chapter 9 complex functions masatsugu sei suzuki...

85
Chapter 9 Complex functions Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (Date: October 23, 2010) Baron Augustin-Louis Cauchy (21 August 1789 – 23 May 1857; French pronunciation was a French mathematician who was an early pioneer of analysis. He started the project of formulating and proving the theorems of infinitesimal calculus in a rigorous manner. He also gave several important theorems in complex analysis and initiated the study of permutation groups in abstract algebra. A profound mathematician, Cauchy exercised a great influence over his contemporaries and successors. His writings cover the entire range of mathematics and mathematical physics. http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy 9.1 Function of a complex iy x z . z is a complex number and both x and y are real. Suppose we write f(z) - that is a function of z - by this we mean that for each value of z - f(z) can take a complex value. f(z) is a function of two real variables x and y. ) , ( ) , ( ) ( y x iv y x u z f where ) , ( y x u and ) , ( y x v are real functions.

Upload: others

Post on 30-Mar-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Chapter 9 Complex functions

Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton

(Date: October 23, 2010)

Baron Augustin-Louis Cauchy (21 August 1789 – 23 May 1857; French pronunciation was a French mathematician who was an early pioneer of analysis. He started the project of formulating and proving the theorems of infinitesimal calculus in a rigorous manner. He also gave several important theorems in complex analysis and initiated the study of permutation groups in abstract algebra. A profound mathematician, Cauchy exercised a great influence over his contemporaries and successors. His writings cover the entire range of mathematics and mathematical physics.

http://en.wikipedia.org/wiki/Augustin-Louis_Cauchy 9.1 Function of a complex

iyxz . z is a complex number and both x and y are real. Suppose we write f(z) - that is a function of z - by this we mean that for each value of z - f(z) can take a complex value. f(z) is a function of two real variables x and y.

),(),()( yxivyxuzf where ),( yxu and ),( yxv are real functions.

Page 2: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

)3()3(

)()(3)(3

)()(

3223

3223

33

yyxixyx

iyiyxiyxx

iyxzzf

32

23

3

3

yyxv

xyxu

(a)

In our study of complex functions, we will consider those sorts of functions which turn up in physical problems. -i.e., our functions will have a “smoothness requirement”. -i.e., they are differentiable. (1) How do we define the derivative of a complex function? It seems like it should be

z

zfzzf

z

fz

)()(lim

0.

But z has two paths - i.e., yixz -thus 0z can assume in an infinite number of ways.

irez and 0z is obtained when 0r but can have any value.

((Example)) Say iyxzf 2)( and let us compute directly

Page 3: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

z

zfzzfz

)()(lim

0 for z = 0,

and two different values: (a) 0 , rz

1)2(}2){(

lim)()(

lim00

r

iyxiyrx

z

zfzzfrz

(b) 2/ , rirez i 2/ and 0x .

2)2()}(2{

lim)()(

lim00

ri

iyxryix

z

zfzzfrz

Thus for iyxzf 2)( , we do not get a unique result. We say that this )(zf is not differentiable.

For a function of z to be differentiable at 0zz , we need z

zfzzfz

)()(lim 00

0 to

exist (i.e. finite) and the result should be independent of any z . 9.2 Cauchy-Riemann conditions

Let’s see what restrictions are imposed on )(zf of it is to be differentiable.

),(),()( yxivyxuzf

yix

yxvyyxxviyxuyyxxu

z

zfzzf

dz

df

yx

z

)],(),([)],(),([lim

)()(lim

00

0

We get unique result no matter what is in irez . For = 0, 0x , 0y

x

vi

x

u

dz

df

(1)

For = /2, 0x , 0y

y

v

y

ui

dz

df

(2)

Page 4: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

And both results must be the same

y

v

x

u

, y

u

x

v

(Cauchy-Riemann condition)

or

yx

yx

uv

vu

The Cauchy-Riemann conditions are necessary for the existence of a derivative of )(zf .

If dzdf / exists, the Cauchy-Riemann conditions must hold. Conversely, if the Cauchy-Riemann conditions are satisfied and the partial derivatives of u and v are continuous, then dzdf / exists.

yy

vi

y

ux

x

vi

x

uf

x

yi

x

y

y

vi

y

u

x

vi

x

u

yix

yy

vi

y

ux

x

vi

x

u

z

f

1

Note that

x

vi

x

ui

x

v

x

ui

y

vi

y

u,

using the Cauchy-Riemann conditions. Then we have

x

vi

x

u

z

f

(1)

On the other hand

x

vi

x

u

x

ui

x

vi

y

vi

y

u

iyi

yy

vi

y

u

z

f

xy

)(1

00

(2)

Page 5: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

x

vi

x

u

z

f

yx

00

, (3)

Eqs. (1) ,(2), and (3) show that z

fz

0lim

is independent of the direction of approach in the

complex plane as long as the partial derivatives are continuous. ((Note)) Cauchy-Riemann conditions

y

v

x

u

, y

u

x

v

,

2

22

2

2

2

y

u

yx

v

xy

v

x

u

02

2

2

2

uyx

Laplace eq. for 2D

Similarly

2

22

2

2

2

y

v

yx

u

xy

u

x

v

02

2

2

2

vyx

Laplace eq. for 2D

Therefore, both u and v are harmonic function that satisfy the Laplace’s equation. Furthermore, comparing the 2D gradients

),(),(

),(),(

x

u

y

u

y

v

x

vv

x

v

y

v

y

u

x

uu

,

Then we have

0 vu .

Page 6: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

The lines of constant u (level curves) are orthogonal to the lines of constant v, anywhere that 0)(' zf . If u represents a potential function, then v represents the corresponding stream function (lines of force), or vice versa. ((Example))

xyiyxivuzzf 2)( 222 or

22 yxu , v = 2 xy. We make a ContourPlot of u = const, a StreamPlot of u , a ContourPlot of v = const and a StreamPlot of v by using the Mathematica.

x

y

O

u = x2 - y2

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Fig. A ContourPlot of u = x2 - y2 = constant and a StreamPlot of u .

Page 7: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

x

y

v = 2xy

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

Fig. A ContourPlot of v = 2xy = constant and a StreamPlot of v . 9.3 Example James J. KellyGraduate Mathematical Physics

Level curves of f(z)=z2=u+Âv are shown.

f x y3 Expand

x3 3 x2 y 3 x y2 y3

u SimplifyRef, x Reals, y Realsx3 3 x y2

v SimplifyImf, x Reals, y Reals3 x2 y y3

Page 8: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

ContourPlotEvaluateTableu k, k, 5, 5, 0.1,

x, 2, 2, y, 2, 2

-2 -1 0 1 2

-2

-1

0

1

2

ContourPlotEvaluateTablev k, k, 5, 5, 0.1,

x, 2, 2, y, 2, 2

-2 -1 0 1 2

-2

-1

0

1

2

Page 9: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

______________________________________________________________________ 9.4 Example

)()()('

iy

vi

iy

u

y

v

y

ui

x

vi

x

uzf

)3()3()()( 322333 yyxixyxiyxzzf

)3( 23 xyxu , )3( 32 yyxv

xyiyxx

vi

x

uzf 633)(' 22

or

xyiyxyxxyiy

v

y

uizf 63333)6()(' 2222

((Laplace equation))

xx

u6

2

2

, xy

u6

2

2

02

2

2

2

uyx

Can we write )(' zf as a derivative? The answer is yes.

ixyyx

ixyyxiyxzzf

6)(3

)2(3)(32)('

22

2222

9.5 Mathematica Cauchy-Riemann condition

Page 10: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Cauchy-Rieman conditions

