˆš1 βˆ’ π‘₯2

1/2|

0

1

= βˆ’2(0 βˆ’ 1) = 2

οΏ½Μ…οΏ½ =2

πœ‹

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

Double Integral in Polar Form

To integrate a function in polar form 𝑓(π‘Ÿ, πœƒ) over the shaded region shown

∬ 𝑓(π‘Ÿ, πœƒ)𝑑𝐴

𝑅

= ∫ ∫ 𝑓(π‘Ÿ, πœƒ)π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ

1+cos πœƒ

1

πœ‹/2

βˆ’πœ‹/2

Area in Polar Coordinates

π΄π‘Ÿπ‘’π‘Ž π‘œπ‘“ 𝑅 = ∬ 𝑑𝐴

𝑅

= ∬ π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ

𝑅

Ex: Find the area enclosed by the curve π‘Ÿ2 = 4 cos 2πœƒ

Sol.:

𝐴

4= ∫ ∫ π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ

√4 cos 2πœƒ

0

πœ‹/4

0

𝐴 = 4 ∫ [π‘Ÿ2

2]

0

√4 cos 2πœƒ

π‘‘πœƒ

πœ‹/4

0

= 4 ∫ 2 cos 2πœƒ π‘‘πœƒ

πœ‹/4

0

= 4[sin(2πœƒ)]0πœ‹/4

= 4(1 βˆ’ 0) = 4

Changing Cartesian Integration into Polar Integration

∬ 𝑓(π‘₯, 𝑦)𝑑π‘₯𝑑𝑦

𝑅

= ∬ 𝑓(π‘Ÿcos(πœƒ), π‘Ÿsin(πœƒ))π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ

𝐺

R is the region of integration described in Cartesian coordinates and G is the same region described

in polar coordinates.

Ex: Find the moment of inertia about the origin of a thin plate of density (x,y)=1 bounded by the

quarter circle π‘₯2 + 𝑦2 = 1 in the first quadrant.

Sol.:

In Cartesian coordinates

πΌπ‘œ = ∫ ∫ (π‘₯2 + 𝑦2)𝑑𝑦𝑑π‘₯

√1βˆ’π‘₯2

0

1

0

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

∫ [π‘₯2𝑦 +𝑦3

3]

0

√1βˆ’π‘₯2

𝑑π‘₯ = ∫ (π‘₯2√1 βˆ’ π‘₯2 +1

3(1 βˆ’ π‘₯2)3/2) 𝑑π‘₯

1

0

1

0

In polar coordinates

πΌπ‘œ = ∫ ∫ (π‘₯2 + 𝑦2)𝑑𝑦𝑑π‘₯

√1βˆ’π‘₯2

0

1

0

= ∫ ∫(π‘Ÿ2)π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ

1

0

πœ‹/2

0

= ∫ ∫(π‘Ÿ3)π‘‘π‘Ÿπ‘‘πœƒ

1

0

πœ‹/2

0

= βˆ«π‘Ÿ4

4|

0

1

π‘‘πœƒ

πœ‹/2

0

= ∫1

4π‘‘πœƒ

πœ‹/2

0

=πœƒ

4|

0

πœ‹/2

=πœ‹

8

Ex: Evaluate the integral (the Gaussian integral)

∫ π‘’βˆ’π‘₯2𝑑π‘₯

∞

βˆ’βˆž

Sol.:

𝐼 = ∫ π‘’βˆ’π‘₯2𝑑π‘₯

∞

βˆ’βˆž

𝐼 = ∫ π‘’βˆ’π‘¦2𝑑𝑦

∞

βˆ’βˆž

𝐼 Β· 𝐼 = [ ∫ π‘’βˆ’π‘₯2𝑑π‘₯

∞

βˆ’βˆž

] [ ∫ π‘’βˆ’π‘¦2𝑑𝑦

∞

βˆ’βˆž

]

