chapter no 03

20
CHAPTER 3 LAPLACE ADOMIAN’S DECOMPOSITION METHOD (LADM) 3.1. Introduction Many problems in mathematical physics, theoretical physics and chemical physics are modelled by the so- called initial value and boundary value problems in the second-order nonlinear ordinary differential equations. These equations are difficult to be solved analytically and sometimes it is impossible then application must be made to relevant numerical methods such as shooting method, finite difference etc. In recent years, differential transform method has been used to solve this type of equations [10,11,12]. In this work, the differential transform method is used to investigate the numerical and analytical approximate solutions of the nonlinear singular initial value problems of Emden-Fowler Type. Initial value problems in the second order is considered which occur in applied mathematics, astrophysics and the numerical solution of the Emden- Fowler equation, and the other linear and nonlinear singular initial value problems, plays very important role because of the singularity behaviour at the origin. Laplace Adomian’s Decomposition Method (LADM) was first introduced by Suheil A. Khuri [13], and has been successfully used to find the solution of differential equations [14,15]. The Laplace Adomian’s Decomposition 29

Upload: ameer-hamza

Post on 28-Jan-2016

3 views

Category:

Documents


0 download

DESCRIPTION

jvjgcghvh

TRANSCRIPT

Page 1: Chapter No 03

CHAPTER 3

LAPLACE ADOMIAN’S DECOMPOSITION METHOD (LADM)

3.1. Introduction

Many problems in mathematical physics, theoretical physics and chemical physics

are modelled by the so-called initial value and boundary value problems in the

second-order nonlinear ordinary differential equations. These equations are difficult to

be solved analytically and sometimes it is impossible then application must be made

to relevant numerical methods such as shooting method, finite difference etc. In recent

years, differential transform method has been used to solve this type of equations

[10,11,12]. In this work, the differential transform method is used to investigate the

numerical and analytical approximate solutions of the nonlinear singular initial value

problems of Emden-Fowler Type. Initial value problems in the second order is

considered which occur in applied mathematics, astrophysics and the numerical

solution of the Emden-Fowler equation, and the other linear and nonlinear singular

initial value problems, plays very important role because of the singularity behaviour

at the origin.

Laplace Adomian’s Decomposition Method (LADM) was first introduced by Suheil

A. Khuri [13], and has been successfully used to find the solution of differential

equations [14,15]. The Laplace Adomian’s Decomposition Method is a combination

of ADM and Laplace Transforms. This Method is successfully used to find the exact

solution of the Bratu and Duffing equation. The Significant advantage of this method

is its capability of combining the two powerful methods to obtain exact solution for

non-linear equation.

3.2. Analysis of Emden-Fowler Equation

Let us consider the Emden-Fowler equation

d2 yd x2

+ axd yd x

+ α xm−1 yr = 0 , n≠0 , n≠1 , m ,a ,α are parameters

which is used in mathematical physics, theoretical physics, and chemical physics.

Above equation has interesting mathematical and physical properties, and it has been

investigated from various points of view.

29

Page 2: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

3.3. Numerical Application

3.3.1 Problem 1

Consider Emden-Fowler equation of the second kind is

d2 yd x2

+ 2xd yd x

+ α xm y r = 0 , (3.1)

y (0 ) = y0 , y' (0 ) = 0 .

Throughout multiply Eq. (3.1) with x, we get

xd2 yd x2

+ 2d yd x

+ α xm + 1 yr = 0 .

(3.2)

Taking Laplace Transform of Eq. (3.2) on both sides, we have

L [ x d2 yd x2

+ 2d yd x ] +L [α xm + 1 yr ] = 0 ,

− s2 L' [ y ] − y (0 ) + L [α xm + 1 yr ] = 0 ,

− s2 L' [ y ] − 1 + L [ α xm + 1 yr ] = 0 . (3.3)

According to LADM, the solution y ( x ) of the given problem is defined by an infinite

series of the form

y ( x ) = ∑n= 0

yn ( x ) , (3.4)

and the non-linear term yr

can be decompose into infinite series of the form

yr = ∑n = 0

An , (3.5)

andAn ' s ,are called Adomian’s Polynomials,

Which yields that,

A0 = y0r,

A1 = r y1 y0r − 1 ,

A2 = r y2 y0r −1 + r (r − 1 )

y12

2 !y

0r − 2 ,

30

Page 3: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

A3 = r (r − 1 ) (r − 2 )y

13

3 !y

0r −3 + r (r −1 ) y1 y2 y

0r − 2 + r y3 y

0r − 1 ,

⋮.

