chapter 9 combined stresses

103
Chapter 9 Combined Stresses

Upload: amity-ramos

Post on 02-Jan-2016

566 views

Category:

Documents


166 download

DESCRIPTION

Chapter 9 Combined Stresses. 9-1 Introduction. Basic types of loading: axial, torsional and flexural Stress formulas: Axial loading - Torsional loading - Flexural loading -. 9-2 Combined Axial & Flexural Loads. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Chapter 9 Combined Stresses

Chapter 9Combined Stresses

Page 2: Chapter 9 Combined Stresses

9-1 Introduction

• Basic types of loading: axial, torsional and flexural

• Stress formulas:

Axial loading -

Torsional loading -

Flexural loading -

A

Pa

J

T

I

Myf

Page 3: Chapter 9 Combined Stresses

9-2 Combined Axial & Flexural Loads

f

My

I

a

PA

af

PA

MyI

y

Page 4: Chapter 9 Combined Stresses
Page 5: Chapter 9 Combined Stresses

2

6( )

P Mc MA I bh

3 3 3

2

6 6

20 10 6(0.45 15 10 0.15 20 10 )(0.05)(0.150) (0.05)(0.150)

(2.67 10 ) (20.00 10 ) 22.67 MPa

A

3 3 3

2

6 6

20 10 6(0.45 15 10 0.15 20 10 )

(0.05)(0.150) (0.05)(0.150)

(2.67 10 ) (20.00 10 ) = 17.33 MPa

B

A

B 20

15

Page 6: Chapter 9 Combined Stresses
Page 7: Chapter 9 Combined Stresses

o2000sin(15 )

o2000cos(15 )C D

0 :DM O O3

(6) ( )2000cos(15 ) (4)2000sin(15 )12

264.598 lb.

y

y

C

C

264.598 lb.yC

o2000cos(15 )

0 :xF O2000cos(15 )xD

1931.852 lb.

0 :yF O2000sin(15 ) lb.y yD C

253.04 lb.yD

253.04 lb.yD

1931.852

517.638 lb

A

B264.598 lb.yC

1931.852 lb

517.638 lb

759.12 lb.ft

Section AB:

3(3) ( )1931.852 (1)517.638

12yM C

759.12 lb.ft

Page 8: Chapter 9 Combined Stresses

1931.852

517.638 lb

A

B264.598 lb.yC

1931.852 lb

517.638 lb

759.12 lb.ft

Normal Stresses

2

6( )

P Mc MA I bh

2

1931.852 6 759.12 12

2 6 2 6A

2920.1 lb/in

2

1931.852 6 759.12 12

2 6 2 6B

2598.1 lb/in

BMD

1012.16 lb.ft

529.20 lb.ft

min 2

1931.852 6 1012.16 12

2 6 2 6

21173.15 lb/in

max 2

1931.852 6 1012.16 12

2 6 2 6

2851.17 lb/in

Page 9: Chapter 9 Combined Stresses

2 24 0.0025 0.07854 mA D

4 4 6 464 (0.1) 1.5625 10 mI D

P

P

0.25P

P McA I

0.25 0.050.0025 1.5625

P P

840080 MPa

P

680 1029.92 kN

8400P

Page 10: Chapter 9 Combined Stresses

4.0 1.5

5.0

122400 [ 25 6 25 3]P

180,000 180,000 360,000 kg.

12

180,000 0.5 180,000 3.0

(1000 15) 15 5

M

90,000 540,000 562,500

112,500 kg-m.

2

6( )

P Mc MA I bh

2

min 2

360,000 6 112,50048,333.33 kg/m

1 9 1 9

Page 11: Chapter 9 Combined Stresses

For long slender members or columns, the effect of P- is significant

PA

MyI

y

For stiff members the formula is appropriate

Page 12: Chapter 9 Combined Stresses

P P

1in

21

in2

2 21 1( ) in2 4

A

4 4112

1 1( ) in2 192

I

Fig.(a)

Fig.(b)

1 12 4

max,( ) 1 14 192

( )( )28

( ) ( )a

P Mc P PP

A I

max. compressive stress in Fig.(a)

max. compressive stress in Fig.(b)

max,( ) 14

4( )b

P PP

A

max,( )

max,( ) 287 :1

4a

a

PP

Page 13: Chapter 9 Combined Stresses
Page 14: Chapter 9 Combined Stresses

Hw10

allow

B

D1D2

D1=(1+z1) in. D2 = D1(1+z2) in.

