chapter 7a - dna mutation and repair: mutation and adaptation types of mutations dna repair...

61
Chapter 7a - DNA mutation and repair : Mutation and adaptation Types of mutations DNA repair mechanisms

Upload: baldwin-nash

Post on 21-Dec-2015

241 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Chapter 7a - DNA mutation and repair:

• Mutation and adaptation

• Types of mutations

• DNA repair mechanisms

Page 2: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Mutation and adaptation:

Jean-Baptiste Lamarck (1744-1829)

• Proposed “inheritance of acquired traits” ~1801.

• Induction by the environment; also known as transformism, transmutation, or soft inheritance.

• Examples: giraffes that acquire longer necks or athletes that build strong muscles pass these traits to their offspring.

• In genetic terms, Lamarckism is the idea that environmentally induced mutations could be passed to the offspring.

Page 3: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Example 1:

Page 4: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Example 1:

Page 5: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Example 1:

Page 6: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Example 1:

Page 7: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Example 2

Page 8: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Example 2

Page 9: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Example 2

Page 10: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Example 2

Page 11: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Mutation and adaptation:

Jean-Baptiste Lamarck (1744-1829)

• Ideas largely ignored or attacked during his lifetime.

• Never won the acceptance and esteem of his colleagues and died in poverty and obscurity.

• Today Lamarck is mostly associated with a discredited theory of heredity (Lamarckism persisted until 1930s/1940s).

• Interest in Lamarck has resurged with discoveries in the field of epigenetics.

• Epigenetics - heritable changes in gene expression or the phenotype caused by mechanisms other than changes in the underlying DNA sequence (≠ maternal effect).

Page 12: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Charles Darwin (1809-1882)

• Heritable adaptive variation results from random mutation and natural selection (1859, The Origin of Species).

• Contrary to Larmarck, inheritance of adaptive traits does not result from induction by environmental influences.

• But differential survival (selection) and heritable variation (arising from mutation in the DNA sequence).

• Years following Darwin and rediscovery of Mendel resulted in controversy (until 1930s/1940s) about the relative importance of mutation and selection.

• Largely resolved by theoretical and empirical work of Fisher, Haldane, and Wright (see chapter 21 lectures).

Page 13: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

The two possibilities tested by the Luria–Delbrück experiment…

(A)If mutations are induced by the media, roughly the same number of mutants are expected to appear on each plate (LAMARCK)

(B) If mutations arise spontaneously during cell divisions prior to plating, each plate will have a highly variable number of mutants (DARWIN)

Experimental test of Lamarck’s “inheritance of acquired traits”

Salvador Luria and Max Delbrück (1943)

Page 14: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Experimental test of Lamarck’s “inheritance of acquired traits”

Salvador Luria and Max Delbrück (1943)

Page 15: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Experimental test of Lamarck’s “inheritance of acquired traits”

Salvador Luria and Max Delbrück (1943)

Page 16: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

The two possibilities tested by the Luria–Delbrück experiment…

(A)If mutations are induced by the media, roughly the same number of mutants are expected to appear on each plate (LAMARCK)

(B) If mutations arise spontaneously during cell divisions prior to plating, each plate will have a highly variable number of mutants (DARWIN)

The Luria-Delbrück experiment established that mutations…

1.are occurring randomly2.occur in the absence of the selective pressure - selection acts on pre-existing mutants; it does not create them. 

Experimental test of Lamarck’s “inheritance of acquired traits”

Salvador Luria and Max Delbrück (1943)

Page 17: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

What is a mutation?

• Substitution, deletion, or insertion of a base pair.

Page 18: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

What is a mutation?

• Substitution, deletion, or insertion of a base pair.

Page 19: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

What is a mutation?

• Substitution, deletion, or insertion of a base pair.

Page 20: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

What is a mutation?

• Substitution, deletion, or insertion of a base pair.

Page 21: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

What is a mutation?

• Substitution, deletion, or insertion of a base pair.

• Chromosomal deletion, insertion, or rearrangement.

Page 22: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

What is a mutation?

• Substitution, deletion, or insertion of a base pair.

• Chromosomal deletion, insertion, or rearrangement.

Somatic mutations occur in somatic cells and only affect the individual in which the mutation arises.

Germ-line mutations alter gametes and passed to the next generation.

Page 23: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

What is a mutation?

• Substitution, deletion, or insertion of a base pair.

• Chromosomal deletion, insertion, or rearrangement.

Somatic mutations occur in somatic cells and only affect the individual in which the mutation arises.

Germ-line mutations alter gametes and passed to the next generation.