By substituting Eq.(3.4), (3.5) into (3.3)

− s2 L'[ ∑n = 0

yn] − 1 + L [α xm + 1 ∑n= 0

An ] = 0 ,

− s2 ∑n= 0

L' [ yn] − 1 + ∑n = 0

L [α xm + 1 An ] = 0 ,

∑n = 0

L' [ yn ] =− s− 2 + s− 2 ∑n = 0

L [α xm + 1 An ] . (3.6)

Its recursive relation is given by,

L' [ y0] =− s−2 ,

L' [ yn + 1] = s−2 α L [xm + 1 An] . n ≥ 0 (3.7)

Integrate Eq. (3.7) with respect to s,

L [ y0 ] =−∫ s−2 d s ,

L [ yn + 1 ] = α ∫ s−2 L [xm + 1 An ] d s . n ≥ 0

(3.8)

Now taking Inverse Laplace Transform of Eq. (3.8), it becomes

y0 = L−1 [−∫ s−2 d s ] ,

yn + 1 = L−1 [α ∫ s−2 L [ xm + 1 An] d s] . n ≥ 0 (3.9)

Therefore,

y0 = L− 1 [−∫ s−2 d s ] ,

= L− 1 [ s− 1] ,

= 1 ,

y1 = α L− 1 [∫ s− 2 L [xm + 1 A0] d s ] ,

31

Page 4: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

= α L− 1 [∫ s− 2 L [xm + 1] d s ] ,

= α L− 1 [ (m + 1 ) ! s−m − 3

−3 −m ] ,=− α xm + 2

(m + 2 ) (m + 3 ), m >− 2 .

y2 = α L− 1 [∫ s− 2 L [xm + 1 A1] d s ] ,

= α L−1 [∫ s− 2 L [xm + 1 r y1 y0r − 1] d s ] ,

For r = 1 ,

y2 = α L− 1 [∫ s− 2 L [xm + 1 y1] d s ] ,

y2 = α L− 1 [∫ s− 2 L [ xm + 1 (− α xm + 2

(m + 2 ) (m + 3 ) )] d s ] ,y2 = α L− 1 [∫ s− 2 L [− α x2 m + 3

(m + 2 ) (m + 3 ) ] d s ] ,= α L− 1 [∫ s− 2 (− α (2 m + 3 ) !

(m + 2 ) (m + 3 ) s2 m + 4 ) d s] ,= α L− 1 [α (2 m + 3 ) !

(2 m + 5 ) (m + 2 ) (m + 3 ) s2 m + 5 ] ,= α

2 x2 m + 4

2 (2 m + 5 ) (m + 3 ) (m + 2 )2, m >− 2 .

Therefore,

y ( x ) = 1− α xm + 2

(m + 2 ) (m + 3 )+ α2 x2 m + 4

2 (2 m + 3 ) (m + 3 ) (m + 2 )2⋯ , m >− 2 ,

(3.10)

Particularly, we obtained the exact solution as

For m= 0 and r= 0 ,

32

Page 5: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

y0 = 1 ,

y1 =− α x2

6,

y2 = 0 .

Therefore, the exact solution will be

y ( x ) = 1 − α x2

6.

For m= 0 and r= 1 ,

y0 = 1 ,

y1 =− α x2

6,

y2 = α2 x4

120,

y3=− α3 x6

5040,

⋮.

Therefore,

y ( x ) = 1 − α x2

6+ α

2 x4

120− α 3 x6

5040+⋯ ,

y ( x ) = 1x ( x − α x3

6+ α

2 x5

120− α3 x7

5040+⋯) ,

= 1√α x (√α x − α

32 x3

6+ α

52 x5

120− α

72 x7

5040+⋯) ,

y ( x ) = Sin (√α x )√α x

.

For m= 0 and r= 5 ,

33

Page 6: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

y0 = 1 ,

y1 =− α x2

6,

y2 = α2 x4

24−3 α3 x6

70+ 17 α 4 x8

630− 59 α5 x10

11550+ α

6 x12

3510,

⋮.

y ( x ) = (1 + α x2

3 )− 12 .