SuperStar : expr_ : expr . Complexa_, b_ Complexa, bRCf_ : Moduleu, v, w, uy, vx, ux, vy, w ComplexExpandfx y;

u w w 2 Simplify; v w w 2 Simplify;

uy Du, y Simplify; vx Dv, x Simplify;

ux Du, x Simplify; vy Dv, y Simplify;

uxx Dux, x Simplify; uyy Duy, y Simplify;

vxx Dvx, x Simplify; vyy Dvy, y Simplify;

List"u", u, "v", v, "uy", uy, "vx", vx, "ux", ux,

"vy", vy, "uyvx", uy vx, "uxvy", ux vy,

"uxxuyy", uxx uyy, "vxxvyy", vxx vyy

f1 Functionz, z4Functionz, z4

RCf1 Simplify TableForm

u x4 6 x2 y2 y4

v 4 x y x2 y2uy 4 y 3 x2 y2vx 12 x2 y 4 y3

ux 4 x3 3 x y2vy 4 x3 3 x y2uyvx 0uxvy 0uxxuyy 0vxxvyy 0

f2 Functionz, z3Functionz, z3

RCf2 Simplify TableForm

u x3 3 x y2

v 3 x2 y y3

uy 6 x yvx 6 x y

ux 3 x2 y2vy 3 x2 y2uyvx 0uxvy 0uxxuyy 0vxxvyy 0

Page 11: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

f3 Functionz, z5Functionz, z5

RCf3 Simplify TableForm

u x5 10 x3 y2 5 x y4

v 5 x4 y 10 x2 y3 y5

uy 20 x y x2 y2vx 20 x y x2 y2ux 5 x4 6 x2 y2 y4vy 5 x4 6 x2 y2 y4uyvx 0uxvy 0uxxuyy 0vxxvyy 0

f4 Functionz, 1zFunctionz,

1

z

RCf4 Simplify TableForm

u xx2y2

v yx2y2

uy 2 x y

x2y22

vx 2 x y

x2y22

ux x2y2

x2y22

vy x2y2

x2y22

uyvx 0uxvy 0uxxuyy 0vxxvyy 0

Page 12: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

f5 Functionz, z zFunctionz, z z

RCf5 Simplify TableForm

u x2 y2

v 0uy 2 yvx 0ux 2 xvy 0uyvx 2 yuxvy 2 xuxxuyy 4vxxvyy 0

f6 Functionz, zFunctionz, z

RCf6 Simplify TableForm

u xv yuy 0vx 0ux 1vy 1uyvx 0uxvy 2uxxuyy 0vxxvyy 0

((Definition)) Analytic

If f(z) is differentiable at z = z0 and in some small region around z0, we say that f(z) is analytic at z = z0. If f(z) is analytic everywhere in the (finite) complex plane, we call it an entire function. ((Example)) Arfken 6-2-8

Using ),(),()( rii erRref , in which ),( rR and ),( r are differentiable real

functions of r and , show that the Cauchy-Riemann condition in polar coordinates become

Page 13: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

(a)

),(),(),( r

r

rR

r

rR, (b)

r

rrR

rR

r

),(),(

),(1

Hint: set up the derivative first with dz radial (r → r+dr) and then with dz tangential (r → + d). ((Mathematica))

Arfken 6 - 2 - 8(a) Derivative with dr while q fixed

Clear"Global`"

eq1 Rr r, rr, Rr, r,

r r r Simplify

r, Rr, rr, Rr r, r

We apply the L' Hospital theorem to calculate.

eq11 D r, Rr, rr, Rr r, , r . r 0

Dr, r . r 0

r, R1,0r, r, Rr, 1,0r,

(b) Derivative with dq while r fixed

eq2 Rr, r, Rr, r,

r r Simplify

r, Rr, r, Rr, 1 r

We apply the L' Hospital theorem to calculate.

eq22 D r, Rr, r, Rr, , . 0

D1 r, . 0 Expand

r, R0,1r,

r r, Rr, 0,1r,

r

eq3 r eq11 eq22 r, FullSimplify

R0,1r, r R1,0r, Rr, 0,1r, r 1,0r,

The real part and the imaginary part of eq3=0,

Rr, 0,1r, r R1,0r, =0

R0,1r, r Rr, 1,0r, =0

Page 14: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

________________________________________________________________________ 9.6 Cauchy’s integral theorem

Integral of a complex variable over a contour in the complex plane. We divide the contour 00 zz into n intervals by picking n-1 intermediate points (i) on the contour.

Consider the sum

n

jjjjn zzfS

11 ))(( ,

where j is a point on the curve between zj and zj-1. Now let n with 01 jj zz

for all j.

0

0

)())((lim1

1

z

z

n

jjjj

ndzzfzzf ,

(contour integral) (exists and is independent of the details of choosing points zj and j.)

22

11

22

11

22

11

2

1

)()())(()(yx

yx

yx

yx

yx

yx

z

z

udyvdxivdyudxidydxivudzzf .

________________________________________________________________________ 9.7 Cauchy’s integral theorem

If a function )(zf is analytic and its partial derivatives are continuous throughout some simple connected region R, for every closed path C in R, the line integral of )(zf around C is zero:

0)()( dzzfdzzfC

.

Page 15: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

C

R

________________________________________________________________________ (A) Stroke’s theorem proof

idydxdz ,

),(),()( yxivuxuzf ,

)()()( udyvdxivdyudxdzzf .

We consider the Stroke’s theorem

rAaA dd

with

za ˆdxdyd

S

xy

S

z

C

yx dxdyy

A

x

AdxdydyAdxA )()( A

Let uAx , vAy .

Page 16: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

First term

SC

dxdyy

u

x

vvdyudx )(

Let vAx , uAy .

Second term

SC

dxdyy

v

x

uudyvdx )(

Thus

0

)()()(

SS

dxdyy

v

x

uidxdy

x

v

y

u

udyvdxivdyudxdzzf

If )(zf is analytic, the Cauchy-Riemann condition is satisfied. (B) Cauchy-Goursat Proof

Suppose that )(zf is analytic and its partial derivatives are continuous throughout the region R.

0)( C

dzzf

Page 17: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

C

R

We subdivide the region inside the contour C into a network of small squares. Then

j CC j

dzzfdzzf )()( .

All integrals along interior lines cancel out. Now we consider

jC

dzzf )( ,

with the contour path Cj,

Page 18: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

C jz j

zj: an interior point of the j-th subregion. We construct the function

jzzj

jjj dz

df

zz

zfzfzz

)()(),( .

We may make for 0 ,

),( jj zz

where e is an arbitrary chosen small positive quantity.

)()()(),()( jzz

jjjj zzdz

dfzfzfzzzz

j

j jjj C

jzz

j

C

jjj

C

dzzzdz

dfzfdzzzzzdzzf )}()({),()()(

Since 0jC

dz and 0jC

zdz ,

0),()()( Adzzzzzdzzfjj C

jjj

C

.

If a function )(zf is analytic on and within a closed path C,

0)( C

dzzf .

((Note)) (1)

Page 19: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

001

11

1 )())((0

0

zzzzzzfdzn

jjj

n

jjjj

zz

z

n

.

(2)

)(2

1

)(2

1)(

2))((

20

20

1

21

2

11

1

11

0

0

zz

zzzzzz

zzfzdzn

jjj

n

jjj

jjn

jjjj

zz

z

n

.

Thus we have

0C

dz and 0C

zdz

____________________________________________________________ ((Multiply connected region))

We consider the multiply connected region in which )(zf is not defined (not analytic) in the interior R.