Mutations are quantified in two ways:

1. Mutation rate = probability of a particular type of mutation per unit time (or generation).

2. Mutation frequency = number of times a particular mutation occurs in a population of cells or individuals.

Page 24: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Two types of point mutations:

1. Base pair substitutions.

1. Transitions

• Convert a purine-pyrimidine to the other purine-pyrimidine.

• 4 types of transitions; A G and T C

• Most transitions results in synonymous substitution because of the degeneracy of the genetic code.

2. Transversions

• Convert a purine-pyrimidine to a pyrimidine-purine.

• 8 types of transversions; A T, G C, A C, and G T

• Transversions are more likely to result in nonsynonomous substitution.

2. Base pair deletions and insertions

Page 25: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Fig. 7.3, Types of base pair substitutions and mutations.

Page 26: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Terminology describing mutations in protein coding sequences:

Nonsynonymous/missense mutation

Base pair substitution results in substitution of a different amino acid.

Nonsense mutation

Base pair substitution results in a stop codon (and shorter polypeptide).

Neutral nonsynonymous mutation

Base pair substitution results in substitution of an amino acid with similar chemical properties (protein function is not altered).

Synonymous/silent mutation

Base pair substitution results in the same amino acid.

Frameshift mutations:

Deletions or insertions (not divisible by 3) result in translation of incorrect amino acids, stops codons (shorter polypeptides), or read-through of stop codons (longer polypeptides).

Page 27: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Fig. 7.3, Types of base pair substitutions and mutations.

Page 28: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Fig. 7.4, Effect of a nonsense mutation on translation.

Page 29: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Fig. 7.4, Effect of a nonsense mutation on translation.

Page 30: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Mutation Type Side-by-Side Comparison:

Page 31: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Reverse mutations and suppressor mutations:

Forward mutation

Mutation changes wild type (ancestral) to mutant (derived).

Reverse mutation (back mutation)

Mutation changes mutant (derived) to wild type (ancestral).

• Reversion to the wild type amino acid restores function.

• Reversion to another amino acid partly or fully restores function.

Suppressor mutation

Occur at sites different from the original mutation and mask or compensate for the initial mutation without reversing it.

• Intragenic suppressors occur on the same codon;e.g., nearby addition restores a deletion

• Intergenic suppressors occur on a different gene.

Page 32: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Suppressor mutation (example 1)

Page 33: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Suppressor mutation (example 2)

Page 34: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Intergenic suppressor genes:

• Many function in mRNA translation.

• Each suppressor gene works on only one type of nonsense, missense, of frameshift mutation.

• Suppressor genes often encode tRNAs, which possess anti-codons that recognize stop codons and insert an amino acid.

• Three classes of tRNA nonsense suppressors, one for each stop codon (UAG, UAA, UGA).

• tRNA suppressor genes coexist with wild type tRNAS.

• tRNA suppressors compete with release factors, which are important for proper amino acid chain termination.

• Small number of read-through polypeptides are produced; tandem stop codons (UAGUAG) are required to result in correct translation termination.

Page 35: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Fig. 7.5, tRNA suppressor gene mechanism for nonsense mutation.

Page 36: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Fig. 7.5, tRNA suppressor gene mechanism for nonsense mutation.

Page 37: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Spontaneous mutations differ from induced mutations:

• Spontaneous mutations can occur at any point of the cell cycle.

• Movement of transposons (mobile genetic elements, subject of next lecture) causes spontaneous mutations.

• Mutation rate = ~10-4 to 10-6 mutations/gene/generation

• Rates vary by lineage, and many spontaneous errors are repaired.

Page 38: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Spontaneous mutations:

Different types DNA replication errors

Wobble-pairing

T-G, C-A, A-G, T-C

Normal pairing typically occurs in the next round of replication; frequency of mutants in F2 is 1/4.

GT pairs are targets for correction by proofreading and other repair systems.

Page 39: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Fig. 7.7, Mutation caused by mismatch wobble base pairing.

Page 40: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Spontaneous mutations:

Different types DNA replication errors

Wobble-pairing

T-G, C-A, A-G, T-C

Normal pairing typically occurs in the next round of replication; frequency of mutants in F2 is 1/4.

GT pairs are targets for correction by proofreading and other repair systems.

Additions and deletions

DNA loops out on template strand, DNA polymerase skips bases, and deletion occurs.

DNA loops out on new strand, DNA polymerase adds untemplated bases.

Page 41: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Fig. 7.8, Addition and deletion by DNA looping-out.

