chapter 8 fws

Upload: chan-karlok

Post on 01-Jun-2018

277 views

Category:

Documents


1 download

TRANSCRIPT

  • 8/9/2019 Chapter 8 FWS

    1/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 1

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    CHAPTER 8 DIFFERENTIATION

    Focus on Exam 8

    1 (a) Lety=(x2+ 3)e2x

    dy

    dx=(x2+3)(2e2x) +e2x(2x)

    = 2e2x

    (x2

    3+x)

    (b) Let u = x and y=sin3 x

    =x1

    2 y=sin3u

    du

    dx=

    1

    2x

    12

    dy

    du=3 sin2u (cos u)

    =1

    2 x = 3 sin2ucos u

    Hence,dy

    dx=

    dy

    du

    du

    dx

    = 3 sin2ucos u 12 x

    =3sin2 x cos x

    2 x

    2 (a) Lety=ln (x3e3x)

    dy

    dx=

    x3(3e3x) +e3x(3x2)

    x3e3x

    d

    dx(x3e3x)

    =e3x3x2(x +1)

    x3

    e3x

    =3(x+1)

    x

    Copy backx3e3x.

    (b) Let u =5x

    log5u =x

    ln u

    ln 5=x

    ln u =x ln 5

    1

    u

    du

    dx=ln 5

    du

    dx= u ln 5

  • 8/9/2019 Chapter 8 FWS

    2/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term2

    du

    dx= 5xln 5

    d

    dx(5x) =5xln 5

    Lety =5x

    1+

    5x

    2

    dy

    dx=

    (1 + 5x2)(5x ln 5) (5x)(10x)

    (1 + 5x2)2

    =5x[ln 5(1+ 5x2) 10x]

    (1 + 5x2)2

    3 f(x) =e2xsin 2x

    f (x)=e2x(2 cos 2x) +sin 2x(2e2x)

    =2e2xcos 2x 2 sin 2xe2x

    f (x)=2e2x 2 sin 2x+ cos 2x(4e2x) 2 sin 2x(2e2x) + e2x(4 cos 2x)

    =4e2x

    sin 2x 4 cos 2x

    e

    2x

    +4 sin 2xe

    2x

    4e2x

    cos 2x

    =8e2xcos 2x

    Whenx=

    6, f(x)= 8e

    3cos

    3

    = 8e

    312 =4e

    3

    4 ey=x +1

    2x 3

    y=ln x +12x 3 =ln (x+1) ln (2x 3)

    dy

    dx=

    1

    x +1

    2

    2x 3

    At thex-axis,y=0.

    e0=x +1

    2x 3

    1 =x +1

    2x 3 2x 3 =x+ 1

    x=4

    The gradient of the tangent at the point (4, 0) =1

    4+1

    2

    2(4)3

    =1

    5

    Hence, the equation of the tangent at the point (4, 0) is

    y0 = 1

    5(x 4)

    5y=x+ 4

  • 8/9/2019 Chapter 8 FWS

    3/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 3

    5x2xy+y2=7

    Whenx=3, 323y+y2=7

    y23y +2 =0

    (y1)(y2) =0

    y=1 or 2

    x2

    xy+y2

    =7

    Differentiating implicitly with respect tox,

    2xxdy

    dx+y(1) +2y

    dy

    dx=0

    (x+2y)dy

    dx=2x+y

    dy

    dx=

    y 2x

    2y x

    The gradient of the tangent at the point (3, 1) is

    1 2(3)

    2(1) 3 =5.

    The gradient of the tangent at the point (3, 2) is2 2(3)

    2(2) 3=4.

    6 2y =ln (xy)

    2dy

    dx=

    xdy

    dx+y(1)

    xy

    2xydy

    dx=x

    dy

    dx+y

    (2xy x)dy

    dx=y

    dy

    dx=

    y

    2xy x

    At the pointP(e2, 1),dy

    dx=

    1

    2(e2)(1) e2

    =1

    e2

    Therefore, the gradient of the tangent is1

    e2.