RA

BC

FE

D

We can construct a contour for which the theorem holds. The new contour never crosses the interior R. From the Cauchy’s theorem, we have

Page 20: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

0)()()()()( FADEFCDABC

dzzfdzzfdzzfdzzfdzzf .

Since

CDFA

dzzfdzzf )()( ,

then

FEDDEFABC

dzzfdzzfdzzf )()()( .

Therefore we obtain

FEDABC

dzzfdzzf )()( .

where the contours C1 (= A-B-C) and C2 (= F-E-D) are the counterclockwise. ________________________________________________________________________ 9.8 Cauchy’s integral formula

)(2)(

00

zifdzzz

zf Cauchy’s integral

z = z0

AB

C

FE

D

We consider a function )(zf that is analytic on a closed contour A-B-C and within the

interior by the path A-B-C. )/()( 0zzzf is not analytic at 0zz . We apply the

Page 21: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Cauchy’s integral theorem to the contour ABCDEF. In this region )/()( 0zzzf is

analytic.

0)()()()(

0000

FADEFCDABC

dzzz

zfdz

zz

zfdz

zz

zfdz

zz

zf,

or

0)()(

00

FEDABC

dzzz

zfdz

zz

zf.

Let irezz 0 , r is small and will eventually be made to approach zero.

We have

FED

i

FED

ii

i

FED

idrezfidrere

rezfdz

zz

zf

)()()(

00

0

.

Taking the limit as 0r , we obtain

)(2)()(

0

2

0

00

zifdzifdzzz

zf

ABC

(Residue)

f z0 is exterior to C1,

0)(

1 0

C

dzzz

zf.

We have therefore

exterior: 0

interior: )()(

2

1

0

00

01z

zzfdz

zz

zf

i C.

9.9 Derivatives Suppose that )(zf is analytic. By the definition of derivative, we have

Page 22: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

dzzz

zf

i

dzzzzzz

zfz

zi

zz

dzzf

zzz

dzzf

zi

z

zfzzfzf

z

z

z

20

000

0

00

00000

0

000

00

)(

)(

2

1

))((

)(

2

1lim

)(

)(

)(

2

1lim

)()(lim)(

0

0

0

Similarly,

dz

zz

zf

i

nzf

nn

10

0)(

)(

)(

2

!)(

220

01

01

000

100

10

0 )(

))(1(

)()(

)()(lim

0

k

k

kk

kk

z zz

zzk

zzzzzz

zzzzz

Thus

dzzz

zf

i

k

dzzfzz

zzk

i

k

z

zfzzf

k

k

kkk

z

20

220

0

0

0)(

00)(

0

)(

)(

2

)!1(

)()(

))(1(

2

!)()(lim

0

The requirement that )(zf be analytic not only gurantees a first derivative but also derivatives of all orderes as well. Goursat’s theorem

The existence of )(zf shows that )(zf is continuous.”

)(zf is analytic

)(zf is analytic

)(zf is analytic

Page 23: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

. . .

)()( zf n is analytic

All the derivatives of )(zf are analytic within R. Morera’s theorem

This is the converse of Cauchy’s integral theorem.

“If a function )(zf is continuous in a simple connected region R and 0)( C

dzzf for

every closed contour C within R, then )(zf is analytic throughout R. ________________________________________________________________________ 9.10 Taylor expansion and Laurent expansion (a) Taylor expansion

)(zf is analytic on and within C. 1zz is the nearest point for which )(zf is not

analytic. C is a circle centered at z0 with radius )( 010 zzzz .

C

z0

z1

z

z'

Cauchy integral formula

Page 24: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

nn

n

n Cn

n

n C

n

n

C

C

C

zzzfn

zz

zdzf

izz

zz

zdzz

zzzf

i

zz

zzzz

zdzf

i

zzzz

zdzf

i

zz

zdzf

izf

))((!

1

)(

)(

2

1)(

)(

)(

)()(

2

1

)(

)(1)(

)(

2

1

)()(

)(

2

1

)(

2

1)(

00)(

0

01

00

0 0

0

0

0

00

00

(1)

where z is a point on the contour C, and z is any point interior to C.

01

1

n

ntt

for 1t (even for complex number t).

C nn dz

zz

zf

i

nzf '

'

)'(

2

!)( 1

0

0)(

Taylor expansion: )(zf is analytic at 0zz .

(b) Laurentz expansion f(z) is not analytic in the regions denoted by green.

Page 25: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

z0A

BC

FE

D

R

r

z

z'

z'

According to the Cauchy theorem, we have

])()(

[2

1

])()()()(

[2

1)(

2

1)(

FEDABC

FADEFCDABCABCDEFA

zz

zdzf

zz

zdzf

i

zz

zdzf

zz

zdzf

zz

zdzf

zz

zdzf

izz

zdzf

izf

On the path (ABC), we have

|||'| 00 zzzz

On the path (FED), we have

|||'| 00 zzzz

Then

Page 26: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

00

01

00

0 0

0

0

0

00

00

)(

)(

)(

2

1)(

)(

)(

)()(

2

1

)(

)(1)(

)(

2

1

)()(

)(

2

1)(

2

1

n

nn

n Cn

n

n C

n

n

ABC

ABCABC

zza

zz

zdzf

izz

zz

zdzz

zzzf

i

zz

zzzz

zdzf

i

zzzz

zdzf

izz

zdzf

i

and

1

100

01

0

0

0 0

0

0

0

00

00

)')(()(2

1

)(

)')((

2

1

)(

)(

)'()(

2

1

)(

)'(1)(

)(

2

1

)()(

)(

2

1)(

2

1

n FED

nn

n FEDn

n

n FED

n

n

FED

FEDFED

zdzzzfzzi

zz

zdzzzf

i

zz

zdzz

zzzf

i

zz

zzzz

zdzf

i

zzzz

zdzf

izz

zdzf

i

These two series are combined into one series (Laurent series)

1

00

0 )()()(n

nn

n

nn zzbzzazf ,

with

ABC nn dzzz

zf

ia '

'

)'(

2

11

0.

Page 27: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

FED

nn zdzzzf

ib 1

0 )')((2

1

_____________________________________________________________________ (1) Analytic at z = z0

If f(z) is analytic in the vicinity of z0, we can perform a Taylor series expansion.

0

0 )()(n

nn zzazf .

(2) Isolated singular point at z = z0

We say we have an isolated singular point at z = z0.

.......)()(

02

0

2

0

1

00

n

n

n

nn

zz

b

zz

b

zz

bzzazf

(i) As long as one of the b’s are nonzero, z0 is a singular point. (ii) If bn does not vanish, but all bj with j>n vanish, then f(z) has a pole of order n. (iii) If b1 ≠0 and all other bj’s = 0 the pole is a single pole. (iv) Isolated essential singularity (all the bj’s) normally does not occur in physics. 9.11 Examples of Taylor and Lorentz expansions (Mathematica) 9.11.1 Example-1

Page 28: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Clear"Global`"SeriesExpz, z, 0, 10

