chapter_5.11-12_isa.pdf

62
DDG DDG DDG Department of Continuum Mechanics and Structural Engineering Bachelor in Aerospace Engineering Departamento de Mecánica de Medios Continuos y Teoría de Estructuras DDG DDG DDG Introduction to Structural Analysis Chapter 5. Displacements in beams Section 11 and 12

Upload: hr

Post on 28-Dec-2015

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chapter_5.11-12_ISA.pdf

DDGDDGDDG

Department of Continuum Mechanics and Structural Engineering

Bachelor in Aerospace Engineering

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

DDGDDGDDG

Introduction to Structural Analysis

Chapter 5. Displacements in beamsSection 11 and 12

Page 2: Chapter_5.11-12_ISA.pdf

Index

INDEX

Chapter 5. Displacements in beams

Section 11 and 12

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

• Introduction• Relationship between internal forces and displacements• Navier-Bresse´s formulas• Plane beams• Navier-Bresse´s formulas in straight beams• Strain energy density• Energy theorems• Summary• References

Page 3: Chapter_5.11-12_ISA.pdf

STRESS TENSORS

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

Internal forces/displacements relationships

Page 4: Chapter_5.11-12_ISA.pdf

Zzx

y

y

Beam ( )( ), ,

, ,

x y

x y T

F Q Q N

M M M M

=

=

r

r

Internal forces/displacements Relationships

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

X, Y, Z: Global coordinate system

x, y, z: Local coordinate system

X

Yx

z

( )( )

, ,

, ,

x y z

x y z

du du du du

d d d dφ φ φ φ

=

=

r

r

Page 5: Chapter_5.11-12_ISA.pdf

x

y

φr

Kinematic hypotheses

( ) ( )( ) ( )

o

x x z

o

y y z

u u z z y

u u z z x

φ

φ

= − ⋅

= + ⋅

ur

Internal forces/displacements Relationships

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

z

x

y

z

u

u u

u

=

rx

y

z

φφ φ

φ

=

r

Local coordinate system

( ) ( )( ) ( ) ( )

y y z

o

z z y x

u u z z x

u u z z x z y

φ

φ φ

= + ⋅

= − ⋅ + ⋅

vector ntdisplaceme=ur

vector rotation=φr

Page 6: Chapter_5.11-12_ISA.pdf

x

y

φr

:

Bending:

ur ( ) ( )

( ) ( )

2

2

1

1

x y y xyx

x y xy

y x xy y x

M z I M z Pd

dz E I I P

d M z P M z I

dz E I I P

φ

φ

⋅ + ⋅= ⋅

⋅ −

⋅ + ⋅= ⋅

⋅ −

Internal forces/displacements Relationships

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

z ( )

( ) ( )

( ) ( )

o

z

o

xxz y

o

y

yz x

N zdu

dz E A

duz z

dz

duz z

dz

γ φ

γ φ

=⋅

= +

= −

( )TzM zd

dz G J

φ =⋅

Torsion

x y xydz E I I P⋅ −

Page 7: Chapter_5.11-12_ISA.pdf

x

y

φr ( )

( )( ) ( )

( )( )

( ) ( )

2

2

x x

y ex y ey xy

yz

o x y xy

x x

ex xy ey xx

o x y xy

Q z m y I m y P

a y I I P

m y P m y IQ z

a y I I P

τ ⋅ − ⋅

= ⋅ − ⋅ −

⋅ − ⋅− ⋅ ⋅ −

ur

Shear stresses

Internal forces/displacements Relationships

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

z

( )

( )( )

( ) ( )

( )( )

( ) ( )

2

2

o x y xy

y y

y ex y ey xy

xz

o x y xy

y y

ex xy ey xx

o x y xy

a y I I P

Q z m x I m x P

b x I I P

m x P m x IQ z

b x I I P

τ

⋅ −

⋅ − ⋅= ⋅ − ⋅ −

⋅ − ⋅− ⋅ ⋅ −

Page 8: Chapter_5.11-12_ISA.pdf

x

yur

φr

Additional hypotheses

• Principal axis

• Double symmetric cross-sections

Internal forces/displacements Relationships

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

z( )( )