I1-1=1000(1+z3) in4 Area=10(1+z4) in2

B =10(1+z5) in. allow=10(1+z6) ksi.

ค่�า z1-z6 ได้�จากเลขประจ�าตั�วนิ�สิ�ตั ด้�งตั�อไปนิ��

46z1z2z3z4z5z6

Fig. P-908

หมายเหตุ� D2 = D1(1+z2) in.

เพื่��อให้�ห้นิ�าตั�ด้มี�ประสิ�ทธิ�ภาพื่ด้�ในิการร�บห้นิ�วยแรง

Page 15: Chapter 9 Combined Stresses

Hw11

L1

L2 L3 L4

b

h

L1= (1+z1) in. L2 = (1+z2) in.

L3= (1+z3) in. L4 = (1+z4) in.

b = 0.2(1+z5) in. h = b(1+z6) in.

P = (1+z5) kips. F = (1+z6) kips.

ค่�า z1-z6 ได้�จากเลขประจ�าตั�วนิ�สิ�ตั ด้�งตั�อไปนิ��

46z1z2z3z4z5z6หมายเหตุ� h = b(1+z6) in.

เพื่��อให้�ค่านิมี�ค่วามีล'กไมี�นิ�อยกว�าค่วามีกว�างเสิมีอ

Page 16: Chapter 9 Combined Stresses

9-3 Kern of Section: Loads Applied off Axes of Symmetry

( )P My Pe a

A I I

Ia

Ae

for b h section

3( /12)2h bh

bh e

6h

e

Page 17: Chapter 9 Combined Stresses

That is in designing of masonry or other structures weak in tension, the resultant load should fall in the middle third of the section.

6h

e

The maximum eccentricity to avoid tension

The general case:

( )( ) yx

y x

Pe yPe xPA I I

2 2

( )( )0 yx

y x

Pe yPe xP

A Ar Ar

The position of neutral axis (line of zero stress)

2 20 1 yx

y x

eex y

r r

2

2

x x

y y

I Ar

I Ar

2y

x

ru

e

2x

y

re

Page 18: Chapter 9 Combined Stresses

( , )2 2

b h

3 3

( )( )Rectangular section: 0

/12 /12yx

Pe yPe xPbh bh hb

3 3

( )( / 2)( )( / 2)0

/12 /12yx

Pe bPe hP

bh bh hb

1

/ 6 / 6yx

ee

h b

Page 19: Chapter 9 Combined Stresses

A compressive load P= 12 kips is applied, as in Fig. 9-8a, at a point 1 in. to the right and 2 in. above the centroid of a rectangular section for which h=10 in. and b=6 in. Compute the stress at each corner and the location of the neutral axis. Illustrate the answers with a sketch similar to Fig. 9-8b.

918

12 kips

2

1

10

6

( )( ) yx

y x

Pe yPe xPA I I

3 3

Rectangular section:

( )( )

/12 /12yx

Pe yPe xPbh bh hb

3 3

12 (12 1) (12 2)0.08 ksi

6 10 6 10 /12 10 6 /12( 5) (3)

A

3 3

12 (12 1) (12 2)0.72 ksi

6 10 6 10 /12

( 5

10 6 /12

) ( 3)B

3 3

12 (12 1) (12 2)0.48 ksi

6 10 6 10 /12 1(5) ( 3)

0 6 /12C

0.32 ksiD

Page 20: Chapter 9 Combined Stresses

12 kips

2

1

10

63 3

Position of Neutral Axis:

( )( )0

/12 /12yx

Pe yPe xPbh bh hb

3 3

12 (12 1) (12 2)0

6 10 6 10 /12 10 6 /1( ) (

2)x y

3 21

25 3

x y

on x axis (y=0) 25/ 3 8.33x

on y axis (x=0 3/ 2 1.5) y

N.A.