3.3.2. Problem 2

Consider another type of Emden-Fowler equation is

d2 yd x2

+ 2xd yd x

+ α xm e y = 0 ,

y (0 ) = 0 , y ' (0 ) = 0 . (3.11)

Throughout multiply Eq. (3.11) with x, we get

xd2 yd x2

+ 2d yd x

+ α xm + 1 e y = 0 . (3.12)

Taking Laplace Transform of Eq. (3.12) on both sides, we have

L [ x d2 yd x2

+ 2d yd x ] +L [α xm + 1 e y ] = 0 ,

− s2 L' [ y ] − y (0 ) + L [α xm + 1 e y ] = 0 ,

− s2 L' [ y ] − y (0 ) + L [α xm + 1 e y ] = 0 . (3.13)

According to LADM, the solution y ( x ) ,of the given problem is defined by an infinite

series of the form

y ( x ) = ∑n= 0

yn ( x ) , (3.14)

and the non-linear term ey

can be decompose into infinite series of the form

e y = ∑n = 0

An , (3.15)

34

Page 7: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

andAn ' s are called Adomian’s Polynomials,

Which yields that,

A0 = ey0 ,

A1 = y 1 ey0 ,

A2 = y2 ey0 + 1

2 !y12 e

y0 ,

A3 = y3 ey0 + y1 y2 e

y0 + 13 !

y13 ey0 ,

⋮ .

By substituting Eq. (3.14), (3.15) into (3.13)

− s2 L'[ ∑n = 0

yn] − y (0 ) + L [α xm + 1 ∑n = 0

An] = 0 ,

− s2 ∑n= 0

L' [ yn] − y (0 )+ ∑n= 0

L [α xm + 1 An ] = 0 ,

∑n = 0

L' [ yn ] =− s− 2 y (0 ) + s− 2 ∑n = 0

L [α xm + 1 An ] . (3.16)

Its recursive relation is given by,

L' [ y0] =− s− 2 y (0 ) ,

L' [ yn + 1] = s−2 α L [xm + 1 An] . n ≥ 0 (3.17)

Integrate Eq. (3.17) with respect to s,

L [ y0 ] =−∫ s−2 y (0 ) d s ,

L [ yn + 1 ] = α ∫ s−2 L [xm + 1 An ] d s . n ≥ 0 (3.18)

Now taking Inverse Laplace Transform of Eq. (3.18), it becomes

y0 = L−1 [−∫ s− 2 y (0 ) d s] ,

yn + 1 = L−1 [α ∫ s−2 L [ xm + 1 An] d s] . n≥ 0 (3.19)

35

Page 8: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

Therefore,

y0 = L− 1 [−∫ s− 2 y (0 ) d s ] ,

= L− 1 [0 ] = 0 ,

y1 = α L− 1 [∫ s− 2 L [xm + 1 A0] d s ] ,= α L− 1 [∫ s− 2 L [xm + 1] d s ] ,

= α L− 1 [ (m + 1 ) ! s−m − 3

−3 −m ] ,=− α xm + 2

(m + 2 ) (m + 3 ), m >− 2 .

y2 = α L− 1 [∫ s− 2 L [xm + 1 A1] d s ] ,

= α L−1 [∫ s− 2 L [ xm + 1 y1 ey0 ] d s ] ,

y2 = α L− 1 [∫ s− 2 L [xm + 1 y1] d s ] ,

y2 = α L− 1 [∫ s− 2 L [ xm + 1 (− α xm + 2

(m + 2 ) (m + 3 ) )] d s ] ,y2 = α L− 1 [∫ s− 2 L [− α x2 m + 3

(m + 2 ) (m + 3 ) ] d s ] ,= α L− 1 [∫ s− 2 (− α (2 m + 3 ) !

(m + 2 ) (m + 3 ) s2 m + 4 ) d s] ,= α L− 1 [α (2 m + 3 ) !

(2 m + 5 ) (m + 2 ) (m + 3 ) s2 m + 5 ] ,= α

2 x2 m + 4

2 (2 m + 5 ) (m + 3 ) (m + 2 )2, m >− 2 .