𝐼2 = ∫ ∫ π‘’βˆ’(π‘₯2+𝑦2)𝑑π‘₯𝑑𝑦

∞

βˆ’βˆž

∞

βˆ’βˆž

The above integral can be converted to polar coordinates. We note that the region of integration is

the entire xy-plane that can be described as below

𝐼2 = ∫ ∫ π‘’βˆ’π‘Ÿ2π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ

∞

0

2πœ‹

0

= ∫ βˆ’1

2π‘’βˆ’π‘Ÿ2

|0

∞2πœ‹

0

π‘‘πœƒ = βˆ’1

2∫ (0 βˆ’ 1)π‘‘πœƒ

2πœ‹

0

=1

2(2πœ‹) = πœ‹

𝐼 = βˆšπœ‹

∫ π‘’βˆ’π‘₯2𝑑π‘₯

∞

βˆ’βˆž

= βˆšπœ‹

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

Triple Integral in Rectangular Coordinates

The volume of a closed bounded region D in space is

π‘‰π‘œπ‘™π‘’π‘šπ‘’ π‘œπ‘“ 𝐷 = ∭ 𝑑𝑉

𝐷

= ∭ 𝑑𝑧𝑑𝑦𝑑π‘₯

𝐷

In triple integral we always make the order of integration starts with dz and the limits of the integral

with respect to the variable z should always be clear from the problem statement. Next, the problem

reduces to double integral and we follow the same rules described in earlier sections. Usually we

only need to draw the region of integration with respect to x and y variable in 2-D only and no need

to draw a 3-dimesional drawing for the overall region.

Exercises 14.4

24- Find the volume of the region in the 1st octant bounded by the surface 𝑧 = 4 βˆ’ π‘₯2 βˆ’ 𝑦

Sol.:

In the xy-plane z=0 𝑦 = 4 βˆ’ π‘₯2

0 ≀ 𝑧 ≀ 4 βˆ’ π‘₯2 βˆ’ 𝑦

0 ≀ 𝑦 ≀ 4 βˆ’ π‘₯2

0 ≀ π‘₯ ≀ 2

𝑉 = ∫ ∫ ∫ 𝑑𝑧𝑑𝑦𝑑π‘₯

4βˆ’π‘₯2βˆ’π‘¦

0

4βˆ’π‘₯2

0

2

0

𝑉 = ∫ ∫ 𝑧|04βˆ’π‘₯2βˆ’π‘¦

𝑑𝑦𝑑π‘₯

4βˆ’π‘₯2

0

2

0

The first step is to find the limits of the variable

z. Since the region is in the first octant this

means that x 0, y 0 and z 0. Combining this

and the fact that the upper bound is 𝑧 = 4 βˆ’

π‘₯2 βˆ’ 𝑦, then we have found the limits of z

variable.

The second step is to draw the region in the xy-

plane and finding the limits of x and y variables.

The limits of the x, y, z variables are

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

𝑉 = ∫ ∫ (4 βˆ’ π‘₯2 βˆ’ 𝑦)𝑑𝑦𝑑π‘₯

4βˆ’π‘₯2

0

2

0

𝑉 = ∫ [(4 βˆ’ π‘₯2)𝑦 βˆ’π‘¦2

2]

0

4βˆ’π‘₯2

𝑑π‘₯

2

0

= ∫ ((4 βˆ’ π‘₯2)2 βˆ’(4 βˆ’ π‘₯2)2

2) 𝑑π‘₯

2

0

=1

2∫((4 βˆ’ π‘₯2)2)𝑑π‘₯

2

0

𝑉 =1

2∫(16 βˆ’ 8π‘₯2 + π‘₯4)𝑑π‘₯

2

0

=1

2∫ [16π‘₯ βˆ’

8

3π‘₯3 +

1

5π‘₯5] 𝑑π‘₯

2

0

=1

2(32 βˆ’

64

3+

32

5) =

128

15

Masses and Moments in Three Dimensions

Mass:

𝑀 = ∭ 𝛿𝑑𝑉

𝑅

(𝛿 = 𝑑𝑒𝑛𝑠𝑖𝑑𝑦)

First Moments:

𝑀𝑦𝑧 = ∭ π‘₯𝛿𝑑𝑉

𝑅

𝑀π‘₯𝑧 = ∭ 𝑦𝛿𝑑𝑉

𝑅

𝑀π‘₯𝑦 = ∭ 𝑧𝛿𝑑𝑉

𝑅

Center of Mass

οΏ½Μ…οΏ½ =𝑀𝑦𝑧

𝑀, οΏ½Μ…οΏ½ =

𝑀π‘₯𝑧

𝑀, 𝑧̅ =

𝑀π‘₯𝑦

𝑀

Moments of Inertia

𝐼π‘₯ = ∭(𝑦2 + 𝑧2)𝛿𝑑𝑉

𝑅

𝐼𝑦 = ∭(π‘₯2 + 𝑧2)𝛿𝑑𝑉

𝑅

𝐼𝑧 = ∭(π‘₯2 + 𝑦2)𝛿𝑑𝑉

𝑅

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

Triple Integral in Cylindrical and Spherical Coordinates

Cylindrical Coordinates

To integrate a continuous function f(r,,z) over a region given by

𝑧1(π‘Ÿ, πœƒ) ≀ 𝑧 ≀ 𝑧2(π‘Ÿ, πœƒ)