Page 21: Chapter 9 Combined Stresses

921 Calcualte and sketch the kern of a W360 X 122 section.

2 2Position of Neutral Axis: 0 1 yx

y x

eex y

r r

257 363A( , )

2 2

2 2

257 363At corner A: 0 1

63 52 21 3yx

ee

22 63on x-axis ( =0): mm

230.89

57y xe e

22 153on y-axis ( =0): mm

3629 0

31 .x ye e

Page 22: Chapter 9 Combined Stresses

9-4 Variation of Stress with Inclination of Element

Page 23: Chapter 9 Combined Stresses

Mc

I

Tc

J

Page 24: Chapter 9 Combined Stresses

9-5 Stress at A Point

Stress at a point really defines the uniform stress distributed over a differential area.

Page 25: Chapter 9 Combined Stresses

• The most general state of stress at a point may be represented by 6 components,

),, :(Note

stresses shearing,,

stresses normal,,

xzzxzyyzyxxy

zxyzxy

zyx

state of stress เม�อแสดงด�วยระบบโคออร�ด�เนตุ (xyz)

xx xy xz x xy xz

yx yy yz yx y yz

zx zy zz zx zy z

σsymmetry

state of stress เม�อแสดงด�วยระบบโคออร�ด�เนตุ (xyz)

xx xy xz x xy xz

yx yy yz yx y yz

zx zy zz zx zy z

σsymmetry

Page 26: Chapter 9 Combined Stresses

• Plane Stress - state of stress in which two faces of the cubic element are free of stress. For the illustrated example, the state of stress is defined by

.0,, and xy zyzxzyx

• State of plane stress occurs in a thin plate subjected to forces acting in the midplane of the plate.

( , )n n • State of plane stress also occurs on the free surface

of a structural element or machine component, i.e., at any point of the surface not subjected to an external force.

Page 27: Chapter 9 Combined Stresses

Two methods to compute the maximum stresses i.e.,

(1) Analytical approach

(2) Using of Mohr’s circle

Plane Stress

x

y

xy

xy x

y yx

yx

x

y

z x

y x

y x

y

z

Page 28: Chapter 9 Combined Stresses

9-6 Variation of Stress at A Point: Analytical Derivation

A

cosA

sinA

Page 29: Chapter 9 Combined Stresses

0nF ( sin

( s

)( cos ) ( cocos sin sin

cn o

s

i s

)

)

x xy

yx

yA A

A

A A

0tF ( sin )

( s

sin cos co( s

s

c

in )

os ) c s )

in

( ox xyy

yx

A

A

A A A

Page 30: Chapter 9 Combined Stresses

0nF ( sin

( s

)( cos ) ( cocos sin sin

cn o

s

i s

)

)

x xy

yx

yA A

A

A A

0tF ( sin )

( s

sin cos co( s

s

c

in )

os ) c s )

in

( ox xyy

yx

A

A

A A A

22cos 2 cossin sinyx xy

2 2sin cosinco sicss os nx yyy xx

2 2sisin 2

No11 cos2

cos ,2

te: , cos sinc 2

,2

n2

osxy yx

cos2 sin 22 2

x y x yxy

sin 2 cos22

x yxy

Page 31: Chapter 9 Combined Stresses

cos2 sin 22 2

x y x yxy

sin 2 cos22

x yxy

A

cosA

sinA

x y

xy

xy

x y yx

yx

cos2 sin 22 2

x y x yx xy

sin 2 cos22

x yxy xy

cos2 sin 22 2

x y x yy xy

2

2

cos2( ) cos( 2 ) cos2

sin 2( ) sin( 2 ) sin 2

Page 32: Chapter 9 Combined Stresses

cos2 sin 22 2

x y x yxy

sin 2 cos22

x yxy

A

cosA

sinA

d2 sin 2 2 cos2 0

d 2x y

xy

Find maximum or minimum differentiating Eq.(9-5) w.r.t. and setting the derivative equal to zero

Eq.(9-5)

2tan 2 xy

x y

Eq.(9-6)

Find maximum or minimum differentiating Eq.(9-6) w.r.t. and setting the derivative equal to zero

d2 cos2 2 sin 2 0

d 2x y

xy

tan 2

2x y

sxy

Page 33: Chapter 9 Combined Stresses

A

cosA

sinA

2tan 2 xy

x y

cos2 sin 22 2

x y x yxy

sin 2 cos22

x yxy

Eq.(9-5)

Eq.(9-6)