Therefore,

y ( x ) =− α xm + 2

(m + 2 ) (m + 3 )+ α 2 x2 m + 4

2 (2 m + 3 ) (m + 3 ) (m + 2 )2⋯ , m >− 2 ,

(3.20)

3.3.3. Problem 3

36

Page 9: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

Consider nonlinear Emden-Fowler equation

d2 yd x2

+ 2xd yd x

+ α xm e− y = 0 ,

y (0 ) = 0 , y ' (0 ) = 0 . (3.21)

Throughout multiply Eq.(3.21) with x, we get

xd2 yd x2

+ 2d yd x

+ α xm + 1 e− y = 0 . (3.22)

Taking Laplace Transform of Eq. (3.22) on both sides, we have

L [ x d2 yd x2

+ 2d yd x ] +L [α xm + 1 e− y ] = 0 ,

− s2 L' [ y ] − y (0 ) + L [α xm + 1 e− y ] = 0 ,

− s2 L' [ y ] − y (0 ) + L [α xm + 1 e− y ] = 0 . (3.23)

According to LADM, the solution y ( x ) of the given problem is defined by an infinite

series of the form

y ( x ) = ∑n= 0

yn ( x ) , (3.24)

and the non-linear term e− y

can be decompose into infinite series of the form

e− y= ∑n= 0

An , (2.25)

andAn ' s are called Adomian’s Polynomials,

Which yields that,

37

Page 10: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

A0 = e− y0 ,

A1 =− y 1 e− y0 ,

A2 =− y2 e− y0 + 1

2 !y12 e

− y0 ,

A3 =− y3 e− y0 + y1 y2 e

− y0 − 13 !

y13 e− y0 ,

⋮ .

By substituting Eq. (3.24), (3.25) into (3.23)

− s2 L'[ ∑n = 0

yn] − y (0 ) + L [α xm + 1 ∑n = 0

An] = 0 ,

− s2 ∑n= 0

L' [ yn] − y (0 )+ ∑n= 0

L [α xm + 1 An ] = 0 ,

∑n = 0

L' [ yn ] =− s− 2 y (0 ) + s− 2 ∑n = 0

L [α xm + 1 An ] . (3.26)

Its recursive relation is given by,

L' [ y0] =− s− 2 y (0 ) ,

L' [ yn + 1] = s−2 α L [xm + 1 An] . n ≥ 0 (3.27)

Integrate Eq. (3.27) with respect to s,

L [ y0 ] =−∫ s−2 y (0 ) d s ,

L [ yn + 1 ] = α ∫ s−2 L [xm + 1 An ] d s . n ≥ 0 (3.28)

Now taking Inverse Laplace Transform of Eq. (3.28), it becomes

y0 = L−1 [−∫ s− 2 y (0 ) d s] ,

yn + 1 = L−1 [α ∫ s−2 L [ xm + 1 An] d s] . n≥ 0 (3.29)

Therefore,

38

Page 11: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

y0 = L− 1 [−∫ s− 2 y (0 ) d s ] ,

= L− 1 [0 ] = 0 ,

y1 = α L− 1 [∫ s− 2 L [xm + 1 A0] d s ] ,= α L− 1 [∫ s− 2 L [xm + 1] d s ] ,

= α L− 1 [ (m + 1 ) ! s−m − 3

−3 −m ] ,=− α xm + 2

(m + 2 ) (m + 3 ), m >− 2 .

y2 = α L− 1 [∫ s− 2 L [xm + 1 A1] d s ] ,

= α L−1 [∫ s− 2 L [ xm + 1 (− y1 e− y0)] d s ] ,

y2 =− α L− 1 [∫ s− 2 L [xm + 1 y1] d s ] ,

y2 =− α L− 1 [∫ s− 2 L [ xm + 1 (− α xm + 2

(m + 2 ) (m + 3 ) )] d s ] ,y2 =− α L− 1 [∫ s− 2 L [− α x2 m + 3

(m + 2 ) (m + 3 ) ] d s ] ,=− α L− 1 [∫ s− 2 (− α (2 m + 3 ) !

(m + 2 ) (m + 3 ) s2 m + 4 ) d s] ,=− α L− 1 [α (2 m + 3 ) !

(2 m + 5 ) (m + 2 ) (m + 3 ) s2 m + 5 ] ,=− α

2 x2 m + 4

2 (2 m + 5 ) (m + 3 ) (m + 2 )2, m >− 2 .

Therefore,

y ( x ) =− α xm + 2

(m + 2 ) (m + 3 )− α2 x2 m + 4

2 (2 m + 3 ) (m + 3 ) (m + 2 )2⋯ , m >− 2 ,

(3.30)

For m= 0 ,Eq. (3.30) becomes,

39

Page 12: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

y ( x ) =− α x2

6− α2 x4

120− 8 α3 x6

15120⋯ ,

3.3.4. Problem 4

Consider Emden-Fowler equation of the second kind is

d2 yd x2

+ 2xd yd x

+ α xm ln x yr = 0 ,

y (0 ) = 1 , y ' (0 ) = 0 . (3.31)