    Hence, the equation of the tangent at the pointP(e2, 1) is

    y1 =1

    e2(xe2)

    e2ye2=xe2

    e2y=x

    7 x=e 4t=e2 t

    dx

    dt=2 12 te2 t

    dxdt= e2 t

    t

  • 8/9/2019 Chapter 8 FWS

    4/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term4

    y= e6t

    y=(e6t)12

    y=e3t

    dy

    dt=3e3t

    x=e2 t

    lnx=2 t

    (lnx)2=4t

    t =1

    4(lnx)2

    dy

    dx=

    dy

    dtdx

    dt

    = 3e3t

    e2 t

    t

    =3e3t t

    e2 t e3t=e

    3

    4(lnx)

    2

    =3(12lnx)e3

    4(lnx)2

    x e2 t=x

    =3e

    3

    4 (lnx)2

    lnx t=1

    2 lnx 2x

    8 x=e2t2

    dx

    dt=2e2t

    y=et+t

    dy

    dt=et+1

    dy

    dx=

    dy

    dt

    dxdt

    =et+1

    2e2t

    When t=ln 2,x=e2 ln 2 2

    =eln 22

    2

    =222

    =2aloga x=x

    When t=ln 2,y=eln 2+ ln 2

    =2 +ln 2

  • 8/9/2019 Chapter 8 FWS

    5/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 5

    When t=ln 2,dy

    dx=

    eln 2+ 1

    2e2 ln 2

    =2 +1

    2(2)2

    =3

    8 Hence, the equation of the tangent at the point where t=ln 2 is

    y(2 + ln 2) =3

    8(x 2)

    8y16 8 ln 2 =3x6

    8y=3x+10 + 8 ln 2

    9 x =cos22

    dx

    d=2 cos 2 (2 sin 2)

    =4 cos 2sin 2

    y

    =sin2

    2

    dy

    d= 2 sin 2(2 cos 2)

    = 4 sin 2 cos 2

    dy

    dx=

    dy

    ddx

    d

    =4 sin 2 cos 2

    4 cos 2 sin 2 =1

    The gradient of the tangent is 1. Hence, the gradient of the normal is 1.

    When =

    8,x=cos2

    4

    = 122

    =1

    2

    y=sin2

    4 = 12

    2

    =1

    2

    Hence, the equation of the normal is

    y1

    2=1x 12

    y1

    2=x

    1

    2 y

    = x

  • 8/9/2019 Chapter 8 FWS

    6/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term6

    10 y= e2x6x+7

    =(e2x6x+7)1

    2

    dy

    dx=

    1

    2(e2x6x+7)

    1

    2 (2e2x6)

    =

    2e2x6

    2 e2x6x+7

    =2e2x6

    2y

    =e2x3

    y

    ydy

    dx=e2x3

    yd2y

    dx2+

    dy

    dx

    dy

    dx=2e2x

    y

    d2y

    dx2 +dy

    dx 2

    =2e2x

    [Shown]

    11 y=exlnx

    dy

    dx= ex1x+ lnx ex

    dy

    dx= ex1x+ y

    xdy

    dx= ex+xy

    xd2y

    dx2+

    dy

    dx(1)=ex+x

    dy

    dx+y(1)

    xd2y

    dx2+(1 x)

    dy

    dxy =ex

    From,

    ex=xdy

    dxxy

    xd2y

    dx2+(1 x)

    dy

    dxy =x

    dy

    dxxy

    xd2y

    dx2+(1 2x)

    dy

    dx+ (x1)y=0 [Shown]

    12 y=cosx

    x

    xy=cosx

    xdy

    dx+y(1) =sinx

    xdy

    dx+y=sinx

    xd2y

    dx2+

    dy

    dx(1) +

    dy

    dx= cosx

    xd2y

    dx2+2

    dy

    dx= xy

    x

    d

    2

    ydx2+ 2dydx+xy=0 [Shown]

  • 8/9/2019 Chapter 8 FWS

    7/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 7

    13 y= cosx

    =cos1

    2x

    dy

    dx=

    1

    2(cosx)

    1

    2(sinx)

    =

    sinx

    2 cosx

    =sinx

    2y

    2ydy

    dx= sinx

    2yd2y

    dx2+

    dy

    dx2 dydx= cosx

    2yd2y

    dx2+2dydx

    2

    + cosx = 0

    2y

    d2ydx2

    +2dydx2

    +y2= 0 [Shown]

    14 y=e2xsinx

    dy

    dx= e2xcosx 2 sinx e2x

    dy

    dx= e2xcosx 2y e2xsinx =y

    d2y

    dx2= e

    2xsinx 2 cosx e2x2dy

    dx

    d2y

    dx2= y 2dydx+ 2y 2

    dy

    dx

    cosx e2x=dy

    dx+2y

    d2y

    dx2+ 4

    dy

    dx+ 5y =0 [Shown]

    15 y =ln(1 cosx)

    dy

    dx=

    sinx

    1 cosx

    d2y

    dx2=

    (1 cosx)(cosx) sinx sinx

    (1 cosx)2

    =cosx cos2x sin2x

    (1 cosx)2

    =cosx (cos2x+ sin2x)