At zero shearing stress

0 sin 2 cos22

x yxy

ซึ่'�งเป)นิมี*มีเด้�ยวก�บสิมีการ Eq.(9-7) ด้�งนิ��นิ ค่�า maximum or minimum จะเก�ด้ข'�นิเมี��อ = 0

2tan 2 xy

x y

1 1

2 2 2 2

sin 2 , cos2

( ) 2 ( )2 2

xy x y

x y x yxy xy

2 2

2 2 2 2

sin 2 , cos2

( ) 2 ( )2 2

xy y x

x y x yxy xy

Page 34: Chapter 9 Combined Stresses

1 2 2

2

( )2 2

x y x yxy

Maximum or minimum (Principal stresses)

2tan 2 xy

x y

1

2

2

1

Maximum or minimum

tan 22x y

sxy

2 2 1 1max ( )

2 2x y

xy

1

22

1

s

มี*มี และ s ตั�างก�นิ 45O

Page 35: Chapter 9 Combined Stresses

22000.04 kN/mm 40 MPa, 0, 0

50 100x y xy

P

A

O Ocos2( ) sin 2-40 -( )2 2

40x y x yxy

O O40 0 40 0cos2( ) 0 sin 2(-40 -40 ) 16.5 MPa

2 2

sin 2 cos22

x yxy

O O20 0sin 2( ) 0 c-40 -4os2( ) 9.85 MPa

20

Page 36: Chapter 9 Combined Stresses

4,000 psi

8,000 psi

6,000 psi

x

y

xy

6,000 psi 4,000 psi

8,000 psi

1 2 2 2 2

2

4000 ( 8000) 4000 ( 8000)( ) ( ) ( 6000)

2 2 2 2x y x y

xy

2 22000 (6000) ( 6000) 10485. 64, psi85.33

Page 37: Chapter 9 Combined Stresses

O Ocos2 30( ) sin 2( )2 2

30x y x yxy

O O304000 ( 8000) 4000 ( 8000)

cos2( ) ( 6000) sin 2( ) 6,19630 .15 psi2 2

sin 2 cos22

x yxy

O O4000 ( 8000)sin 2( ) ( 6000) cos2( )30 30 2196.15 psi

2

4,000 psi

8,000 psi 6,000 psi

6,196.15 psi

2,196.15 psi

o30

Page 38: Chapter 9 Combined Stresses

cos2 sin 22 2

x y x yxy

sin 2 cos22

x yxy

Eq.(9-5)

Eq.(9-6)

9-7 Variation of Stress at A Point: Mohr’s Circle

Otto Mohr (1882)

Eq.(a)2 + Eq.(b)2

Page 39: Chapter 9 Combined Stresses
Page 40: Chapter 9 Combined Stresses

Rule for Applying Mohr Circle to Combined Stresses

( , )x xy

( , )y xy

x-ax

is

y-ax

is

(0,0)

Page 41: Chapter 9 Combined Stresses

( , )x xy

( , )y xy

(0,0)

x-ax

is

y-ax

isC

Page 42: Chapter 9 Combined Stresses

(0,0)

( , )x xy

x-ax

is

y-ax

isC

( , )y xy

n-axis

R

( , )n n

n

n

Page 43: Chapter 9 Combined Stresses

(0,0)

( , )x xy

( , )y xy

n-axis

R

( , )n n

n

n

x-ax

is

y-ax

isC

Page 44: Chapter 9 Combined Stresses

( , )x xy

( , )y xy

x-ax

is

y-ax

is

C

( ,0) ( ,0)2

x yC

C

R

2 2( )2

x yxyR

1( ,0)2( ,0)

1

2

C R

C R

max( , )C

max R

1

1

sin 2 or

2tan 2 =

xy

xy

x y

R

o2 12 180 2

Page 45: Chapter 9 Combined Stresses

( , )x xy

( , )y xy

Page 46: Chapter 9 Combined Stresses

x-axis

y-axisC

R 1( ,0)2( ,0)

(4000, 6000)

( 8000,6000)

( ,0) ( ,0)2

8000 4000( ,0) ( 2000,0)