π‘Ÿ1(πœƒ) ≀ π‘Ÿ ≀ π‘Ÿ2(πœƒ)

πœƒ1 ≀ πœƒ ≀ πœƒ2

∫ ∫ ∫ 𝑓(π‘Ÿ, πœƒ, 𝑧)π‘‘π‘§π‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ

𝑧2(π‘Ÿ,πœƒ)

𝑧1(π‘Ÿ,πœƒ)

π‘Ÿ2(πœƒ)

π‘Ÿ1(πœƒ)

πœƒ2

πœƒ1

Ex: Find the volume of the solid bounded by the cylinder π‘₯2 + 𝑦2 = 4 and the planes y+z=4 and

z=0.

Sol.:

𝑉 = ∫ ∫ ∫ π‘Ÿπ‘‘π‘§π‘‘π‘Ÿπ‘‘πœƒ

4βˆ’π‘Ÿ sin πœƒ

0

2

0

2πœ‹

0

𝑉 = ∫ βˆ«π‘Ÿπ‘§|04βˆ’π‘Ÿ sin πœƒπ‘Ÿπ‘‘π‘Ÿπ‘‘πœƒ

2

0

2πœ‹

0

𝑉 = ∫ ∫(4π‘Ÿ βˆ’ π‘Ÿ2 sin πœƒ)π‘‘π‘Ÿπ‘‘πœƒ

2

0

2πœ‹

0

𝑉 = ∫ [2π‘Ÿ2 βˆ’1

3π‘Ÿ3 sin πœƒ]

0

2

π‘‘πœƒ

2πœ‹

0

𝑉 = ∫ (8 βˆ’8

3sin πœƒ) π‘‘πœƒ

2πœ‹

0

= 8πœƒ +8

3cos πœƒ|

0

2πœ‹

= 8(2πœ‹ βˆ’ 1) +8

3(1 βˆ’ 1) = 16πœ‹

Ex: Find the centroid of the solid enclosed by the cylinder π‘₯2 + 𝑦2 = 4, bounded above by the

paraboloid 𝑧 = π‘₯2 + 𝑦2 and below by the xy-plane.

Sol.:

𝑧 = π‘₯2 + 𝑦2 = π‘Ÿ2

π‘₯2 + 𝑦2 = 4 = π‘Ÿ2 β‡’ π‘Ÿ = 2

0 ≀ 𝑧 ≀ π‘Ÿ2

2 2

y

z

x2+y2=4

y=2

x=0

z=4y

x2+y2=4

r=2

x

y

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

0 ≀ π‘Ÿ ≀ 2

0 ≀ πœƒ ≀ 2πœ‹

The centroid lies on the axis of symmetry in this case the z-axis

οΏ½Μ…οΏ½ = 0, οΏ½Μ…οΏ½ = 0

𝑀 = ∫ ∫ ∫ (1)π‘Ÿπ‘‘π‘§π‘‘π‘Ÿπ‘‘πœƒ

π‘Ÿ2

0

2

0

2πœ‹

0

= ∫ ∫[π‘Ÿπ‘§]0π‘Ÿ2

π‘‘π‘Ÿπ‘‘πœƒ

2

0

2πœ‹

0

= ∫ ∫ π‘Ÿ3π‘‘π‘Ÿπ‘‘πœƒ

2

0

2πœ‹

0

= [π‘Ÿ4

4]

0

2

[πœƒ]02πœ‹ = (4)(2πœ‹) = 8πœ‹

𝑀π‘₯𝑦 = ∫ ∫ ∫ 𝑧(1)π‘Ÿπ‘‘π‘§π‘‘π‘Ÿπ‘‘πœƒ

π‘Ÿ2

0

2

0

2πœ‹

0

= ∫ ∫ [π‘Ÿπ‘§2

2]

0

π‘Ÿ2

π‘‘π‘Ÿπ‘‘πœƒ

2

0

2πœ‹

0

= ∫ βˆ«π‘Ÿ5

2π‘‘π‘Ÿπ‘‘πœƒ

2

0

2πœ‹

0

=1

2[π‘Ÿ6

6]

0

2

[πœƒ]02πœ‹ =

1

2(

32

3) (2πœ‹) =

32πœ‹

3

𝑧̅ =𝑀π‘₯𝑦

𝑀=

32πœ‹/3

8πœ‹=

4

3

Ex: Find the center of mass of the solid whose density =z and bounded above by the plane z=y,

below by the xy-plane and laterally by the cylinder π‘₯2 + 𝑦2 = 4.