( )

( )( )

( )

x

y ex

yz

o x

y

eyx

xz

o y

Q z m y

a y I

m xQ z

b x I

τ

τ

= ⋅

= ⋅

( )

( )

1

1

xx

x

y y

y

M zd

dz E I

d M z

dz E I

φ

φ

= ⋅

= ⋅

Page 9: Chapter_5.11-12_ISA.pdf

x

yur

φr

yzτγ =

( )( )

( )

( )( )

( )

x

y ex

yz

o x

y

eyx

xz

o y

Q z m y

a y I

m xQ z

b x I

τ

τ

= ⋅

= ⋅

Internal forces/displacements Relationships

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

z

( )

( ) ( )

( ) ( )

o

z

o

xxz y

o

y

yz x

N zdu

dz E A

duz z

dz

duz z

dz

γ φ

γ φ

=⋅

= +

= −

yz

yz

xzxz

G

G

τγ

τγ

=

=

The displacements depend on x, y!

Page 10: Chapter_5.11-12_ISA.pdf

( )( )

( )

( )( )

( )

x

y ex

yz

o x

y

y ex

xz

o y

Q z m y

a y I

Q z m x

b x I

τ

τ

= ⋅

= ⋅

x

yur

φr

Assuming a constant shear stress

Internal forces/displacements Relationships

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

z

( )

( )

y

yz

cy

x

xz

cx

Q z

A

Q z

A

τ

τ

=

=

Assuming a constant shear stress

Acx: Shear area due to Qx

Acy: Shear area due to Qy

Page 11: Chapter_5.11-12_ISA.pdf

( )( )

( )

( )( )

( )

x

y ex

yz

o x

yy ex

xz

o y

Q z m y

a y I

Q z m x

b x I

τ

τ

= ⋅

= ⋅

( )

( )

y

yz

cy

x

xz

cx

Q z

A

Q z

A

τ

τ

=

=

Matching the strain energy per unit length due to shear stress

Internal forces/displacements Relationships

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

2 2yz xz

L

A

U dAG G

τ τ= + ⋅∫

( ) ( )( )

( ) ( )( )

2

22

1

x

y ex

L

o xA

x

y ex

o xA

Q z m yU dA

G a y I

Q z m ydA

G a y I

⋅= ⋅ ⋅ ⋅

= ⋅ ⋅ ⋅

Assuming that only applies a shear force Qy

( ) ( )22

1 y y

L

cy cyA

Q z Q zU dA

G A G A

= ⋅ ⋅ = ⋅

Page 12: Chapter_5.11-12_ISA.pdf

( )( )

( )

( )( )

( )

x

y ex

yz

o x

yy ex

xz

o y

Q z m y

a y I

Q z m x

b x I

τ

τ

= ⋅

= ⋅

( )

( )

y

yz

cy

x

xz

cx

Q z

A

Q z

A

τ

τ

=

=

Internal forces/displacements Relationships

Matching the strain energy per unit length due to shear stress

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

( )( )

cy 2

1 A

x

ex

o xA

m ydA

a y I

=

⋅ ⋅ ∫

( )( )

cx 2

1 A

y

ey

o yA

m xdA

b x I

=

⋅ ⋅ ∫ c

5 A

6A= ⋅

c

9 A

10A= ⋅ c

30 A

31A= ⋅

Page 13: Chapter_5.11-12_ISA.pdf

STRESS TENSORS

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

Navier-Bresse´s formulas

Page 14: Chapter_5.11-12_ISA.pdf

Zzx

y

y

( )( ), ,

, ,

x y

x y T

F Q Q N

M M M M

=

=

r

r

A

B

Navier-Bresse´s formulas

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

X

Yx

z

( )( )

, ,

, ,

x y z

x y z

du du du du

d d d dφ φ φ φ

=

=

r

r

A

Integrating with respect to a

reference section

( ) ( )( )( ) ( )( )

, , ,

, , ,

B A A

B A A

u f u M A B F A B

u M A B F A B

φ

φ φ

= − −

= − −

r r rr r

r r r rr

X, Y, Z: Global coordinate system

x, y, z: Local coordinate system

Page 15: Chapter_5.11-12_ISA.pdf

The rotations also produce displacements!