2

x yC

C

2 2 2 24000 8000( ) ( ) 6000 6000 2 psi

2 2x y

xyR

1 2, 2000 6000 2 4485.3, 10485.3 psiC R

1

6000sin 2

6000 2xy

R

O1 22.5

12

1

22.5

( 2000,0)

Page 47: Chapter 9 Combined Stresses

x-axis

y-axis

CR 1( ,0)2( ,0)

(4000, 6000)

( 8000,6000)

o

o

o

30

o

o o

30

cos(15 )

2000 6000 2 cos(15 ) 6196.15 psi

sin(15 ) 6000 2 sin(15 ) 2196.15 psi

C R

R

( 2000,0)

o o30 30( , )

o o120 120( , )

o

o

o

120

o

o o

120

cos(15 )

2000 6000 2 cos(15 ) 10196.15 psi

sin(15 ) 6000 2 sin(15 ) 2196.15 psi

C R

R

30

6196.15

2196.15

10196.15

2196.15

Page 48: Chapter 9 Combined Stresses
Page 49: Chapter 9 Combined Stresses
Page 50: Chapter 9 Combined Stresses

9-8 Absolute Maximum Shearing Stress

Mohr’s circle: Rotation around z-axis

x1

2

1 2

2zR

zR 12

1

2

Page 51: Chapter 9 Combined Stresses

1

2

2

2xR

Mohr’s circle: Rotation around x-axis

xR

Mohr’s circle: Rotation around y-axis

1

2yR

yR

Page 52: Chapter 9 Combined Stresses

1

2

x1

2

1 2

2zR

zR

1

2yR

yR

2

2xR

xR

Page 53: Chapter 9 Combined Stresses

Mohr’s circles for plane stress

zR

yR

xR

Absolute maximum shearing stress for plane stress is equal to the largest of the following three values

1

2

1 2 1 2, ,2 2 2z z xR R R

Page 54: Chapter 9 Combined Stresses

Mohr’s circles for general state of stress

zR

yR

xR

1

2

z 3

Absolute maximum shearing stress for general state of stress is equal to the largest of the following three values

1 2 1 3 2 3, ,2 2 2z z xR R R

Page 55: Chapter 9 Combined Stresses

1 2

2

1 5

201

025 ksi,

2

50 2015 ksi,

2

0 ksi,

2

2

2

2

Maximum in-plane shearing stress =

1 2 50 2015 ksi

2 2

Absolute maximum shearing stress is the largest of

Page 56: Chapter 9 Combined Stresses

50x

Maximum in-plane shearing stress =

1 2 50 2035 ksi

2 2

Absolute maximum shearing stress is the largest of

1 2

2

1

50 2035 ksi,

5025 ksi,

2 2

2010 ksi,

2

2

2

2

(ksi)

(ksi)

1=-50 2 =20zRyR

xR

Ex.

Page 57: Chapter 9 Combined Stresses

Hw17 the figure

( ส�าหร�บข้�อน��ให�ค�านวณ ค!า absolute maximum shearing

stress ด�วยโดยกำ�าหนดให� z = 0 )

210( 1) MPaz

110( 1) MPaz

310( 1) MPaz

ค่�า z1-z3 ได้�จากเลขประจ�าตั�วนิ�สิ�ตั ด้�งตั�อไปนิ�� 46xxxz1z2z3

Page 58: Chapter 9 Combined Stresses

9-9 Application of Mohr’s Circle to Combined Loadings

Combined Loadings (axial, torsional, flexural)

Combined stresses

Mohr’s Circlex-axis

( ),

y-axis

(0, )

12

max

Principal stresses and, Maximum shearing stress

1

2

2

1

1

22

1

s

maxmax

Design Criteria, ,allow allow

Page 59: Chapter 9 Combined Stresses

Stress Trajectories

1

2

max

Tc

J

12

1

Tc

J

Page 60: Chapter 9 Combined Stresses

Torsional Failure Modes

• A ductile specimen breaks along a plane of maximum shear

• A brittle specimen breaks along planes perpendicular to 1

• Ductile materials generally fail in shear. Brittle materials are weaker in tension than shear.

max

Tc

J

1

Tc

J

45o

Page 61: Chapter 9 Combined Stresses

max

Tc

J

1

Tc

J

Stress Trajectories for Torsion

Stress Trajectories: lines of principal stress direction but of variable stress intensity