    (1 cosx)2

    =cosx 1

    (1 cosx)2

    =1 cosx

    (1 cosx)2

    e2xsinx =y

  • 8/9/2019 Chapter 8 FWS

    8/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term8

    =1

    1 cosx

    =1

    cosx 1

    But from,1

    cosx 1

    = 1

    sinx

    dy

    dx.

    d2y

    dx2=

    1

    sinxdydx

    sinxd2y

    dx2=

    dy

    dx

    sinxd2y

    dx2+

    dy

    dx= 0 [Shown]

    16 y=esinx

    dy

    dx= cosx

    esinx

    dy

    dx=y cosx

    d2y

    dx2=y(sinx) + cosxdydx

    d2y

    dx2= ysinx+ cosxdydx

    d2y

    dx2= y sinx +

    1

    ydy

    dx

    dy

    dx

    cosx=1

    ydy

    dx

    d2y

    dx2= y sinx +

    1

    ydydx

    2

    yd2y

    dx2= y2sinx +dydx

    2

    yd2y

    dx2= y2lny +dydx

    2

    yd2y

    dx2+y2lny dydx

    2

    =0 [Shown]

    17 y =ln(sinx + cosx)

    dy

    dx=

    cosx sinx

    sinx

    + cosx

    dydx2

    + 1 =cosx sinxsinx+ cosx2

    + 1

    =(cosx sinx)2+ (sinx+ cosx)2

    (sinx+cosx)2

    =cos2x 2 sinx cosx+ sin2x + sin2x + 2 sinxcosx + cos2x

    (sinx+cosx)2

    esinx=y

    sinx =lny

  • 8/9/2019 Chapter 8 FWS

    9/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 9

    =cos2x +sin2x+ sin2x+ cos2x

    (sinx+cosx)2

    =1 +1

    (sinx+cosx)2sin2x +cos2x=1

    =2

    (sinx+cosx)2 [Shown]

    d2y

    dx2=

    (sinx +cosx)(sinx cosx) (cosxsinx)(cosx sinx)

    (sinx+cosx)2

    =sin2x 2 sinxcosx cos2x (cos2x2 sinxcosx +sin2x)

    (sinx+cosx)2

    =2 sin2x 2 cos2x

    (sinx+cosx)2

    =2(sin2x + cos2x)

    (sinx+cosx)2

    = 2(1)(sinx+cosx)2

    =dydx2

    +1

    d2y

    dx2+ dydx

    2

    +1= 0 [Shown]

    18 (a)y =x2

    (x+3)(x1)

    = x

    2

    x2+2x3

    Asy ,the denominator ofx2

    (x+3)(x1) 0

    (x+3)(x1) 0

    x 3 or 1

    Therefore,x=3 andx=1are vertical asymptotes.

    limx

    y = limx

    x2

    x2+2x3

    = lim

    x

    x

    2

    x2

    x2

    x2+

    2x

    x2

    3

    x2 = lim

    x

    1

    1 +2

    x

    3

    x2

    =1

    1 +0 +0

    =1

    Therefore,y=1 is the horizontal asymptote.

  • 8/9/2019 Chapter 8 FWS

    10/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term10

    (b) y =x2

    x2+2x3

    dy

    dx=

    (x2+2x3)(2x) x2(2x + 2)

    (x2+2x3)2

    =

    2x3+4x26x2x3 2x2

    (x2+2x3)2

    =2x2 6x

    (x2+2x3)2

    d2y

    dx2=

    (x2+2x3)2(4x 6) (2x2 6x) 2(x2+ 2x 3)(2x + 2)

    (x2+2x3)4

    =2(x2+2x3)[(x2+2x3)(2x 3) (2x2 6x)(2x + 2)]

    (x2+2x3)4

    =

    2[(x2+2x3)(2x3) (2x2 6x)(2x + 2)](x2+2x3)3

    Whendy

    dx= 0,

    2x2 6x

    (x2+2x3)2=0

    2x2 6x =0

    2x(x 3) =0

    x = 0 or 3

    Whenx=0,y=0 and

    d2y

    dx2=2[(3)(3) 0]

    (3)3

    =2

    3(< 0)

    Therefore, (0, 0) is a turning point and it is a local maximum point.

    Whenx=3, y=9

    6(2)

    =3

    4

    d2

    ydx2

    =2[(32

    + 2 3 3)(2 3 3) 0](32+ 2 3 3)3

    =6 (> 0)

    Therefore, 3,34is a turning point and it is a local minimum point. (c) Wheny=0, x=0.

    Hence, the graph ofy=x2

    (x+3)(x1)

    = x2

    x2+2x3is as shown.