1 z z2

2

z3

6

z4

24

z5

120

z6

720

z7

5040

z8

40 320

z9

362 880

z10

3 628 800 Oz11

SeriesCosz, z, 0, 10

1 z2

2

z4

24

z6

720

z8

40 320

z10

3 628 800 Oz11

SeriesSinz, z, 0, 10

z z3

6

z5

120

z7

5040

z9

362 880 Oz11

SeriesCotz, z, 0, 10 Normal

1

z

z

3

z3

45

2 z5

945

z7

4725

2 z9

93 555

SeriesTanz, z, 0, 10 Normal

z z3

3

2 z5

15

17 z7

315

62 z9

2835

Page 29: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

SeriesCscz2 , z, 0, 10 Normal

1

3

1

z2

z2

15

2 z4

189

z6

675

2 z8

10 395

1382 z10

58 046 625

SeriesSecz2 , z, 0, 10 Normal

1 z2 2 z4

3

17 z6

45

62 z8

315

1382 z10

14 175

Series 1

Sinz, z, 0, 10 Normal

1

z

z

6

7 z3

360

31 z5

15 120

127 z7

604 800

73 z9

3 421 440

Series z

Sinz, z, 0, 10 Normal

1 z2

6

7 z4

360

31 z6

15 120

127 z8

604 800

73 z10

3 421 440

Seriesz3 Sinz, z, 0, 10 Normal

1

6

1

z2

z2

120

z4

5040

z6

362 880

z8

39 916 800

z10

6 227 020 800

Page 30: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Series 1

Cosz, z, 0, 10 Normal

1 z2

2

5 z4

24

61 z6

720

277 z8

8064

50 521 z10

3 628 800

SeriesCscz2 Log1 z, z, 0, 10 Normal

1

2

1

z

2 z

3

5 z2

12

17 z3

45

17 z4

60

229 z5

945

1531 z6

7560

502 z7

2835

5903 z8

37 800

21 872 z9

155 925

158 707 z10

1 247 400

Series z

Sinz Tanz, z, 0, 10 Normal

1

2

2

z2

11 z2

120

157 z4

15 120

641 z6

604 800

1417 z8

13 305 600

1 402 631 z10

130 767 436 800

SeriesSinhz, z, 0, 10

z z3

6

z5

120

z7

5040

z9

362 880 Oz11

SeriesCoshz, z, 0, 10

1 z2

2

z4

24

z6

720

z8

40 320

z10

3 628 800 Oz11

SeriesCsczz

, z, 0, 10

1

z2

1

6

7 z2

360

31 z4

15 120

127 z6

604 800

73 z8

3 421 440

1 414 477 z10

653 837 184 000 Oz11

SeriesSeczz

, z, 0, 10

1

z

z

2

5 z3

24

61 z5

720

277 z7

8064

50 521 z9

3 628 800 Oz11

Page 31: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

9.11.2 Example-2

Clear"Global`"

Series 1

1 z, z, 0, 10

1 z z2 z3 z4 z5 z6 z7 z8 z9 z10 Oz11

SeriesLog1 z, z, 0, 10

z z2

2

z3

3

z4

4

z5

5

z6

6

z7

7

z8

8

z9

9

z10

10 Oz11

Series 1

z z 23, z, 2, 10 Normal

1

16

1

2 2 z3

1

4 2 z2

1

8 2 z 1

322 z

1

642 z2

1

1282 z3

1

2562 z4

1

5122 z5

2 z6

10242 z7

20482 z8

40962 z9

81922 z10

16 384

Page 32: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

SeriesExp zz2 12

, z, , 10 Normal

9

16

1

4 z2

2 z

23 z48

67 z2

192

37 z3

160

1663 z4

11 520

6983 z5

80 640

5431 z6

107 520

5237 z7

181 440

942 659 z8

58 060 800

213 359 z9

23 654 400

38 020 573 z10

7 664 025 600

Series 1

z4 a4, z,

1

2a, 5 Normal

PowerExpand

3

8 a4

14

4

2 a3 1 a2

z 5

16 5

16 1 a

2 z

2 a5

5 1 a2

z2

32 a6 1

64

64 1 a

2 z3

2 a7

7 1 a2

z4

128 a8 15

256 15

256 1 a

2 z5

2 a9

Page 33: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Series1 z , z, 0, 5 Normal Simplify

1

1212 12 z 6 6 z2 6 2 z3 5 z4 4 z5

Series z4

z2 c24, z, c, 5 Normal

3

256 c4

1

16 c z4

1

8 c c z3

1

32 c2 c z2

1

32 c3 c z c z2

256 c6

c z3

256 c7

11 c z4

4096 c8

3 c z5

2048 c9

Series z4

z2 c24, z, c, 5 Normal

3

256 c4

1

16 c z4

1

8 c c z3

1

32 c2 c z2

1

32 c3 c z c z2

256 c6c z3

256 c7

11 c z4

4096 c8

3 c z5

2048 c9

SeriesCot zz a2

, z, a, 1 Normal

2 Cota Cota a z2

2 Cota 3 Cota 2

a z

a z 3

3

4

33 Cota 2 3 Cota 4

9.11.3 Example-3

Page 34: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Clear"Global`"

Series z

Expz 1, z, 0, 6

1 z

2

z2

12

z4

720

z6

30 240 Oz7

Series 1

z 1, z, 0, 10

1

z

1

2

z

12

z3

720

z5

30 240

z7

1 209 600

z9

47 900 160 Oz11

Series1z, z, , 101

1

z

1

2 z2

1

6 z3

1

24 z4

1

120 z5

1

720 z6

1

5040 z7

1

40 320 z8

1

362 880 z9

1

3 628 800 z10 O1

z11

________________________________________________________________________ 9.12 Calculation of residue

....)(Re)(Re)([Re2

......)()()()(

321

321

zzszzszzsi

dzzfdzzfdzzfdzzfCCCC

......)()( 2

0

2

0

1010

zz

b

zz

bzzaazf

Using Cauchy’s theorem,

Page 35: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

CC

dzzz

b

zz

bdzzzaadzzf ..][...])([)( 2

0

2

0

1010

or

dzzz

b

zz

bdzzf

C

..][)( 20

2

0

1

We now calculate

dzzzI n0

irezz 0

ieidrdz )(

1,1

2

0

)1(12

0

2)( nnninini irdeireidrreI

Then we have

)(Re22)()( 010

1 zzsiibdzzz

bdzzf

C

The problem is reduced to finding the value of b1. (i) f(z) has a simple pole.

)(Re)()(lim

...)()()()(

...)()(

010

12

01000

0

1010

0

zzsbzfzz

bzzazzazfzz

zz

bzzaazf

zz

(ii) A pole of order n

Page 36: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

10

1

01

110

1

202

10101000

02

0

2

0

1010

)]()[(

)!1(

1lim][Re

)!1()()(

......])([)()()(

......)()(

0

n

nn

zz

n

nn

nnnnn

nn

dz

zfzzd

nzzsb

nbdz

zfzzd

bzzbzzbzzaazzzfzz

zz

b

zz

b

zz

bzzaazf

((Note)) Mathematica Residue[expr, {x, x0}];

to find the residue of expression when x equals x0.

The residue is defined as the coefficient of 1/(z-z0) in the Laurent expansion of expr.

NResidue[expr, {x, x0}];

to find numerically the residue of expression when x equals x0. Series[f, {x, x0, n}];

to generate a power series expansion for f about the point x=x0 to order (x - x0)n.