Sol.:

𝑀 = ∭ 𝛿𝑑𝑉

= ∫ ∫ ∫ π‘§π‘Ÿπ‘‘π‘§π‘‘π‘Ÿπ‘‘πœƒ

π‘Ÿsinπœƒ

0

2

0

πœ‹

0

= ∫ βˆ«π‘§2π‘Ÿ

2|

0

π‘Ÿsinπœƒ

π‘‘π‘Ÿπ‘‘πœƒ

2

0

πœ‹

0

= ∫ ∫1

2π‘Ÿ3 sin2 πœƒ π‘‘π‘Ÿπ‘‘πœƒ

2

0

πœ‹

0

= ∫ ∫1

4π‘Ÿ3(1 βˆ’ cos2πœƒ)π‘‘π‘Ÿπ‘‘πœƒ

2

0

πœ‹

0

=1

4[π‘Ÿ4

4]

0

2

[πœƒ βˆ’1

2sin2πœƒ]

0

πœ‹

=1

4(

16

4βˆ’ 0) (πœ‹ βˆ’ 0) = πœ‹

𝑀π‘₯𝑦 = ∫ ∫ ∫ π‘§π›Ώπ‘Ÿπ‘‘π‘§π‘‘π‘Ÿπ‘‘πœƒ

π‘Ÿsinπœƒ

0

2

0

πœ‹

0

= ∫ ∫ ∫ 𝑧2π‘Ÿπ‘‘π‘§π‘‘π‘Ÿπ‘‘πœƒ

π‘Ÿsinπœƒ

0

2

0

πœ‹

0

2 2

x,y,r

z

z=r2

x2+y2=4

r=2

z=4

x

y

2 2

y

z x2+y2=4

y=2

x=0

z=y

r=2 y

x

r=2 x

y

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

= ∫ βˆ«π‘§3

3π‘Ÿ|

0

π‘Ÿsinπœƒ

π‘‘π‘Ÿπ‘‘πœƒ

2

0

πœ‹

0

= ∫ ∫1

3π‘Ÿ4 sin3 πœƒ π‘‘π‘Ÿπ‘‘πœƒ

2

0

πœ‹

0

= ∫ ∫1

3π‘Ÿ4 sin πœƒ (1 βˆ’ cos2 πœƒ) π‘‘π‘Ÿπ‘‘πœƒ

2

0

πœ‹

0

=1

3[π‘Ÿ5

5]

0

2

[βˆ’cos πœƒ +cos3 πœƒ

3]

0

πœ‹

=1

3(

32

5) (1 βˆ’

1

3+ 1 βˆ’

1

3)

=32

15(

4

3) =

128

45

𝑀π‘₯𝑧 = ∫ ∫ ∫ π‘¦π›Ώπ‘Ÿπ‘‘π‘§π‘‘π‘Ÿπ‘‘πœƒ

π‘Ÿsinπœƒ

0

2

0

πœ‹

0

= ∫ ∫ ∫ π‘§π‘Ÿ2 sin πœƒ π‘‘π‘§π‘‘π‘Ÿπ‘‘πœƒ

π‘Ÿsinπœƒ

0

2

0

πœ‹

0

= ∫ βˆ«π‘§2

2|

0

π‘Ÿsinπœƒ

π‘Ÿ2 sin πœƒ π‘‘π‘Ÿπ‘‘πœƒ

2

0

πœ‹

0

= ∫ ∫1

2π‘Ÿ4 sin3 πœƒ π‘‘π‘Ÿπ‘‘πœƒ

2

0

πœ‹

0

=64

15

𝑀𝑦𝑧 = ∫ ∫ ∫ π‘₯π›Ώπ‘Ÿπ‘‘π‘§π‘‘π‘Ÿπ‘‘πœƒ

π‘Ÿsinπœƒ

0

2

0

πœ‹

0

= ∫ ∫ ∫ π‘§π‘Ÿ2 cos πœƒ π‘‘π‘§π‘‘π‘Ÿπ‘‘πœƒ

π‘Ÿsinπœƒ

0

2

0

πœ‹

0

= ∫ βˆ«π‘§2

2|

0

π‘Ÿsinπœƒ

π‘Ÿ2 cos πœƒ π‘‘π‘Ÿπ‘‘πœƒ

2

0

πœ‹

0

= ∫ ∫1

2π‘Ÿ4 sin2 πœƒ cos πœƒ π‘‘π‘Ÿπ‘‘πœƒ

2

0

πœ‹

0

=1

2[π‘Ÿ5

5]