  • 8/9/2019 Chapter 8 FWS

    11/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 11

    x

    Y

    3 O

    3

    1

    1

    3

    4,

    19 (a)y =4(x 3)21

    x3

    x

    =

    3 is the vertical asymptote.

    (b) Whenx=0, y=4(3)21

    (3)

    =361

    3

    Thus, the graph cuts they-axis at 0, 3613. Wheny=0, 4(x3)2

    1

    x3=0

    4(x3)2=1

    x3

    (x3)3=1

    4

    x3 =1

    413

    x=1

    413

    + 3

    x= 3.63

    Thus, the graph cuts thex-axis at (3.63,0).

    (c) y= 4(x3)21

    x3

    =4(x3)2 (x3)1

    dy

    dx= 8(x3)1(1) + (x3)2(1)

    = 8(x3) +1

    (x3)2

    d2y

    dx2=8 2(x3)3(1)

    =8

    2

    (x3)3

  • 8/9/2019 Chapter 8 FWS

    12/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term12

    Whendy

    dx= 0,

    8(x3) +1

    (x3)2=0

    8(x3) =1

    (x3)2

    (x3)3=18

    x 3 =1

    2

    x =2 .5

    Whenx=21

    2,

    y=452 32

    1

    5

    2 3

    = 1 + 2 = 3

    d2y

    dx2=8

    2

    52 33

    =8 (16)

    =24 (> 0)

    Therefore, the turning point is 2.5, 3and it is a local minimum point. (d) When

    d2ydx2

    =0,

    8 2

    (x 3)3= 0

    2

    (x 3)3= 8

    (x3)3=1

    4

    x=1

    4

    1

    3

    +3

    x=3.63

    From (b), whenx=3.63,y=0.

    d3y

    dx3=6(x3)4(1)

    =6

    (x 3)4

    Whenx=3.63,d3y

    dx3=

    6

    (3.633)4

    =38.1 (i.e. 0)

    Hence, (3.63, 0) is a point of inflexion.

  • 8/9/2019 Chapter 8 FWS

    13/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 13

    (e) The graph ofy=4(x 3)21

    x 3is as shown below.

    x

    y

    33.63O

    2.5 , 3

    361

    3

    20 (a) Thex-axisis the axis of symmetry.

    (b) y 2=x2(4 x)

    y20

    x2(4 x) 0

    Sincex20,x2(4 x) 0 only if 4 x0 i.e.x4.

    Hence, the set of values ofx where the graph does not exist is {x:x> 4}.

    (c) y2=x2(4 x)

    =4x2x3

    2ydy

    dx=8x3x2

    dy

    dx=

    8x3x2

    2y

    dy

    dx=

    8x3x2

    2(x 4 x )

    dydx= x(8 3x)2x 4 x

    dy

    dx=

    8 3x

    2 4 x

    Whendy

    dx=0,

    8 3x

    2 4 x=0

    8 3x=0

    x =83

  • 8/9/2019 Chapter 8 FWS

    14/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term14

    Whenx=8

    3,y=

    8

    3 4

    8

    3

    =3.08

    Hence, 223, 3.08and 22

    3,3.08are turning points (whose tangents are horizontal).

    When dydx

    =,

    2 4 x =0

    x=4

    Whenx=4, y=4 4 4

    =0

    Hence, (4, 0) is also a turning point where tangent is vertical.

    (d) The graph ofy 2=x2(4 x) is as shown below.

    x

    y

    O 4

    22

    3, 3.08

    22

    3, 3.08

    21 (a) y=1 e2x

    1 +e2x

    dy

    dx=

    (1 +e2x)(2e2x) (1 e2x)(2e2x)

    (1 +e2x)2

    dy

    dx=

    2e2x[1 +e2x+(1 e2x)]

    (1 +e2x)2

    dy

    dx=

    4e2x

    (1 + e2x)2

    Since e2x>0 and (1 +e2x)2>0, thusdy

    dx=

    4e2x

    (1+ e2x)2

  • 8/9/2019 Chapter 8 FWS

    15/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 15

    dy

    dx=

    4e2x

    (1 + e2x)2

    =4e

    212ln 1 y

    1 +y

    1 + e21

    2 ln 1 y

    1 +y2

    =

    41 y1 +y

    1 + 1 y1 +y2 a

    logax=x

    =

    41 y1 +y

    1 +y+1 y

    1 +y

    2

    =

    41 y1 +y4

    (1 +y)2

    =(1 y)(1 +y)

    =y 2 1 [Shown]

    d2y

    dx2=2ydy

    dx

    Sincedy

    dx< 0,

    d2y

    dx2< 0 ify> 0 and

    d2y

    dx2> 0ify< 0. [Shown]

    (c) limx 1 e

    2x

    1 +e2x=1 and limx 1 e2x

    1 +e2x=1

    (d) When y =0,1 e2x

    1 +e2x=0

    1 e2x=0 e2x=1

    2x =ln 1

    2x =0

    x =0

    Thus, (0, 0) is a point of inflexion.