Page 62: Chapter 9 Combined Stresses

Stress Trajectories for Beam

Mohr’s Circle x-axis

( ),

y-axis(0, )

12

max

My

I

VQ

Ib

Page 63: Chapter 9 Combined Stresses

7 26

(2500 )(0.05)8 10 N/m 80 MPa

1.5625 10McI

6

26

(0.05) 1.6 10 1.6T( ) N/m MPa

3.125 10Tc T TJ

2500 N.mM

100 mm

80 MPa

100 MPa

D

4 46 4(0.1)

1.5625 10 m64 64D

I

4 46 4(0.1)

3.125 10 m32 32D

J

Page 64: Chapter 9 Combined Stresses

Mohr’s Circle

1.68( )0, T

12

max80 MPa

1.6 MPa

T

1.60,( )T

(40,0)

C40 MPaC

2 21

1.640 40 ( )

TC R

2 2max

1.640 ( )

TR

80 MPa

100 MPa

2 (30)(87.81)P

16,551.8 wattP 87.81 N.mT

2 21.640 ( ) 60 MPa

T

2P f T

Page 65: Chapter 9 Combined Stresses

4 4

,4 2

r rI J

3

4M

McI r

3

2

Tc TI r

Page 66: Chapter 9 Combined Stresses

Mohr’s Circle

3 34 2,( )

rTr

M

12

max3

4M

r

3

2T

r

320,( )Tr

(40,0)

C

32 /( )C M r

2 2 2 2max 3 3 3

2 2 2( ) ( )

M TR M T

r r r

2 21 3

2C R M M T

r

Page 67: Chapter 9 Combined Stresses

10 ksi

If900 12

900 lb-ft 10.8 kips-in1000600 12

600 lb-ft 7.2 kips-in1000

T

M

2 2max 3

2 23 3

2

2 8.2637.2 10.8 ksi

M Tr

r r

2 21 3

2 23 3

2

2 12.8477.2 7.2 10.8 ksi

M M Tr

r r

max 16 ksi

max 10 ksi

16 ksi

0.938 in.r

0.929 in.r

Page 68: Chapter 9 Combined Stresses
Page 69: Chapter 9 Combined Stresses

2500 N

1250 N

3750 N

4000 N

2500 N

2875 N

3625 N

1500 N.m

750 N.m

750 N.m

2500 N

1250 N

3750 N

4000 N

2500 N

2875 N

3625 N

1500 N.m

750 N.m

750 N.m

Page 70: Chapter 9 Combined Stresses

750 N.m 750 N.m

1500 N.m

2500 N

4 m 2 m

750 N.m 750 N.m

4000 N 2500 N

1500 N.m

1 m 2 m 1 m 2 m3625 N 2875 N

3750 N1250 N

2500 N

1250 N

3750 N

4000 N

2500 N

2875 N

3625 N

1500 N.m

750 N.m

750 N.m

BMzD

3625 N.m

2875 N.m

TMD

1500 N.m

750 N.m

BMyD

5000 N.m3750 N.m

1250 N.m

Page 71: Chapter 9 Combined Stresses

2500 N

1250 N

3750 N

4000 N

2500 N

2875 N

3625 N

1500 N.m

750 N.m

750 N.m

BMzD

3625 N.m

2875 N.m

TMD

1500 N.m

750 N.m

BMyD

5000 N.m3750 N.m

1250 N.m

Cross section of solid shaft

and the resultant moment

zM

yM

2 2| | z yMM M

3834.5 N.m

4725.2 N.m 5000 N.m

|M|A B C D E

A

B

C

D

E

Page 72: Chapter 9 Combined Stresses

BMzD

3625 N.m

2875 N.m

TMD

1500 N.m

750 N.m

BMyD

5000 N.m3750 N.m

1250 N.m

3834.5 N.m

4725.2 N.m 5000 N.m

|M|A B C D E

2 2max 3

2M T

r

2 21 3

2M M T

r

From Prob. 951 and this problem.