________________________________________________________________________ 9.13 Mathematica 9.13.1 Example-1 (a) Find the poles of

1

1)(

8

zzf

Page 37: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Clear"Global`";

hz_ 1

1 z8;

eq1 NSolveDenominatorhz 0, z;

list1 TableRez . eq1i, Imz . eq1i,

i, Lengtheq11., 0, 0.707107, 0.707107,0.707107, 0.707107, 0., 1., 0., 1.,0.707107, 0.707107, 0.707107, 0.707107, 1., 0

ListPlotlist1, PlotStyle Red, Thick, PointSize0.02,

AspectRatio 1, Background LightGray,

AxesLabel "x", "y"

-1.0 -0.5 0.5 1.0x

-1.0

-0.5

0.5

1.0

y

(b) Find the poles of

1

1)( 8

zzf

Page 38: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Clear"Global`";

hz_ 1

1 z8;

eq1 NSolveDenominatorhz 0, z;

list1 TableRez . eq1i, Imz . eq1i,

i, Lengtheq10.92388, 0.382683, 0.92388, 0.382683,

0.382683, 0.92388, 0.382683, 0.92388,

0.382683, 0.92388, 0.382683, 0.92388,0.92388, 0.382683, 0.92388, 0.382683

ListPlotlist1, PlotStyle Blue, Thick, PointSize0.02,

AspectRatio 1, Background LightGray,

AxesLabel "x", "y"

-0.5 0.5x

-0.5

0.5

y

_______________________________________________________________________ 9.13.2 Example-2 ((Mathematica))

The residue is the coefficient of the term z- z0-1 in the Laurent expansion of a function about the point z0. (For a very detailed survey of applications of residues, In Mathematica, we get the residue of a function at a given point via Residue. Find the residue of the function

Page 39: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

1

11)(

zn ezzf

at z = 0. (a) n = 4. (b) n = 0, 1, ..., 10.

Residue[expr, {x, x0}] the residue of expr when x equals x0

Clear"Global`";

Fz_, n_ :1

zn

1

z 1;

SeriesFz, 4, z, 0, 10 Normal

1

z5

1

2 z4

1

12 z3

1

720 z

z

30 240

z3

1 209 600

z5

47 900 160

691 z7

1 307 674 368 000

z9

74 724 249 600

ResidueFz, 4, z, 0

1

720

Tablen, ResidueFz, n, z, 0, n, 0, 10 TableForm

0 1

1 12

2 112

3 0

4 1720

5 0

6 130 240

7 0

8 11 209 600

9 0

10 147 900 160

________________________________________________________________________ 9.13.3 Example-3

Find the residues of the function given by

Page 40: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

z

z

e

ezzf

2

2

1)(

Page 41: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Clear"Global`";

f1 z2 z

1 2 z;

eq1 SolveDenominatorf1 0, z;

z1 z . eq11

2

z2 z . eq12

2

Seriesf1, z, z1, 3 Normal

2

2

8 2

z 1

48 24 2

2 z

1

12

2 z2

240 7 2

2 z3

2880

Seriesf1, z, z2, 3 Normal

2

2

8 2

z 1

48 24 2

2 z

1

12

2 z2

240 7 2

2 z3

2880

Residuef1, z, z1

2

8

Residuef1, z, z2 2

8

Page 42: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

9.13.4 Examples 4

Find the residue of fz Cot zz2 at z0 0.

Clear"Global`";

fz_ Cot z

z2;

Seriesfz, z, 0, 101

z3

2

3 z4 z

45

2 6 z3

9458 z5

4725

2 10 z7

93 555

1382 12 z9

638 512 875 Oz11

Residuefz, z, 0

2

3 9.13.5 Example 5

Page 43: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Show that C 2 zz2 2

z 4 , where C is the circle C : z 2 taken with positive

orientation.

fz_ 2 z

2 z2;

eq1 SolveDenominatorfz 0, zz 2 , z 2

data1 TableRez, Imz . eq1, i, 1, Lengtheq10, 2 , 0, 2 , 0, 2 , 0, 2

f1 ListPlotdata1, PlotStyle PointSize0.02, Red,

AspectRatio Automatic;

g1 GraphicsBlue, Thick, Circle0, 0, 2;

Showf1, g1

-2 -1 1 2

-2

-1

1

2

r1 Residuefz, z, 2 1

r2 Residuefz, z, 2 1

sol 2 r1 2 r2

4

Page 44: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

9.13.6 Example 6

Use residues to integrate C 1z4 z3 2 z2 z around the circle C : z 3.

fz_ 1

2 z2 z3 z4;

eq1 SolveDenominatorfz 0, zz 2, z 0, z 0, z 1

Lengtheq14

data1 TableRez, Imz . eq1, i, 1, Lengtheq12, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0,2, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 0, 1, 0

f1 ListPlotdata1, PlotStyle PointSize0.04, Red,

AspectRatio Automatic; g1 GraphicsBlue, Thick, Circle0, 0, 3;

Showf1, g1

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

Tablez . eq1i, ResiduefZ, Z, z . eq1i, i, 1, Lengtheq12,

1

12, 0,

1

4, 0,

1

4, 1,

1

3

Sum2 ResiduefZ, Z, z . eq2i, i, 1, Lengtheq20

________________________________________________________________________9.14 Calculus of residue

Page 45: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

9.4.1 Jordan’s lemma Jordan's lemma is a result frequently used in conjunction with the residue theorem to

evaluate contour integrals and improper integrals. The theorem is named after the French mathematician Camille Jordan.

We want to calculate the integral given by

dxexf iax)( ,

where a>0 or a<0, and

0)(lim||

zfz

.

In order to do that, we consider the path integral around the contour C1 for a>0 (the upper half plane) and the contour C2 for a<0 (the lower half plane) in the complex plane.

x

y

C1

O

a>0

G1

-¶ ¶

(i) a>0

RR

iax

C

iaz Idxexfdzezf lim)()(1

If the integral reduces to zero in the upper semi-circle (1, R→∞)

0)(limlim1

dzzfeI iaz

RR

R.

Note: iaaiiaiaz )( . When >0, the integral on the large semi-circle becomes zero. Then we have

Page 46: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

planehalfupperC

iaziax siduesidzezfdxexf Re2)()(1

where f(z) has poles inside the contour C1. (ii) a<0

x

y

C1

O

a<0

G2

-¶ ¶

planehalflolwerC

iazR

R

iax siduesidzezfIdxexf Re2)(lim)(2

when

0)(limlim2

dzzfeI iaz

RR

R

((Note))

iaaiiaiaz )( . When <0, the integral on the large semi-circle becomes zero. Then we have

planehalflolwerC

iaziax siduesidzezfdxexf Re2)()(2

In summary, For a>0,

Page 47: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

planehalfupperC

iaziax siduesidzezfdxexf Re2)()(1

.

For a<0,

planehalflowerC

iaziax siduesidzezfdxexf Re2)()(2

.

(2) Integral along the contour of half-circle

Suppose that f(z) has a simple pole on the real axis. We now consider the contour integral along the half circle centered at the pole (z = z0),

1

)(C

dzzf

For simplicity we suppose that f(z) has a single pole at z = z0.

)()()(0

1

0

1 zgzz

bzg

zz

azf

,

where a-1 = b1, g(z) is analytic.

Now we have the integral around the contour C1 (upper-half circle with the radius located at the point z = z0)

1

0

1

0

10

1

0

1

1

)]([)(

1

11

ibidbidee

bdzzz

b

dzzgzz

bdzzfI

ii

C

CC

.

z0

C1

e

or

)(Re)()( 0

1

zzsidzzfIC

[clock-wise (CW) rotation]

Page 48: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

where ).(Re 01 zzsa

Next we have the integral around the contour C2 (lower-half circle with the radius located at the point z = z0)

1

2

1

2

10

1

0

1

1

)]([)(

2

22

ibidbidee

bdzzz

b

dzzgzz

bdzzfI

ii

C

CC

.

z0

C2

e

or

)(Re)( 0

2

zzsidzzfIC

[counter clock-wise(CCW) rotation]

____________________________________________________________________ 9.15 Calculation of residue Residue theorem

n

nn zzazf )()( 0

,

C

nn dzzzaI )( 0 ,

irezz 0 ,

Page 49: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

r

z0

0,11

2

0

)1(12

0

2)( n

nn

ninn

inin riaderiaidrereaI

.