0

2

[sin3 πœƒ

3]

0

πœ‹

=1

2(

32

5) (0 βˆ’ 0) = 0

οΏ½Μ…οΏ½ =𝑀𝑦𝑧

𝑀= 0

οΏ½Μ…οΏ½ =𝑀π‘₯𝑧

𝑀=

64/15

πœ‹=

64

15πœ‹

𝑧̅ =𝑀π‘₯𝑦

𝑀=

128/45

πœ‹=

128

45πœ‹

Spherical Coordinates

To integrate a continuous function 𝑓(𝜌, πœ™, πœƒ) over a region given by

𝜌1(πœ™, πœƒ) ≀ 𝜌 ≀ 𝜌2(πœ™, πœƒ)

πœ™1(πœƒ) ≀ πœ™ ≀ πœ™2(πœƒ)

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

πœƒ1 ≀ πœƒ ≀ πœƒ2

The integral will be

∫ ∫ ∫ 𝑓(𝜌, πœ™, πœƒ)𝜌2 sin πœ™ π‘‘πœŒπ‘‘πœ™π‘‘πœƒ

𝜌2(πœ™,πœƒ)

𝜌1(πœ™,πœƒ)

πœ™2(πœƒ)

πœ™1(πœƒ)

πœƒ2

πœƒ1

Ex: Find the volume of the upper region cut from the solid sphere 1 by the cone =/3.

Sol.:

Limits:

0 ≀ 𝜌 ≀ 1

0 ≀ πœ™ ≀ πœ‹/3

0 ≀ πœƒ ≀ 2πœ‹

𝑉 = ∫ ∫ ∫ 𝜌2 sin πœ™ π‘‘πœŒπ‘‘πœ™π‘‘πœƒ

1

0

πœ‹/3

0

2πœ‹

0

= [𝜌3

3]

0

1

[βˆ’ cos πœ™]0πœ‹/3[πœƒ]0

2πœ‹ = (1

3) (βˆ’

1

2+ 1) (2πœ‹) =

πœ‹

3

Ex: find the moment of inertia about the z-axis of the region in example above.

Sol.:

𝐼𝑧 = ∭(π‘₯2 + 𝑦2)𝑑𝑉 = ∭ π‘Ÿ2𝑑𝑉 = ∭(𝜌 sin πœ™)2𝑑𝑉

𝐼𝑧 = ∫ ∫ ∫(𝜌 sin πœ™)2𝜌2 sin πœ™ π‘‘πœŒπ‘‘πœ™π‘‘πœƒ

1

0

πœ‹/3

0

2πœ‹

0

𝐼𝑧 = ∫ ∫ ∫ 𝜌4 sin3 πœ™ π‘‘πœŒπ‘‘πœ™π‘‘πœƒ

1

0

πœ‹/3

0

2πœ‹

0

= ∫ ∫ ∫ 𝜌4(1 βˆ’ cos2 πœ™) sin πœ™ π‘‘πœŒπ‘‘πœ™π‘‘πœƒ

1

0

πœ‹/3

0

2πœ‹

0

= [𝜌4

5]

0

1

[βˆ’ cos πœ™ +cos3 πœ™

3]

0

πœ‹/3

[πœƒ]02πœ‹

y

z /3

=1

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

= (1

5) (βˆ’

1

2+

1/8

3+ 1 βˆ’

1

3) (2πœ‹) = (

2πœ‹

5) (

1

2βˆ’

7

24) = (

2πœ‹

5) (

5

24) =

πœ‹

12

Exercises: (14.6)

16- Convert the integral

∫ ∫ ∫(π‘₯2 + 𝑦2)𝑑𝑧𝑑π‘₯𝑑𝑦

π‘₯

0

√1βˆ’π‘¦2

0

1

βˆ’1

into cylindrical coordinates and evaluate the result.