    Hence, the graph ofy=1 e2x

    1 +e2xis as shown beside.

    y

    xO

    1

    1

  • 8/9/2019 Chapter 8 FWS

    16/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term16

    22 (a)

    kcm

    6 cm

    (2k + 6) cm

    Q

    CRSD

    x cm

    BA

    P

    CQRand CBSare similar triangles.

    k cm

    B

    Q

    CRS

    x cm

    [(2k + 6) 6] cm

    Thus, RCSC

    =QRBS

    RC

    (2k +6) 6=

    x

    k

    RC

    2k=

    x

    k

    RC=2x

    Thus,DR =DC RC

    =2k+6 2x

    (b) Area ofPQRD,

    L =DR QR

    L =(2k +6 2x)(x)

    L =(2k

    +

    6)x2x2 [Shown]

    (c) WhenLhas a stationary value,

    dL

    dx=0

    2k+6 4x=0

    4x=2k+6

    x=2k+6

    4

    x=2(k+3)

    4

    x=k+3

    2

    d2L

    dx2=4 (negative)

    Thus,Lhas a maximum value.

  • 8/9/2019 Chapter 8 FWS

    17/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 17

    Hence, the maximum value ofL

    =(2k+6) k+32 2k+3

    2 2

    =2(k+3) k+32 2(k+3)2

    4

    =(k+3)2(k+3)2

    2

    =(k

    +3)2

    2

    23 In OMC, sinx =MC

    r MC =r sinx

    AC =2MC

    =2rsinx

    rcmrcm

    O

    MCA

    B

    x

    x x

    rcm

    In OMC, cosx =OM

    r OM =r cosx

    Area of ABC,

    L =1

    2AC BM

    L =1

    2AC (BO +OM)

    L =1

    2 (2r sinx)(r +r cosx)

    L =r2

    sinx + r2

    sinx cosx

    L =r2sinx +1

    2r2(2 sinx cosx)

    L =r2sinx +1

    2r2sin 2x

    L =1

    2(2r 2sinx +r 2sin 2x)

    L =r2

    2(2 sinx+sin 2x) [Shown]

    dLdr=r

    2

    2 (2 cosx + 2 cos 2x)

  • 8/9/2019 Chapter 8 FWS

    18/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term18

    WhenL has a stationary value,

    dL

    dx=0

    r2

    2(2 cosx+ 2 cos 2x) =0

    cosx +cos 2x=0

    cosx+2 cos2

    x 1 =0 2 cos2 x+cosx1 =0

    (2 cosx1)(cosx +1) =0

    cosx =1

    2or cosx=1

    x

    =

    3 x=(not accepted)

    d2L

    dx2=

    r2

    2(2 sinx4 sin 2x)

    Whenx =

    3,

    d2L

    dx2=

    r 2

    2 2 sin

    34 sin

    2

    3 =2.60r 2(< 0)

    Hence,Lis a maximum.

    Lmax

    =r 2

    22 sin 3 +sin

    2

    3

    =r2

    22 32 + 32

    =3 3

    4r2 [Shown]

    24 In ORQ,cos=OR

    r

    OR=rcos

    QM =MP

    =OR

    =r cos

    In ORQ, sin =QR

    r

    QR =r sin

    Therefore, the perimeter of ORQP,

    y=OR+RQ+QM+MP+PO

    y=rcos +r sin +r cos +r cos+r

    y=r +r sin + 3r cos

    y=r(1 +sin +3 cos ) [Shown]

    dy

    da=r(cos 3 sin )

    rcm

    rcm

    M

    R O

    PQ

    a a

  • 8/9/2019 Chapter 8 FWS

    19/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 19

    Whenyhas a stationary value,

    dy

    dr=0

    r(cos3 sin) =0

    cos 3 sin =0

    cos =3 sin

    1

    3=

    sin

    cos

    tan =1

    3

    =tan113rad [Shown]

    d2y

    d2=r(sin 3 cos )

    Since sin >0 and cos >0,d2y

    d2

  • 8/9/2019 Chapter 8 FWS

    20/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term20

    26 AB= x2+32

    =(x2+9)1

    2

    d(AB)

    dx=

    1

    2(x2+9)

    1

    2(2x)

    =x

    x2+9

    d(AB)

    dt=

    d(AB)

    dx

    dx

    dt

    =x

    x2+9 2

    =4

    42+9 2

    =1.6 units s1

    27 (a)(x+2 r)cm

    rcm

    rcm

    N

    O

    P

    Q

    x cm

    R(x+ 2) cm

    RNOand RQPare similar triangles.