Then we have

][Re)(2

101 zzsadzzf

i

.

A set of isolated singularities;

C1

C2

C3

C4

C

z1

z2

z3

z4

0...)()()()(321

CCCC

dzzfdzzfdzzfdzzf .

Page 50: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Here C is a path with CCW and C1, C2, … are paths with CW.

...])(Re)(Re)([Re2

)()()()(

321

321

zszszsi

dzzfdzzfdzzfdzzfCCCC

((Note))

nn

n

nn

zz

b

zz

b

zz

b

zz

bzzazf

03

0

32

0

2

0

1

00 ...)()(

(a) As long as one of the b’s are non zero, z0 is a singular point. (b) If bn does not vanish, but all bj with j>n does vanish, then f(z) has a pole of order n. (c) If b1≠0, and all other bj’s = 0, then the pole is a simple pole. (d) If f(z) has a pole of order n, 1/f(z) has a zero of order n. (e) A function that is analytic in a region except for isolated singular points is (f) Isolated essential singularity (all the bj’s) normally does not occur in physics. _____________________________________________________________________ 9.16 Mathematica 9.16.1 Application I

dx

bx

eI

iax

22 (b>0).

22

1)(

bzzf

Page 51: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

x

y

C1

C2

G

b-b

Note that

01

|)(| 2 R

zf ( R ).

For a>0,

1

)(C

iaz zfdzeI

For a<0,

2

)(C

iaz zfdzeI

since iaz = ia ( + i ) = ia - a). We need to choose the path (upper half plane) for a>0 and the path (lower half plane) for a<0 (Jordan's lemma). There are poles on the real axis at z = ± b. We must specify how to go around. We consider the four cases (Cases I - IV). ________________________________________________________________ ((Case I))

Page 52: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

x

y

C1

C2

G

b-b

For a>0 (upper half-plane),

)(Re2

)(Re)(Re221

22

bzsi

bzsibzsidxbx

ePdz

bz

e iax

C

iaz

The second term of the right-hand side clock-wise The third term of the right hand side counter clock-wise Then we have

)sin()](Re)([Re22

abb

bzsbzsidxbx

eP

iax

For a<0 (lower half-plane),

)(Re2

)(Re)(Re222

22

bzsi

bzsibzsidxbx

ePdz

bz

e iax

C

iaz

or

Page 53: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

)sin()](Re)([Re22

abb

bzsbzsidxbx

eP

iax

____________________________________________________________________ ((Case II))

x

y

C1

C2

G

b-b

For a>0 (upper half-plane)

)(Re2

)(Re)(Re221

22

bzsi

bzsibzsidxbx

ePdz

bz

e iax

C

iaz

The second term of the right-hand side counter clock-wise The third term of the right hand side clock-wise Then we have

)sin()](Re)([Re22

abb

bzsbzsidxbx

eP

iax

Page 54: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

For a<0 (lower half-plane)

)(Re2

)(Re)(Re222

22

bzsi

bzsibzsidxbx

ePdz

bz

e iax

C

iaz

or

)sin()](Re)([Re22

abb

bzsbzsidxbx

eP

iax

________________________________________________________________ ((Case-III))

x

y

C1

C2

G

b-b

(a) For a>0 (upper half-plane), we have

)(Re2)(Re2

)(Re)(Re221

22

bzsibzsi

bzsibzsidxbx

ePdz

bz

e iax

C

iaz

since there are two poles inside the contour. Then we have

Page 55: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

)sin(

)](Re)([Re22

abb

bzsbzsidxbx

eP

iax

(for a>0).

(b) For a<0 (lower half-plane), we have

0

)(Re)(Re222

22

bzsibzsidxbx

ePdz

bz

e iax

C

iaz

since there is no pole in the contour.

)sin(

)](Re)([Re22

abb

bzsbzsidxbx

eP

iax

((Case-IV))

x

y

C1

C2

G

b-b

For a>0 (upper half-plane)

Page 56: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

)(Re2

)(Re)(Re221

22

bzsi

bzsibzsidxbx

ePdz

bz

e iax

C

iaz

or

)sin(

)](Re)([Re22

abb

bzsbzsidxbx

eP

iax

(a>0)

For a<0 (lower half plane)

)(Re2

)(Re)(Re2231

22

bzsi

bzsibzsidxbx

ePdz

bz

e iax

CC

iaz

or

)sin(

)](Re)([Re22

abb

bzsbzsidxbx

eP

iax

(a<0)

9.16.2 Application II

Page 57: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

x

y

C1

C2

G

ib

-ib

a>0

a<0

dx

bx

edx

bx

axdx

bx

axI

iax

22220

22 2

1)cos(

2

1)cos( (b>0).

The last equality holds because of

0)sin(22

dxbx

ax (the integrand is an odd function of x)

So we calculate

dx

bx

eI

iax

22.

For a>0 (upper-half plane),

b

eibzsidx

bx

edz

bz

edz

bz

e abiax

C

iaz

C

iaz

)(Re2221

221

22

since there is one single pole at z = ib and the contour integral around the path C1 is zero (Jordan's lemma). For a<0 (lower half-plane),

b

eibzsidx

bx

edz

bz

edz

bz

e abiax

C

iaz

C

iaz

)(Re2222

222

22

Page 58: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

since there is one single pole at z = -ib and the contour integral around the path C2 is zero (Jordan's lemma). 9.16.3 Application III

We consider the derivation of familiar integral

2

sin

0

dxx

x

((Case-I))

It can be found by integrating

dzz

eI

CC

iz

21

around the contour of Fig. The integrand has a simple pole at z = 0. This pole is avoided by placing a semicircular path C2 (the radius r →0) around it. There are no poles inside the contour. So I = 0.

x

y

C1

C2

O

G G

02121

C

iziz

C

iz

CC

iz

dzz

edz

z

edz

z

edz

z

eI

The first term is equal to zero (the radius of C1 R→∞, Jordan's lemma). Then we have

0)0(Re

zsidxx

eP

ix

or

Page 59: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

idxx

xidx

x

eP

ix

0

sin2

or

2

sin

0

dxx

x

((Case-II))

For the calculation of the integral, we can choose the different contour shown in Fig.

x

y

C1

C2

G G

)0(Re22121

zsidzz

edz

z

edz

z

edz

z

eI

C

iziz

C

iz

CC

iz

The integrand has a simple pole at z = 0 in this contour. Using the Jordan's lemma for the contour integral around the contour C1, we have

izsidxx

eP

ix

)0(Re .

9.16.4 Application IV Unit step function

dxx

esI

isx

)(

Page 60: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

x

y

C1

C2

C3

C4

G G

For s>0,

03131

C

iszisx

C

isz

CC

isz

dzz

edx

x

ePdz

z

edz

z

e

since there is no pole inside the contour. From the Jordan's lemma, the first term (the contour integral around C1) is equal to zero. Then we have

izsidzz

edx

x

eP

C

iszisx

)0(Re)(3

For s<0

04242

C

iszisx

C

isz

CC

isz

dzz

edx

x

ePdz

z

edz

z

e

since there is no pole inside the contour. From the Jordan's lemma, the first term (the contour integral around C2) is equal to zero. Then we have

izsidzz

edx

x

eP

C

iszisx

)0(Re)(4

In summary, we obtain

Page 61: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

)0(

)0()(

s

s

i

isI

For s = 0,

01

dxx

We consider

)0(

)0(

,0

,1

2

1

2

1)(

s

sdx

x

eP

isu

isx

and

u(s) = 1/2 at s = 0.