In a plane problem

Navier-Bresse´s formulas

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

B A ABu dφ= ⋅

A BB A ABu rφ= ∧

r rv

Small displacement

Page 16: Chapter_5.11-12_ISA.pdf

• In a 3D beam

Z

B

z

xy

Z

B

z

xy

Z

B

z

xy

Infinitesimal displacement vector in a slice

expressed in global axes X,Y,Z.=ud r

B

B AA

B B

B A A ABA A

d

u u r du d r

φ φ φ

φ φ

= +

= + ∧ + + ∧

∫ ∫

r r r

r rr r rv v

Plane Beams

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

X

Y

Z

A

z

P

X

Y

Z

A

z

X

Y

Z z

Pexpressed in global axes X,Y,Z.

Infinitesimal rotation vector in a slice

expressed in global axes X, Y, Z.

Vector P-B in global axes X, Y, Z.

Vector P-B in global axes X, Y, Z.

=θrd

=rr

=ABrr

Page 17: Chapter_5.11-12_ISA.pdf

STRESS TENSORS

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

Plane beams

Page 18: Chapter_5.11-12_ISA.pdf

L

A B

q

Z A

By

z

PZ

P

Plane Beams

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

straight beams

YY

Curve beams

Arcs

q Qy , Mx

A transversal load does not produce axial force

Page 19: Chapter_5.11-12_ISA.pdf

Y

BBBy

z

P

( )

( ) ( )

o

z

oxx

N zdu

dz E A

Q zduzφ

=⋅

= +

( )

( )

xx

x

M zd

dz E I

d M z

φ

φ

=⋅

Plane Beams

MovementIn local axis

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

Z

A

( )( )0, ,

,0,0

y

x

F Q N

M M

=

=

r

r

( ) ( )

( ) ( )

xxy

cx

o

y y

x

cy

Q zduz

dz G A

du Q zz

dz G A

φ

φ

= +⋅

= −⋅

( )y y

y

z T

d M z

dz E I

d M

dz G J

φ

φ

= −⋅

=⋅

( )

( )

,0,0 ,0,0

0, , 0, ,

xx

x

y

y z

cy

M dsd d

E I

Q Ndu du du

G A E A

φ φ ⋅= = ⋅

= = ⋅ ⋅

r

r

Internal forcesIn local axis

Page 20: Chapter_5.11-12_ISA.pdf

MovementIn local axis

In global axis

Y

BBBy

z ( )

( )

,0,0 ,0,0

0, , 0, ,

xx

x

y

y z

cy

M dsd d

E I

Q Ndu du du

G A E A

φ φ ⋅= = ⋅

= = ⋅ ⋅

r

r

P

α

dy

Plane Beams

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

Internal forcesIn local axis

In global axis

Z

A

( )

( )

0, ,

0, ,

B B

B A B A

r y y z z

y y z z

PB

AB

= = − −

= − −

r

( )( )0, ,

,0,0

y

x

F Q N

M M

=

=

r

r

( )

( )

,0,0 ,0,0

0, , 0, ,

xx

x

y y

y z

cy cy

M dsd d

E I

Q QN Ndu du du dy dz dz dy

G A E A G A E A

φ φ ⋅= = ⋅

= = − + + ⋅ ⋅ ⋅ ⋅

r

r

tandy

dzα =

cosdz ds

dy sen ds

αα

= ⋅= ⋅

Page 21: Chapter_5.11-12_ISA.pdf

Z

BBBy

z

P

Plane Beams

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

Y

A

( ) ( )