Sol.:

= ∫ ∫ ∫ (π‘Ÿ2)π‘Ÿπ‘‘π‘§π‘‘π‘Ÿπ‘‘πœƒ

π‘Ÿcosπœƒ

0

1

0

πœ‹/2

βˆ’πœ‹/2

= ∫ ∫ ∫ π‘Ÿ3π‘‘π‘§π‘‘π‘Ÿπ‘‘πœƒ

π‘Ÿcosπœƒ

0

1

0

πœ‹/2

βˆ’πœ‹/2

= ∫ ∫[𝑧]0π‘Ÿcosπœƒπ‘Ÿ3π‘‘π‘Ÿπ‘‘πœƒ

1

0

πœ‹/2

βˆ’πœ‹/2

= ∫ ∫ π‘Ÿ4cosπœƒπ‘‘π‘Ÿπ‘‘πœƒ

1

0

πœ‹/2

βˆ’πœ‹/2

= [π‘Ÿ5

5]

0

1

[sin πœƒ]βˆ’πœ‹/2πœ‹/2

= (1

5) (1 βˆ’ (βˆ’1)) =

2

5

37- Find the volume of the smaller region cut from the sphere =2 by the plane z=1.

Sol.:

Convert the plane equation z=1 to spherical coordinates

𝑧 = 1 β‡’ 𝜌 cos πœ™ = 1 β‡’ 𝜌 = 1/ cos πœ™

Find the limit of as the intersection of the plane z=1 and the sphere

=2

𝑧 = 1 β‡’ 𝜌 cos πœ™ = 1 β‡’ 2 cos πœ™ = 1 β‡’ cos πœ™ =1

2β‡’ πœ™ = πœ‹/3

𝑉 = ∫ ∫ ∫ 𝜌2 sin πœ™ π‘‘πœŒπ‘‘πœ™π‘‘πœƒ

2

1/ cos πœ™

πœ‹/3

0

2πœ‹

0

x

y π‘₯ = √1 βˆ’ 𝑦2

r=1

y

z /3

=2

z=1

University of Baghdad 2nd Class

College of Engineering Math II

Electronics and Communications Engineering Dpt. Chapter 7

= ∫ ∫ [𝜌3

3]

1/ cos πœ™

2

sin πœ™ π‘‘πœ™π‘‘πœƒ

πœ‹/3

0

2πœ‹

0

=1

3∫ ∫ (8 sin πœ™ βˆ’

sin πœ™

cos3 πœ™) π‘‘πœ™π‘‘πœƒ

πœ‹/3

0

2πœ‹

0

=1

3[βˆ’8 cos πœ™ βˆ’

1

2cosβˆ’2 πœ™]

0

πœ‹/3

[πœƒ]02πœ‹ =

1

3(βˆ’8 (

1

2βˆ’ 1) βˆ’

1

2((

1

2)

βˆ’2

βˆ’ 1)) (2πœ‹)

=1

3(4 βˆ’

1

2(4 βˆ’ 1)) (2πœ‹) =

2πœ‹

3(

5

2) =

5πœ‹

3

40- A conical hole is drilled inside the solid hemisphere, the cone equation is =/3. Find the center

of mass, 2, z0

Sol.:

From symmetry οΏ½Μ…οΏ½ = 0, οΏ½Μ…οΏ½ = 0

𝑀 = ∭ 𝛿𝑑𝑉 = ∫ ∫ ∫(1)𝜌2 sin πœ™ π‘‘πœŒπ‘‘πœ™π‘‘πœƒ

2

0

πœ‹/2

πœ‹/3

2πœ‹

0

= [𝜌3

3]

0

2

[βˆ’ cos πœ™]πœ‹/3πœ‹/2[πœƒ]0

2πœ‹

= (8

3) (0 +

1

2) (2πœ‹) =

8πœ‹

3

𝑀π‘₯𝑦 = ∭ 𝑧𝛿𝑑𝑉 = ∫ ∫ ∫ (𝜌 cos πœ™)(1)𝜌2 sin πœ™ π‘‘πœŒπ‘‘πœ™π‘‘πœƒ

2πœ‹

0

πœ‹/2

πœ‹/3

2πœ‹

0

= ∫ ∫ ∫ 𝜌3 sin πœ™ cos πœ™ π‘‘πœŒπ‘‘πœ™π‘‘πœƒ

2πœ‹

0

πœ‹/2

πœ‹/3

2πœ‹

0

= [𝜌4

4]

0

2

[sin2 πœ™

2]

πœ‹/3

πœ‹/2

[πœƒ]02πœ‹ = (

16

4) (

1 βˆ’ 3/4

2) (2πœ‹) = πœ‹

𝑧̅ =𝑀π‘₯𝑦

𝑀=

πœ‹

8πœ‹/3=

3

8

Center of mass at (0, 0, 3/8)

y

z /3