-1 1 2 3s

0.2

0.4

0.6

0.8

1.0

us

9.16.5 The i prescription

We derive the formula

)(11

xix

Pix

where (0) is a positive infinitesimally small quantity. (1) Case-I

dxix

xfI

)(lim

01

Page 62: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

x

y

C1

G1 G2z=ie

Since the only singularity near the real axis is z = i, we make the following deformation of the contour without changing the value of I. The contour runs along the real axis (the path ) and goes around counterclockwise, below the origin in a semicircle (C1), and resumes along the real axis (the path ).

)0()(

)0(Re)(

)()()(

211

1

ifdxx

xfP

zsidxx

xfP

dxx

xfdz

z

zfdx

x

xfI

C

or

)(11

xix

Pix

.

(2) Case-II

dxix

xfI

)(lim

02

x

y

C2G1 G2

z=-ie

Page 63: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Since the only singularity near the real axis is z = -i, we make the following deformation of the contour without changing the value of I2 The contour runs along the real axis (the path 1) and goes around clockwise, above the origin in a semicircle (C2), and resumes along the real axis (the path 2).

)0()(

)0(Re)(

)()()(

221

2

ifdxx

xfP

zsidxx

xfP

dxx

xfdz

z

zfdx

x

xfI

C

or

)(11

xix

Pix

____________________________________________________________________ 9.16.7 Fresnel integral

22

1)sin()cos(

0

2

0

2

dxxdxx

O A

B

0222

BO

z

AB

z

OA

z dzedzedze

OA

Page 64: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

20

1

22

dxedzeI x

OA

z

BO

OB

z

BO

z dzedzeI22

2

4/irez , dredz i 4/ , 22/22 irerz i .

0

22

0

4/2 )]sin()cos([

2

)1(2

drriri

dreeI iri

AB

iz Re , iddz iRe , 222 ieRz .

4/

0

223 Re)exp(

2

ideRdzeI ii

AB

z

2/

0

22/

0

24/

0

23 )]sin(exp[

2)]cos(exp[

2)]2cos(exp[

dRR

dRR

RdRI

or

04

)1()]sin(exp[

2

22/

0

23

R

edR

RI

R

as R→∞. Note that we use the inequality

2sin for 0≤≤/2.

Page 65: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

p8

p4

3 p8

p2

f

-0.20

-0.15

-0.10

-0.05

f f

f f= 2

pf - Sinf

Since 021 II , we have

0

22 )]sin()[cos(2

1

2drrir

i

or

0

22 )]sin()[cos()1(22

1drriri

or

22

1)sin()cos(

0

2

0

2

drrdrr

9.16.8 Arfken 7-1-15 Use the large square contour with R0 to prove that

-R R-r r

iR

x

y

C1

C2

C3

G

Page 66: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

dxx

xsin

((Solution))

dzz

edz

z

edz

z

edz

z

edx

x

edx

x

edz

z

e iz

C

iz

C

iz

C

izR

r

ixr

R

ixiz

321

0

0)1(1

00

)(

1

RR yR iyRi

C

iz

eRR

edy

iyR

eidydz

z

e.

021)(

2

RR

R

RR

R

iRxi

C

iz

edxeRiRx

edxdz

z

e

0)1(11

0

0 )(

3

RR

y

R

iyRi

C

iz

eR

dyeRiyR

eidydz

z

e

Then

321

0C

iz

C

iz

C

iz

dzz

edz

z

edz

z

e.

Since

izsidzz

eiz

)0(Re

we have

idxx

eP

ix

or

dxx

xP

sin

9.17 Cut line for the multivalued function

Page 67: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Single valued function: a function which is mostly analytical with some singularities We can generalize discussion to multi-valued functions using a geometrical construction known as Riemann surfaces. We consider logarithmic functions

zizz arglnln

Argz is uniquely defined only up to multiple of 2.

nArgz 2 (i) To see what this means, we consider a closed path C enclosing z = 0. Start at z =

z0 and follow the value of lnz as it changes continuously as we go along the contour C. Whatever we had for argz0 initially we find that argz0 has increased by 2 when we return to z0.

izz initialfinal 2)(ln)(ln 00 .

((Branch point))

A point in complex plane that has this property, i.e.,

initialfinal zfzf ))()( 00

for any loop around it, is called a “branch point,” of the function.

lnz has a branch point at z = 0. (ii) Let z = 1/z’, then we have

Page 68: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

'arg'

1ln'lnln zi

zzz

It is easy to see that lnz’ has a branch point at z’ = 0 and z = ∞. In summary, lnz has two branch points at |z| = 0 and |z| = ∞. (iii) If we draw line or curve joining the two branch points, this line is referred to as a

branch cut. So the complex plane is cut from branch point to another. ((Example))

zzf ln)( We cut the plane along the positive half of the real axis.

irzf ln)(0

where

irez where r>0 and 20 . This is really a single valued function. Similarly we can define

)2(ln)(1 irzf where r>0 and 20 . and

)2(ln)(1 irzf where r>0 and 20 .

Page 69: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

and a whole inifinite sequence for functions

f0, f±1, f±2, f±2,……………….., f±n, which are single value and can be used to replace the multivalued function lnz. (iv) Each fn(z) suffers a discontinuity across the cut – i.e., 2i- but the values of fn(z)

above cut is the same as fn+1(z) below cut. Thus it is suggestive to say that we have an infinite series of cut planes on top

of one another. The plane that fn+1(z) is defined on, lied right above the fn(z). The adjacent planes are connected across the cut. The lower lip pf the n+1 plane is connected to the upper lip of the n-th plane. So when we cross a cut, we are going from one-cut-plane to another cut-plane. Each plane is called a Rieman sheet. Supposition of all planes in the helix array is called Rieman surface.

(v) What has all of this achieved?

Started with lnz. We have one single valued function defined on Rieman surface instead of multivalued function.

Branch points: when we go around them, we go to the different sheet. We can define the order of branch points. We have an n-th order branch point if

we have to go around it n+1 times to some back to a function original value [minimum n].

So z = 0 is a branch point of infinite order for lnz. ______________________________________________________________________ 9.19 Cut-line

The cut line runs along some curve from the z = 0 out to infinity. We consider

(a) z Cut along the negative real axis

irez ( ) The angle is restricted so as not to cross the cut line.

Page 70: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

(i) Cut along the negative real axis as the cut line

2/ierz for

point a ( ia rez ) → rier i 2/

point b ( ib rez ) → rier i 2/

There is thus a discontinuity across the cut. The function is not analytic on the cut (ii) Cut along the positive real axis as the cut line

2/ierz for 20

point a ( 0ia rez )→ rer i 0

point b ( 2ib rez ) → rer i

Page 71: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

There is thus a discontinuity across the cut. The function is not analytic on the cut line

(b) 'zaz

azz ' z’=0 (or z = a) and infinity (z = ∞) are branch points.

(c) )1)(1( zz

Check on the possibility of taking the line segment joining z+1 and z-1 as a cut line

irez 1 iez 1

where 20 and 20

2/)()( ierzf

Page 72: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

(+)/2 1 0 0 0 2 0 3 0 4 5 2 6 2 7 2

(i) The phase at points 5 and 6 is not the same as the points 2 and 3. This behavior

can be expected at a branch point cut line. (ii) The phase at point 7 exceeds that at 1 by 2. So the function f(z) is therefore

single valued for the contour shown encircling both branch points.

(d) ))()(( czbzaz

There are three branch points. So there are two cut lines.