Throughout multiply Eq. (3.31) with x, we get

xd2 yd x2

+ 2d yd x

+ α xm + 1 ln x yr = 0 . (3.32)

Taking Laplace Transform of Eq. (3.32) on both sides, we have

L [ x d2 yd x2

+ 2d yd x ] +L [α xm + 1 ln x y r ] = 0 ,

− s2 L' [ y ] − y (0 ) + L [α xm + 1 ln x y r ] = 0 . (3.33)

According to LADM, the solution y ( x ) of the given problem is defined by an infinite

series of the form

y ( x ) = ∑n= 0

yn ( x ) , (3.34)

and the non-linear term yr

can be decompose into infinite series of the form

yr = ∑n = 0

An , (3.35)

andAn ' s are called Adomian’s Polynomials,

Which yields that,

A0 = y0r,

A1 = r y1 y0r − 1 ,

A2 = r y2 y0r −1 + r (r − 1 )

y12

2 !y

0r − 2 ,

40

Page 13: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

A3 = r (r − 1 ) (r − 2 )y

13

3 !y

0r −3 + r (r −1 ) y1 y2 y

0r − 2 + r y3 y

0r − 1 ,

⋮.

By substituting Eq. (3.34), (3.35) into (3.33)

− s2 L'[ ∑n = 0

yn] − y (0 ) + L [α xm + 1 ln x ∑n= 0

An] = 0 ,

− s2 ∑n= 0

L' [ yn] − y (0 )+ ∑n= 0

L [α xm + 1 ln x An ] = 0 ,

∑n = 0

L' [ yn ] =− s− 2 y (0 ) + s− 2 ∑n = 0

L [α xm + 1 ln x An ] . (3.36)

Its recursive relation is given by,

L' [ y0] =− s− 2 y (0 ) ,

L' [ yn + 1] = s−2 α L [xm + 1 ln x An] . n ≥ 0 (3.37)

Integrate Eq. (3.37) with respect to s,

L [ y0 ] =−∫ s−2 y (0 ) d s ,

L [ yn + 1 ] = α ∫ s−2 L [xm + 1 ln x An] d s . n ≥ 0 (3.38)

Now taking Inverse Laplace Transform of Eq. (3.38), it becomes

y0 = L−1 [−∫ s− 2 y (0 ) d s] ,

yn + 1 = L−1 [α ∫ s−2 L [ xm + 1 ln x An ] d s] . n ≥ 0 (3.39)

Therefore, for r = 0 and m=−1 ,Eq. (3.39) becomes,

y0 = L− 1 [−∫ s− 2 y (0 ) d s ] ,

= L− 1 [− s− 1 ] = 1 ,

y1 = α L− 1 [∫ s− 2 L [xm + 1 ln x A0] d s ] ,= α L− 1 [∫ s− 2 L [ xm + 1 ln x y

0r ] d s ] ,

41

Page 14: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

= α L− 1 [∫ s− 2 L [xm + 1 ln x ] d s ] ,

= α L− 1 [∫ s− 2 (− Euler Gamma + ln ss ) d s ] ,

= α L− 1 [14 s2 +Euler Gamma

2 s2+

ln s

s2 ] ,= α x

2 ( ln x − 32 ) ,

y2 = 0 .

So the exact solution will be,

y ( x ) = 1 − α x2 ( ln x − 3

2 ) .

Similarly

y ( x ) = 1 − α x2

6 ( ln x − 56 ) .

y ( x ) = 1 − α x3

12 ( ln x − 712 ) .

y ( x ) = 1 − α x4

20 ( ln x − 920 ) .

y ( x ) = 1 − α x5

30 ( ln x − 1130 ) .

3.3.5. Problem 5 [67]

Consider a Time-Dependent Lane-Emden equation

∂2 y∂ x2

+2x

∂ y∂ x

− (6 + 4 x2 − cos t ) y = ∂ y∂ t

,

y (0 , t ) = esin t , yx (0 , t ) = 0 . (3.40)

Throughout multiply Eq. (3.40) with x, we get

42

Page 15: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

x∂2 y∂ x2

+ 2∂ y∂ x

− (6 + 4 x2 − cos t ) x y = x∂ y∂ t

. (3.41)

Taking Laplace Transform of Eq. (3.41) on both sides, we have

L [ x ∂2 y∂ x2

+ 2∂ y∂ x ] = L [ (6 + 4 x2 − cos t ) x y + x ∂ y

∂ t ] ,− s2 ∂

∂ sL [ y ( x ,t ) ] − y (0 , t ) = L [ (6 + 4 x2 − cos t ) x y + x ∂ y

∂ t ] ,∂

∂ sL [ y ( x , t ) ] =− s− 2 y (0 , t ) − s− 2 L [ (6 + 4 x2 − cos t ) x y + x ∂ y

∂ t ] . (3.42)

According to LADM, the solution y ( x , t ) of the given problem is defined by an

infinite series of the form

y ( x , t ) = ∑n = 0

yn ( x , t ) , (3.43)

also it’s a linear problem, so we need not to find the Adomian’s Polynomials.