( ) ( )

BB A xx x

Ax

B ByB A A xy y x B A B

A Acy x

B ByB A A xz z x B A B

A Acy x

Mds

E I

Q MNu u z z dz dy z z ds

E A G A E I

Q MNu u y y dy dz y y ds

E A G A E I

φ φ

φ

φ

= − ⋅⋅

= − ⋅ − + ⋅ − ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅

= + ⋅ − + + + − ⋅ ⋅ ⋅ ⋅

∫ ∫

∫ ∫

Page 22: Chapter_5.11-12_ISA.pdf

STRESS TENSORS

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

Navier-Bresse´s formulas in straight beams

Page 23: Chapter_5.11-12_ISA.pdf

0yy

0dy

dzds

==

=

= z

y

w u

v u

=

v

w

y

x

y

M M

Q Q

=

=

Navier-Bresse´s formulas in straight beams

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

0yy BA ==

( ) ( )

B

B AA

B B

B A A B A BA A

c

B

B AA

Mdz

E I

Q Mv v z z dz z z dz

G A E I

Nw w dz

E A

θ θ

θ

= +⋅

= − ⋅ − + ⋅ − ⋅ − ⋅⋅ ⋅

= + ⋅⋅

∫ ∫

xθ φ=

Q N M

zA B

Page 24: Chapter_5.11-12_ISA.pdf

θv

w

y

0yy

0dy

dzds

==

=

= z

y

w u

v u

=

=x

y

M M

Q Q

=

=

Navier-Bresse´s formulas in straight beams

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

( ) ( )

B

B AA

B B

B A A B A BA A

c

B

B AA

Mdz

E I

Q Mv v z z dz z z dz

G A E I

Nw w dz

E A

θ θ

θ

= −⋅

= + ⋅ − + ⋅ − ⋅ − ⋅⋅ ⋅

= + ⋅⋅

∫ ∫

Q N M

z0yy BA ==

xθ φ=

Page 25: Chapter_5.11-12_ISA.pdf

w

θy

v

0yy

0dy

dzds

==

=

= z

y

w u

v u

=

=x

y

M M

Q Q

=

=

Navier-Bresse´s formulas in straight beams

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

( ) ( )

B

B AA

B B

B A A B A BA A

c

B

B AA

Mdz

E I

Q Mv v z z dz z z dz

G A E I

Nw w dz

E A

θ θ

θ

= −⋅

= − ⋅ − − ⋅ + ⋅ − ⋅⋅ ⋅

= + ⋅⋅

∫ ∫

Q N M

z0yy BA ==

xθ φ=

Page 26: Chapter_5.11-12_ISA.pdf

v

w

θy

0yy

0dy

dzds

==

=

= z

y

w u

v u

=

=x

y

M M

Q Q

=

=

Navier-Bresse´s formulas in straight beams

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

( ) ( )

B

B AA

B B

B A A B A BA A

c

B

B AA

Mdz

E I

Q Mv v z z dz z z dz

G A E I

Nw w dz

E A

θ θ

θ

= +⋅

= − ⋅ − − ⋅ − ⋅ − ⋅⋅ ⋅

= + ⋅⋅

∫ ∫

Q N M

z0yy BA ==

xθ φ=

Page 27: Chapter_5.11-12_ISA.pdf

Example:

A B

P

Shear forceQ

Bendingmoment M

A B

P.L

Axial force N

0N =

z

y

Navier-Bresse´s formulas in straight beams

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

A B A B

z

Q P= ( )M P L z= ⋅ − A Bw w=

Boundaryconditions

0A Av θ= =

( ) ( )0 0

L L

B

c

P L zPv dz L z dz

G A E I

⋅ −= ⋅ + ⋅ − ⋅

⋅ ⋅∫ ∫3

3B

c

P L P Lv

G A E I

⋅ ⋅= +⋅ ⋅ ⋅

z

L

Due to bending momentDue to shear force

( ) 2

0 2

B L

BA

P L zM P Ldz dz

E I E I E Iθ

⋅ − ⋅= ⋅ = ⋅ =⋅ ⋅ ⋅ ⋅∫ ∫

Page 28: Chapter_5.11-12_ISA.pdf

Example:

3

3B

c

P L P Lv

G A E I

⋅ ⋅= +⋅ ⋅ ⋅

z

y

tancor te

B

c

P Lv

G A

⋅=⋅

3

3

flexión

B

P Lv

E I

⋅=⋅ ⋅

Navier-Bresse´s formulas in straight beams

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

z

L

c

h

x

y

( )( )

tan

3 2

32

2

3

3

13

12 0,6 1

2 1 1,2

cor te

cB

flexión

B c

P LG Av E I

P Lv G A LE I

E c hh

E c h LL

ν

ν

⋅⋅ ⋅ ⋅= =

⋅ ⋅ ⋅⋅ ⋅

⋅ ⋅ ⋅ ⋅ = = ⋅ ⋅ + ⋅ ⋅ ⋅

⋅ +

The influence of Q in the displacement of Bis much less than the influence of M

Page 29: Chapter_5.11-12_ISA.pdf

Influence of the shear force in the displacement

Navier-Bresse´s formulas in straight beams

%bending

shearV

v

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

νννν = 0.3

Page 30: Chapter_5.11-12_ISA.pdf

Straight beam neglecting the deformations induced by shear and axial force

Navier-Bresse´s formula are:

θ

y

Navier-Bresse´s formulas in straight beams

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

Q N M

θv

w

z

( ) ( )

B

B AA

B

B A A B A BA

B A

Mdz

E I

Mv v z z z z dz

E I

w w

θ θ

θ

= +⋅

= + ⋅ − + ⋅ − ⋅⋅

=

Page 31: Chapter_5.11-12_ISA.pdf

Example:

z

yq

2

2

q L⋅

( )22

q L z⋅ −

A B

Navier-Bresse´s formulas in straight beams

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

( )2 3

0 2 6

B L

BA

q L zM q Ldz dz

E I E I E Iθ

⋅ − ⋅= ⋅ = ⋅ =⋅ ⋅ ⋅ ⋅ ⋅∫ ∫

0A Bw w= =

z

L A B

( ) ( )3 4

0 2 8

B L

BA

q L zM q Lv L z dz dz

E I E I E I

⋅ − ⋅= ⋅ − ⋅ = ⋅ =⋅ ⋅ ⋅ ⋅ ⋅∫ ∫

A B

Page 32: Chapter_5.11-12_ISA.pdf

Mohr’s Theorems The Moment Area Method

Navier-Bresse´s formulas in straight beams

First theorem

The change in slope over any length of a member subjected to bending is equal to thearea of the bending diagram over that length divided by the flexural strength (EI)

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

Diagram of bending moment

A’

B’

Undeformedmid-line

θΒ

θΑ

A B

A’

B’Deformed mid-line θΒ− θΑ

Page 33: Chapter_5.11-12_ISA.pdf

Navier-Bresse´s formulas in straight beams

Mohr’s Theorems The Moment Area Method

First theorem

The change in slope over any length of a member subjected to bending is equal to thearea of the bending diagram over that length divided by the flexural stiffness (EI)

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

( )1 B

B AAM z dz

E Iθ θ− = ⋅ ⋅

⋅ ∫

This is one of the Navier-Bresse equations

( ),B A

A M A B

E Iθ θ

−− =

Page 34: Chapter_5.11-12_ISA.pdf

Navier-Bresse´s formulas in straight beams

Mohr’s Theorems The Moment Area Method

Second theorem

For an originally straight beam, subject to bending moment, the vertical interceptbetween one terminal and the tangent to the curve of another terminal is the firstmoment of the bending moment diagram about the terminal where the intercept ismeasured, divided by the flexural stiffness (EI)