(d) ))()()(( dzczbzaz

Page 73: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

There are four branch points. So there are two cut lines.

((Note)) (i) A function with a branch point and a required cut line will not be a continuous

across the cut line. (ii) In general, there will be a phase difference on opposite sides of this cut line. (iii) Thus the line integrals on opposite sides of the cut line will not generally cancel

each other. 9.20 Examples of cut line (Mathematica)

9.20.1 z

Plot3D of Im[ z ]there is a cut line on the negative x axis (x<0).

9.20.2 )1)(1( zz

Page 74: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Plot3D of Im[ )1)(1( zz ]there is a cut line between z = 1 and z = -1.

9.20.3 )1()1( zzz

Plot3D of Im[ )1()1( zzz ]A cut line between z = 1 and z = 0, and a cut line

between z = -1 and the negative x axis (x<-1).

9.20.4 )2)(1()1( zzzz

Page 75: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

Plot3D of Im[ )2)(1()1( zzzz ]A cut line between z = -1 and z = 0, and a cut line

between z = 1 and z = 2.

9.20.5 ln(z) Plot3D of Im[ln(z)]there is a cut line on the negative x axis.

___________________________________________________________________

Page 76: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

9.21 Applications 9.21.1 Arfken 7-1-18

Show that

)sin()1(02 a

adx

x

xa

where |a|<1. We note that z = 0 is a branch point and the positive x axis is a cut line.

x

y

B

D

H

F

A

EGC

2)1()(

z

zzf

a

.

Since there is one pole at z = ei, we have

)(Re2)()()()( i

HGFEFABCDEHA

ezsidzzfdzzfdzzfdzzf .

HA

0ixez , 0iaaa exz

0idxedz

Page 77: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

02

0

02

.

1 )1()1()( dx

x

xdxe

x

xdzzfI

ai

a

HA

EF

ixez 2 , iaaa exz 2

idxedz 2

12

02

20

22

.

2 )1()1()( Iedx

x

xedxe

x

xdzzfI ia

aiaia

a

EF

ABCD (radius R)

iz Re , iaaa eRz

iddz iRe

0)2(Re)1(Re

)( 12

02

12

02

a

ai

i

iaa

ABCDE

RdR

Rid

eRdzzf (as R∞).

HGF (radius )

iez , iaaa ez

idedz i

0)1(

)(2

0

)1(12

02

deiidee

edzzf aiai

i

iaa

HGF

(as 0).

Then we have

)(Re2)1( 12

21 iai ezsiIeII

or

)sin(1

)(2

1

)(Re2221

a

a

e

eai

e

ezsiI

ai

ia

ai

i

where

Page 78: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

iaai

ez

a

ez

ai aeaeaz

z

zz

dz

dezs ii

)1(1

22 |]

)1()1[(

)!12(

1)(Re

_____________________________________________________________________ 9.21.2 Application II Evaluate

03)( xax

dxI (a>0).

zazzf

3)(

1)(

f(z) has a pole at z = -a. We note that z = 0 is a branch point and the positive x axis is a cut line.

x

y

B

D

H

F

A

EGC

)(Re2)()()()( i

HGFEFABCDEHA

aezsidzzfdzzfdzzfdzzf

HA

0ixez , 2/12/02/12/1 xexz ia

Page 79: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

0idxedz

03

.

1)(

1)( dx

xaxdzzfI

HA

EF

ixez 2 , xexz i 2/12/1

dxdxedz i 2

1

02

0

3.

2 )1()(

1)( Idx

x

xdx

xaxdzzfI

a

EF

ABCD (radius R)

iz Re , 2/2/12/1 ieRz

iddz iRe

0)2(Re)(Re

1)( 2/13

2

03

2/12

02/2/13

RdR

Rid

eRadzzf i

iiABCDE

as R∞. HGF (radius )

iez , 2/2/12/1 iez

idedz i

0)(

1)(

2

0

2/3

2/12

02/2/13

dea

iide

eaedzzf ii

iiHGF

as 0. Then we have

2/52/5121 4

3)

8

3(2)(Re22

aa

iiaezsiIII i

or

Page 80: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

2/51 8

3

aI

((Mathematica))

Residue 1

z12

1

z a3, z, a Exp Simplify, a 0 &

3

8 a52

Series 1

z12

1

z a3, z, a Exp , 2 Simplify, a 0 & Normal

5

16 a72

a a z3

2 a32 a z2

3

8 a52 a z 35 a z

128 a92

63 a z2

256 a112

Note that the residue is equal to the coefficient of 1/(z + a). 9.22 Kronig-Kramers relation

We consider the motion of a particle (mass m and charge q) in the presence of electric field.

FqExxxm )( 200

]Re[ tieXx

, ]Re[ tieFF

.

where is the angular frequency, x is the total displacement and F is the applied electric field.

qEFXim )( 200

2

Eim

EqqX )(

1

022

0

2

Here () is called response function and is defined by

022

0

2 1)(

im

q

Page 81: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

We need not to assume this form of (), but we make use of three properties of the response function viewed as a function of the complex variables. Now we regard () as a function of complex variable .

f0 = q2/m, and

022

0

0)(

i

f

The pole of ():

0200

2 i ,

2

4 20

200

i

.

Case (1): 04 20

20 .

x

y

O

Two poles

Case (2): 04 20

20 .

2

4 20

200

ii

.

Page 82: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

x

y

O

Two poles

Thus we have the following features. (1) The poles of () are all below the real axis. (2) The integral of ()/ vanishes when taken around an infinite semicircle in the

upper half of the complex plane. It suffices that ()/0 uniformly as || ∞.

0)(

lim||

.

(3) )('')(')( i ,

20

22220

2200

)(

)()(

if

where )(' is even and )(" is odd with respect to real . Now we calculate

C

dzz

z

)(

.

We note that Integrant has a simple pole at the real axis.

Page 83: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

x

y

C

C1

O z=w

GR

-¶ ¶

0)(Re)()()(

zsidx

x

xPdz

z

zdz

z

z

RC

Since

R

dzz

z

)(

,

)()(Re)(

izsidx

x

xP

,

or

dx

x

xP

i

)(1

)( .

Now we have

])(")('

[1

)(")(')(

dxx

xixP

i

i

,

Page 84: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

])(")("

[1

)("1)('

0

0

dxx

xdx

x

xP

dxx

xP

.

Since , )(")(" xx (odd function), we have

022

00

)("2

])(")("

[1

)('

dxx

xxP

dxx

xdx

x

xP

.

Similarly

022

00

)('2

])(")("

[1

)("

dxx

xP

dxx

xdx

x

xP

.

________________________________________________________________________ APPENDIX A.1 Mathematica Residue[expr, {x, x0}];

to find the residue of expression when x equals x0.

The residue is defined as the coefficient of 1/(z-z0) in the Laurent expansion of expr.

NResidue[expr, {x, x0}];

to find numerically the residue of expression when x equals x0. Series[f, {x, x0, n}];

to generate a power series expansion for f about the point x=x0 to order (x - x0)n.

_____________________________________________________________________ A.2 Principal part of an integral

Page 85: Chapter 9 Complex functions Masatsugu Sei Suzuki ...bingweb.binghamton.edu/~suzuki/Math-Physics/LN-9_Complex...(Cauchy-Riemann condition) or x y x y v u u v The Cauchy-Riemann conditions

We consider a real function f(x) that blows up at x = a. The principal part of the integral is defined as

])()([lim)(0

a

a

dxxfdxxfdxxfP

((Example))

0)2

1

2

1(lim]

11[lim

12203303

dx

xdx

xdx

xP