    Thus,NO

    QP=

    NR

    QR

    r

    x=

    x+2r

    x+2

    r(x+2) =x(x+2 r)

    rx+2r=x2+2xrx

    2rx +2r =x2+2x

    r(2x +2)=x2+2x

    r =x2+2x

    2x+2[Shown]

    (b) r =x2+2x

    2x+

    2

    dr

    dx=

    (2x+2)(2x+2) (x2+ 2x)(2)

    (2x+2)2

    dr

    dx=

    4x2+ 8x+4 2x2 4x

    (2x+2)2

    dr

    dx=

    2x2+4x + 4

    (2x+2)2

    dr

    dx=

    2(x2+2x + 2)

    [2(x+1)]2

    dr

    dx=x2+2x + 2

    2(x+1)2

  • 8/9/2019 Chapter 8 FWS

    21/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 21

    dx

    dt=

    dx

    dr

    dr

    dt

    =2(x + 1)2

    x2+2x + 2(0.4)

    =2(4+ 1)2

    42

    +2(4)+ 2(0.4)

    =50

    260.4

    =0.769 cm s1

    28 y=xex +1

    dy

    dx=x ex+1+ex+1

    =ex+1(x+1)

    y

    dy

    dxx

    =ex+1(x+1) x x changes from 1 to 1.01. So, x=1.01 1.

    ynew

    =yoriginal

    +y

    1.01e2.01=1(e1+1) +[e1+1(1 +1)](1.01 1)]

    The value ofy

    whenx= 1.01.

    The value of

    ywhenx=1.

    The value ofdy

    dx

    whenx=1.

    1.01e2.01=e2+2e2(0.01)

    e2.01=7.3891 +2(7.3891)(0.01)

    1.01

    e2.01=7.46

    29 y=cosx

    x

    xy=cosx

    xdy

    dx+y(1)=sinx

    x dydx

    +y =sinx

    xd2y

    dx2+

    dy

    dx(1) +

    dy

    dx=cosx

    xd2y

    dx2+2

    dy

    dx=xy

    x

    d2y

    dx2

    +

    2

    dy

    dx

    +xy=0 [Shown]

  • 8/9/2019 Chapter 8 FWS

    22/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term22

    30 y =x ln(x+1)

    dy

    dx=x 1x+1+ln (x+1)(1)

    =x

    x+1+ln (x+1)

    y=dy

    dxx

    =( xx+1 +ln (x+1))x y

    new=y

    original+y x changes from 1 to 1.01. So, x= 1.01 1.

    1.01 ln (1.01 +1) =1 ln (1 +1) + 11 +1+ln (1 +1)(1.01 1)

    The value ofywhenx= 1.01.

    The value ofywhenx= 1.

    The value ofdy

    dxwhenx= 1.

    1.01(ln 2.01) =0.70508

    ln 2.01 =0.698

    31 (a) f(t) =4ekt1

    4ekt+1

    f(0) =4e01

    4e0+1

    =3

    5 (b) f (t) =

    (4ekt+1)(4kekt) (4ekt1)(4kekt)

    (4ekt+1)2

    f (t) =(16ke2kt+4kekt16ke2kt+4kekt)

    (4ekt+1)2

    f (t) =8kekt

    (4ekt+1)2

    Since kis a positive integer, f (t)>0.

    (c) LHS =k{1 [f (t)]2}

    =k{1 4ekt1

    4ekt+1

    2

    } =k{(4e

    kt+1)2(4ekt1)2

    (4ekt+1)2 } =k{16e

    2kt+8ekt+1 (16e2kt8ekt+1)

    (4ekt+1)2 } =

    16kekt

    (4ekt+1)2

    =2 8kekt

    (4ekt+1)2 =2f(t)

    =RHS

  • 8/9/2019 Chapter 8 FWS

    23/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 23

    k{1 [f (t)]2} =2f(t)

    kk[f(t)]2=2f(t)

    2k[f(t)] f(t) =2f(t)

    k[f(t)] f(t) =f(t)

    f(t) =k[f(t)] f(t)