By substitution Eq. (3.43) in Eq. (3.42), we get

∂∂ s

L [ ∑n = 0

yn ( x , t )]=− s− 2 y (0 , t ) − s− 2 L [ (6 + 4 x2 − cos t ) x ∑n = 0

y n + x∂∂ t ∑

n = 0

yn] ,∑n = 0

∞ ∂∂ s

L [ yn ( x , t ) ] =− s− 2 y (0 , t ) − s− 2 ∑n =0

∞L [ (6 + 4 x2 − cos t ) x yn + x

∂ yn∂ t ] .

Its recursive relation is given by,

∂∂ x

L [ y0 ( x , t ) ] =− s− 2 y (0 , t ) ,

∂∂ x

L [ yn + 1 (x , t ) ] =−s− 2 L [ (6 + 4 x2 − cos t ) x yn + x∂ y n∂ t ] . n ≥ 0

(3.44)

Integrate Eq. (3.44) with respect to s,

L [ y0 ( x , t ) ] =−∫ s− 2 y (0 , t ) d s ,

L [ yn + 1 ( x , t ) ] =−∫s− 2 L [( 6 + 4 x2 − cos t ) x yn + x∂ yn∂ t ] d s . n ≥ 0

(3.45)

Now taking the Inverse Laplace Transform of the Eq. (3.45),

43

Page 16: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

y0 (x , t ) = L−1 [−∫ s− 2 y (0 , t ) d s ] ,

yn + 1 ( x , t ) = L− 1 [−∫s− 2 L [( 6 + 4 x2 − cos t ) x yn + x∂ yn∂ t ] d s ] . n ≥ 0

(3.46)

Therefore,

y0 (x , t ) =− L−1 [∫ s− 2 y (0 , t ) d s ] ,

=− L− 1 [− esin t s−1 ] ,

= esin t ,

y1 ( x , t ) = L− 1 [−∫ s− 2 L [( 6 + 4 x2 − cos t ) x y0 + x∂ y0

∂ t ] d s ] ,= L− 1 [−∫ s− 2 L [ (6 + 4 x2 − cos t ) x esin t + x ∂ esin t

∂ t ] d s ] ,= L−1 [−∫ s− 2 L [ (6 + 4 x2 − cos t ) x esin t + x cos t esin t ] d s ] ,= L−1 [−∫ s− 2 L [ (6 + 4 x2 ) x esin t ] d s ] ,

= esin t L− 1 [−∫ s− 2 (24s4

+ 6s2 ) d s] ,

= esin t L−1 [24

5 s5+

2

s3 ] ,= esin t ( x2 +

x4

5 ) .

y2 ( x , t ) = L− 1 [−∫ s− 2 L [( 6 + 4 x2 − cos t ) x y1 + x∂ y1

∂ t ] d s] ,= esin t (310

x4 + 13105

x6 + x8

90 ) .

44

Page 17: Chapter No 03

LAPLACE ADOMIAN DECOMPOSITION METHOD CH 3

y3 ( x , t ) = L− 1 [−∫ s− 2 L [(6 + 4 x2 − cos t ) x y2 + x∂ y2

∂ t ] d s] ,= esin t (3 x6

70+ 17 x8

630+ 54 x10

11550+ 1

3510x12) ,

⋮.

Thus from Eq. (3.43) solution will be,

y ( x , t ) = y0 + y1 + y2 + y3 +⋯ ,

y ( x , t ) = esin t + esin t (x2 + x4

5 ) + esin t ( 310

x 4 + 13105

x6 + x8

90 ) + esin t ( 3 x6

70+ 17 x8

630+ 54 x10

11550+ 1

3510x12) +⋯,

y ( x , t ) = esin t (1 + x2 + x4

2 !+ x

6

3 !+ x

8

4 !+⋯ ,) ,

= esin t (ex 2 ) ,

= ex2 + sin t . (3.47)

This is exact solution.

45