70 MPa

120 MPa

Mohr’s Circle

x-axis

( ), y-axis

(0, )

12

max3

4 M

r

3

2Tr

2 2max 3

24725.2 1500 1000 mm

r

70 MPa

35.6 mmr

37.2 mmr

2 21 3

24725.2 4725.2 1500 1000

r

120 MPa

2 2max 3

25000 750 1000 mm

r

70 MPa

At section D

35.8 mmr

37.7 mmr

2 21 3

25000 5000 750 1000

r

120 MPa

37.7 mm≥r

At section C

Page 73: Chapter 9 Combined Stresses

state of stress on the element on the surface of vessel

Page 74: Chapter 9 Combined Stresses

1

2

67.5

67.5

R

R

Absolute maximum shearing stress

1 2

1

2

| |50 MPa

2| | 67.5

50 MPa2 2

| | 67.550 MPa

2 2

R

R

R

50 MPa

32.5 MPaR

2

2 2

2x y

xyR

2 2 2 222.5 32.5xyR 2 2 232.5 22.5 550xy

23.45 MPaxy

23.45 MPaTc

J

4 4

(455 mm)23.45 MPa

920 90032

T

301.8 kN.mT

Page 75: Chapter 9 Combined Stresses

20 mm

120 mm

36 420 120

=2.88 10 mm12

I

A

20 mm

40 mm

4 3

(20 40) 40

=3.2 10 mm

Q

N.A.

250 mm

40 kNP

30 kNV

7500 kN.mmM

6

40 7500 20

20 120 2.88 10 68.75 MPa

P My

A I

4

6

30 3.2 1016.67 MPa

2.88 10 20VQI b

Page 76: Chapter 9 Combined Stresses

250 mm

40 kNP

30 kNV

7500 kN.mmM

6

40 7500 20

20 120 2.88 10 68.75 MPa

P Mc

A I

4

6

30 3.2 1016.67 MPa

2.88 10 20VQI b

2 2

2 2

( )2

68.75( ) 16.67 38.20 MPa

2

x yxyR

1 2, 34.375 38.20

72.578, 3.825 MPa

C R

O

16.67sin 2

38.20

12.94

xy

R

12.94

72.58

72.58 3.83

3.83

( ,0) ( ,0)2

68.75 0( ,0) (34.375,0)

2

x yC

C

y-ax

is

Mohr’s Circle at point A

,1(6 68.75 .67)

12

max

160,( .67)

(34.375,0)C

x-ax

is

2

Page 77: Chapter 9 Combined Stresses

20 mm

120 mm

36 420 120

=2.88 10 mm12

I

B

20 mm

40 mm

4 3

(20 40) 40

=3.2 10 mm

Q

N.A.

300 mm

40 kNP

30 kNV

9000 kN.mmM

6

40 9000 ( 20)

20 120 2.88 10 45.83 MPa

P My

A I

4

6

30 3.2 1016.67 MPa

2.88 10 20VQI b

Page 78: Chapter 9 Combined Stresses

2 2

2 2

( )2

45.83( ) 16.67 28.34 MPa

2

x yxyR

300 mm

40 kNP

30 kNV

9000 kN.mmM

45.83 MPa

16.67 MPa

O16.67sin 2 2 36.03

28.34xy

R

Mohr’s Circle at point B

45.83,( )16.67

x-axis

160,( .67)C

y-axis

o60 o36.06

22.9( )15,0

48.81, 11 1( ).5

( ,0) ( ,0)2

45.83 0( ,0) ( 22.915,0)

2

x yC

C

0

o

3028.34sin (23.97 ) 11.51 MPa

0

o o

30

o

cos(60 36.03 )

22.915 28.34cos(23.97 )

48.81 MPa

C R

45.83 MPa

16.67 MPa

48.81 MPa

11.51 MPa

Page 79: Chapter 9 Combined Stresses

Hw18

1L

2L

3L

4L

D

1.2D

1.2D

L1= 4(1+z1) in. L2 = 4(1+z2) in.

L3= 4(1+z3) in. L4 = 4(1+z4) in.

D = 4(1+z5) in.

ค่�า z1-z5 ได้�จากเลขประจ�าตั�วนิ�สิ�ตั ด้�งตั�อไปนิ�� 46xz1z2z3z4z5

Page 80: Chapter 9 Combined Stresses

Hw19

L= 0.4(1+z1) m. P = 4(1+z2) kN

H= 40(1+z3) mm. W = 40(1+z4) mm

ค่�า z1-z4 ได้�จากเลขประจ�าตั�วนิ�สิ�ตั ด้�งตั�อไปนิ�� 46xxz1z2z3z4

Also find the maximum shearing stress at point A. Show your results on a complete sketch of a differential element.