    Since kand f(t) are both positive, f(t) 0 and f(t) > 0, f(t) > 0 only when f(t) =0. Therefore, the point of

    inflexion is on the t-axis, i.e. 1kln1

    4, 0.

    t

    f(t)

    O

    f(t) = 4ekt 1

    4ekt+ 1

    35

    1

    1

    4

    1

    1

    k ln

  • 8/9/2019 Chapter 8 FWS

    24/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term24

    32 y=x

    1 +x2

    dy

    dx=

    (1 +x2)(1) x(2x)

    (1 +x2)2

    dy

    dx=

    1 x2

    (1 + x2)2

    dy

    dx=

    1 x2

    xy2

    dy

    dx=

    (1 x2)y2

    x2

    x2dy

    dx=(1 x2)y2 [Shown]

    33 y =sinx cosx

    sinx+ cosx (sinx+cosx)y=sinxcosx

    (sinx+cosx)dy

    dx+y(cosxsinx) =cosx+sinx

    (sinx+cosx)dydx 1+y(cosxsinx) = 0

    (sinx+cosx)dydx 1y(sinxcosx) = 0

    dy

    dx 1

    y

    sinxcosx

    sinx+cosx= 0

    dydx 1y(y) = 0

    dy

    dx 1 y2= 0

    d2y

    dx2 2y

    dy

    dx= 0

    d2y

    dx2= 2y

    dy

    dx [Shown]

    34 y =x3

    x2 1

    dy

    dx=

    (x21)(3x2) x3(2x)

    (x21)2

    =3x43x22x4

    (x21)2

    =x43x2

    (x21)2

    =x2(x2

    3)(x21)2

  • 8/9/2019 Chapter 8 FWS

    25/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 25

    d2y

    dx2=

    (x21)2(4x36x) (x43x2)(2)(x21)1(2x)

    (x21)4

    =(x21)2(2x)(2x23) 4x(x43x2)(x21)

    (x21)4

    =2x(x21)[(x21)(2x23) 2(x43x2)]

    (x2

    1)4

    =2x[2x45x2+3 2x4+6x2]

    (x21)3

    =2x(x2+3)

    (x21)3

    d3y

    dx3=

    (x21)3(6x2+6) (2x3+6x)(3)(x21)2(2x)

    (x21)6

    =6(x21)3(x2+1) 6x(2x3+6x)(x21)2

    (x21)6

    =

    6(x21)2[(x21)(x2+1) x(2x3+6x)]

    (x21)6

    =6(x412x46x2)

    (x21)4

    =6(x46x2 1)

    (x21)4

    Whendy

    dx=0

    x2(x23) =0

    x=0 or 3

    Whenx=0,y=0 andd2y

    dx2=

    2(0)(02+3)

    (021)3

    = 0

    Whenx=0,d3y

    dx3=

    6(04 6(0)21)

    (021)4

    = 6

    Sinced3y

    dx3 0, then (0, 0) is a point of reflextion.

    Whenx= 3,y=( 3 )3

    3 1

    =3 3

    2

    and

    d2y

    dx2=

    2 3(3 + 3)

    (3 1)3

    =3

    2 3

    Sinced2y

    dx2> 0,then 3 ,3

    2 3is a minimum point.

  • 8/9/2019 Chapter 8 FWS

    26/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term26

    Whenx= 3,y=( 3)

    3

    3 1

    =3 3

    2 and

    d2

    ydx2

    = 2( 3)(3 + 3)(3 1)3

    = 3

    2 3.

    Sinced2y

    dx2< 0,then 3, 32 3is a maximum point.

    When the denominator ofy=x3

    x2 1is 0,x21 =0 x=1

    Hence,x=1 andx= 1 are asymptotes.

    The graph ofy= x3

    x2 1is as shown below.

    y

    3 ,3

    2

    3

    3 , 3

    2

    3 11 O

    x

    x3= k(x2 1)

    x3

    x2 1=k

    By sketching the straight linesy=kon the above graph and as kvaries, we obtain the

    following results.

    Value of k Number of real roots

    k>3

    2 3 3

    k=3

    2 3 2

    3

    2 3

  • 8/9/2019 Chapter 8 FWS

    27/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 27

    35 y =x

    x2 1

    dy

    dx=

    (x21)(1) x(2x)

    (x21)2

    =x21

    (x

    2

    1)

    2

    =(x2+1)

    (x21)2(that is

  • 8/9/2019 Chapter 8 FWS

    28/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term28

    When the curve concaves upwards,

    d2y

    dx2> 0

    2x(x2+3)

    (x21)3> 0

    2x(x2

    +3)[(x+1)(x1)]3

    > 0

    2x(x2+3)

    (x+1)3(x1)3> 0

    +

    +

    ++

    +

    x

    x >0

    +(x1)3>0

    +

    + + +

    x2+3 >0

    (x+1)3>0

    01 + +1

    Hence, the intervals for which the curve is concave upwards are 1 1.