Page 42: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms
Page 43: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Spontaneous mutations:

Spontaneous chemical changes

Depurination

Common; A or G are removed and replaced with a random base.

Deamination

Amino group is removed from a base (C U); if not replaced U pairs with A in next round of replication (CG TA).

Prokaryote DNA contains small amounts of 5MC; deamination of 5MC produces T (CG TA).

Regions with high levels of 5MC are mutation hot spots.

Page 44: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Fig. 7.9, Deamination.

Page 45: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Induced mutations

Radiation (e.g., X-rays, UV)

Ionizing radiation breaks covalent bonds including those in DNA and is the leading cause of chromosome mutations.

Ionizing radiation has a cumulative effect and kills cells at high doses.

UV (254-260 nm) causes purines and pyrimidines to form abnormal dimer bonds and bulges in the DNA strands.

Fig. 19.10, Thymine dimers induced by UV light.

Page 46: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Induced mutations: chemical mutagens

Base analogs

• Similar to normal bases, incorporated into DNA during replication.

• Some cause mis-pairing (e.g., 5-bromouracil).

• Not all are mutagenic.

Page 47: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Induced mutations: chemical mutagens

Base analogs

• Similar to normal bases, incorporated into DNA during replication.

• Some cause mis-pairing (e.g., 5-bromouracil).

• Not all are mutagenic.

Page 48: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Induced mutations: chemical mutagens

Base analogs

• Similar to normal bases, incorporated into DNA during replication.

• Some cause mis-pairing (e.g., 5-bromouracil).

• Not all are mutagenic.

Page 49: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Fig. 7.11b, Mutagenic efffects of 5-bromouracil

Page 50: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Induced mutations: Chemical mutagens

Base modifying agents, act at any stage of the cell cycle:

• Deaminating agents

• Hydroxylating agents

• Alkylating agents

Fig. 7.12, Base-modifying agents (a)

Page 51: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Induced mutations: Chemical mutagens

Base modifying agents, act at any stage of the cell cycle:

• Deaminating agents

• Hydroxylating agents

• Alkylating agents

Fig. 7.12, Base-modifying agents (b)

Page 52: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Induced mutations: chemical mutagens

Intercalating agents:

• Thin, plate-like hydrophobic molecules insert themselves between adjacent base-pairs,

• Mutagenic intercalating agents cause insertions during DNA replication.

• Loss of intercalating agent can result in deletion.

• Examples: proflavin, ethidium bromide

Fig. 7.13

Page 53: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms
Page 54: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Detecting environmental mutations: Ames Test (after Bruce Ames)

Ames Test is an inexpensive method used to screen possible carcinogens and mutagens.

• Histidine auxotroph Salmonella typhimurium (requires Histidine to grow) are mixed with rat liver enzymes and plated on media lacking histidine.

• Liver enzymes are required to detect mutagens that are converted to carcinogenic forms by the liver (e.g., procarcinogens).

• Test chemical is then added to medium.

• Control plates show only a small # of revertants (bacteria cells growing without histidine).

• Plates innoculated with mutagens or procarcinogens show a larger # of revertants.

• Auxotroph will not grow without Histidine unless a mutation has occurred.

Page 55: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Fig. 7.14

Detecting environmental mutations: Ames Test (after Bruce Ames)

Page 56: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Detecting environmental mutations: Ames Test (after Bruce Ames)

Page 57: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

DNA repair mechanisms:

Enzyme-based repair mechanisms prevent and repair mutations and damage to DNA in prokaryotes and eukaryotes.

Types of mechanisms

• DNA polymerase proofreading - 3’-5’ exonuclease activity corrects errors during the process of replication.

• Photoreactivation (also called light repair) - photolyase enzyme is activated by UV light (320-370 nm) and splits abnormal base dimers apart.

• Demethylating DNA repair enzymes - repair DNAs damaged by alkylation.

• Nucleotide excision repair (NER) - Damaged regions of DNA unwind and are removed by specialized proteins; new DNA is synthesized by DNA polymerase.

• Methyl-directed mismatch repair - removes mismatched base regions not corrected by DNA polymerase proofreading. Sites targeted for repair are indicated in E. coli by the addition of a methyl (CH3) group at a GATC sequence.

Page 58: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Fig. 7.16 Nucleotide excision repair (NER) of pyrimidine dimmer and other damage-induced distortions of DNA

Page 59: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

Fig. 7.17 Mechanism of mismatch correction repair

Page 60: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms

DNA repair mechanisms (conserved):

Page 61: Chapter 7a - DNA mutation and repair: Mutation and adaptation Types of mutations DNA repair mechanisms