LP

H

W

Page 81: Chapter 9 Combined Stresses
Page 82: Chapter 9 Combined Stresses

2(1 )

EG

Page 83: Chapter 9 Combined Stresses

http://www.kyowa-ei.co.jp/english/products.htm

Page 84: Chapter 9 Combined Stresses
Page 85: Chapter 9 Combined Stresses
Page 86: Chapter 9 Combined Stresses
Page 87: Chapter 9 Combined Stresses
Page 88: Chapter 9 Combined Stresses

Strain and deformation of line element

0, 0, 0x y xy 0, 0, 0x y xy 0, 0, 0x y xy

O

( )IIA

Aydy

O

A

( )IIIAxydy

Oxdx

( )IAA

O

A

A

0, 0, 0x y xy

O

A

dx

dy

ds

Page 89: Chapter 9 Combined Stresses

cos2 sin 22 2

x y x yxy

sin 2 cos22

x yxy

Eq.(9-5)

Eq.(9-6)

A

cosA

sinA

Page 90: Chapter 9 Combined Stresses
Page 91: Chapter 9 Combined Stresses

12

6300 2 10 radR

6300 10 rad2xy

6800 10 radx

6200 10 rady

6500 10 radC

(800,300)

(200, 300)

Page 92: Chapter 9 Combined Stresses
Page 93: Chapter 9 Combined Stresses

If we use the stress-strain relation directly the same answer can be obtained

Page 94: Chapter 9 Combined Stresses
Page 95: Chapter 9 Combined Stresses
Page 96: Chapter 9 Combined Stresses
Page 97: Chapter 9 Combined Stresses
Page 98: Chapter 9 Combined Stresses
Page 99: Chapter 9 Combined Stresses

จงพื่�สิ+จนิ, สิมีการ (9-19) (9-20) ด้�วยภาษาของตั�วเองHw20a

Hw20b

a= 100(1+z1) b= -100(1+z2)

c= 100(1+z3)

ค่�า z1-z3 ได้�จากเลขประจ�าตั�วนิ�สิ�ตั ด้�งตั�อไปนิ�� 46xxxz1z2z3

Hw21

Page 100: Chapter 9 Combined Stresses

ปร�มาณทาง Physics สามารถแทนด�วย Tensor

Order 0 = zero order Tensor (Scalar) – Magnitude (มีวล, ค่วามีห้นิาแนิ�นิ)

Order 1 = first order Tensor (Vector) – Magnitude, Direction (ค่วามีเร.ว, แรง)

Order 2 = second order Tensor – Magnitudes, Directions (stress, strain)

… Higher order ….

ปร�มาณทาง Physics ไม!เปลี่�ยนแปลี่งไปตุามระบบโคออร�ด�เนตุท�ใช้�ในกำารว�ด

mass

length

2 kg.= ?? lb.mass temperature

5 in. = 12.7 cm.length O O50 C = 122 Ftemperature

Page 101: Chapter 9 Combined Stresses

1

1

0

1 0.5 0.2

0.5 3 1

0.2 1 4

σ

x

y

z

xy

z

0.6

0.8

1

2 2manitude 1 1 2 2 2 2manitude 0.6 0.8 1 2

P

P

ปร�มาณทาง Physics ไม!เปลี่�ยนแปลี่งไปตุามระบบโคออร�ด�เนตุท�ใช้�ในกำารว�ด

แรง ย�งคงม�ข้นาดแลี่ะท�ศทางเท!าเด�ม ไม!ว!าจะแสดง component ข้องเวคเตุอร�ด�วยระบบโคออร�ด�เนตุอ�น

P

สถานะข้องหน!วยแรง (state of stress) ย�งคงม�ค�ณสมบ�ตุ�เหม�อนเด�ม ไม!ว!าจะแสดงด�วยระบบโคออร�ด�เนตุอ�น

Page 102: Chapter 9 Combined Stresses

O

A

A

0, 0, 0x y xy

O

B

A

0, 0, 0x y xy

Page 103: Chapter 9 Combined Stresses