    The curvey =x

    x2 1is as shown below.

    Ox

    y

    1 1

    36 (a) x =t2

    t y =2t+

    1

    t

    dx

    dt=1 +2

    t2

    dy

    dt=2 1

    t2

    dy

    dx=

    dy

    dtdx

    dt

    =2

    1

    t2

    1 +2

    t2

    =2t21

    t2+2

  • 8/9/2019 Chapter 8 FWS

    29/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 29

    t2+2

    2

    2t2 1 2t2+ 4

    5

    dy

    dx=2

    5

    t2+2 [Shown]

    Let m=dy

    dx

    m=2 5

    t2+2

    (m2) =5

    t2+2

    (m2)(t2+ 2) =5

    mt2+2m 2t24 =5

    (m 2)t2

    =1 2m t2=

    1 2m

    m 2

    t2=1 +2m

    2m

    t2> 0

    1 +2m

    2m>0

    +

    +

    +

    +

    x

    1 +2m>0

    2 m>0

    + 21

    2

    Hence, 1

    2

  • 8/9/2019 Chapter 8 FWS

    30/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    ACE AHEADMathematics (T) Second Term30

    and

    y=2(1) +1

    1 =3

    When t=1,x=(1) 2

    (1)

    =1

    and

    y=2(1) +1

    (1)

    =3

    Hence, the coordinates of the required points are (1, 3) and (1,3).

    37 x y

    x y

    2 3

    2 3

    sin cos

    cos sin

    q q

    qq

    qqd

    ddd

    d

    d

    d

    dd

    d

    sin

    cos

    tan

    y

    x

    y

    x= =

    =

    q

    q

    q

    q

    q

    3

    2

    3

    2

    When q = =

    =

    4

    3

    2 4

    3

    2

    , tand

    d

    y

    x

    Gradient of tangent = -3

    2

    Gradient of normal =2

    3

    When q = =

    =

    =

    4

    24

    2 1

    2

    2

    , sinx

    When q p p

    43

    4

    3 1

    2

    3 2

    2

    , cosy

  • 8/9/2019 Chapter 8 FWS

    31/32

    Oxford Fajar Sdn. Bhd. (008974-T) 2014

    Fully Worked Solutions 31

    Equation of normal is

    y x- = -( )3 22

    2

    32

    6 9 2 4 2

    6 9 2 4 4 2

    6 4 5 2

    y x

    y x

    y x

    - = -( )- = -

    = +

    38 (a) x xy y

    xy

    xy

    y

    x

    xx y x y

    y

    x

    x y

    2 24

    2 1 2 0

    2 2

    2

    + + =

    + + ( ) + =

    +( ) =

    =

    x y

    y

    d

    d

    d

    d

    d

    d

    d

    d xx y

    y

    x

    x y

    x y

    +

    ++

    +

    =

    2

    2

    20

    d

    d [Shown]

    (b) Atx-axis,y=0,

    x2+ 0 + 0 =4

    x=2

    \(2, 0) and (2, 0)

    (2, 0): Gradient =- ( )++ ( )

    2 2 0

    2 2 0

    =- 2

    (2, 0): Gradient = ( )

    + ( )

    2 2 0

    2 2 0

    =-2

    Aty-axis,x=0,

    02+ 0(y) + y2=4

    y=2

    \(0, 2) and (0, 2)

    (0, 2): Gradient =- ( )-

    + ( )

    2 0 2

    0 2 2

    =-12

    (0, 2): Gradient =- ( ) - -( )

    + -( )

    2 0 2

    0 2 2

    =-12

  • 8/9/2019 Chapter 8 FWS

    32/32

    ACE AHEADMathematics (T) Second Term32

    (c) At stationary points,

    d

    d

    y

    x=0

    - -

    +

    =

    - - =

    = -

    2

    20

    2 0

    2

    x y

    x y

    x y

    y x

    Substitutingy=2xintox2+ xy+ y2=4

    x2+ x(2x) + 4x2=4

    3x2=4

    x

    x

    2 4

    3

    2

    3

    =

    =

    y= -

    2

    2

    3

    = 4

    3

    Stationary points are2

    3

    4

    3,-

    and

    2

    3

    4

    3, .

    (d)

    2

    2

    y

    xO2

    2

    3, 4

    3

    2

    3, 4

    3

    2