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

Diagram of bending moment

A’

B’

Undeformedmid-line

θΑ

A B

A’

B’Deformed mid-line

Av

AAB θ⋅

d

Bv

Page 35: Chapter_5.11-12_ISA.pdf

Navier-Bresse´s formulas in straight beams

Mohr’s Theorems The Moment Area Method

Second theorem

For an originally straight beam, subject to bending moment, the vertical interceptbetween one terminal and the tangent to the curve of another terminal is the firstmoment of the bending moment diagram about the terminal where the intercept ismeasured, divided by the flexural stiffness (EI)

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

( ) ( )( ),e

B A A

m A M Bd v v AB

E Iθ= − + ⋅ =

( ) ( )1

B

B A A BA

d v v AB M z z dzE I

θ= − + ⋅ = ⋅ − ⋅⋅ ∫

This is one of the Navier-Bresse equations

Page 36: Chapter_5.11-12_ISA.pdf

Bending moment

P·L

Example:

z

y

A B

Navier-Bresse´s formulas in straight beams

Mohr’s Theorems

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

A B

z

L

( ), 1 1

2B A

A M A BL P L

E I E Iθ θ

−− = = ⋅ ⋅ ⋅ ⋅

⋅ ⋅

( ) ( )( ), 1 1 2

2 3

e

B A A

m A M Bd v v AB L P L L

E I E Iθ= − + ⋅ = = ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅

A B

Page 37: Chapter_5.11-12_ISA.pdf

1

2ij ij

D D

V U dV dVσ ε= ⋅ = ⋅ ⋅ ⋅∫ ∫z

y

iX

it

tD∂

uD∂

D

iu

Strain Energy Density

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

xy i

X

Z

Y

x

z

y

2 22 2 221

2

y yx x T

x y cy cxL

M QM Q MNV ds

E A E I E I G A G A G J

= ⋅ + + + + + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

The strain energy density in a straight beams is:

Page 38: Chapter_5.11-12_ISA.pdf

1

2ij ij

D

V dVσ ε= ⋅ ⋅ ⋅∫

Strain Energy Density

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

( )1

2z z xz xz yz yz

L A

V ds dAσ ε τ γ τ γ= ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅∫ ∫

( )1

2z z xz xz yz yz

D

V dVσ ε τ γ τ γ= ⋅ ⋅ + ⋅ + ⋅ ⋅∫

Page 39: Chapter_5.11-12_ISA.pdf

( ) ( )( ) ( )

o

x x z

o

y y z

u u z z y

u u z z x

φ

φ

= − ⋅

= + ⋅

Kinematic hypotheses Equilibrium equations

z

A

y yz

N dA

Q dA

σ

τ

= ⋅

= ⋅

x z

A

y z

M y dA

M x dA

σ

σ

= ⋅ ⋅

= − ⋅ ⋅

Strain Energy Density

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

oooy yx xz z

x y x y y x T

L

d dud dudu dV N M M Q Q M ds

dz dz dz dz dz dz

φφ φφ φ

= ⋅ + ⋅ + ⋅ + ⋅ − + ⋅ + + ⋅ ⋅ ∫

( ) ( )( ) ( ) ( )

y y z

o

z z y xu u z z x z yφ φ= − ⋅ + ⋅A

x xz

A

Q dAτ= ⋅

∫ ( )y z

A

T yz xz

A

M x y dAτ τ= ⋅ − ⋅ ⋅

( )1

2z z xz xz yz yz

L A

V ds dAσ ε τ γ τ γ= ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅∫ ∫

Page 40: Chapter_5.11-12_ISA.pdf

( )

( )

xx

x

y y

y

z T

M zd

dz E I

d M z

dz E I

d M

dz G J

φ

φ

φ

=⋅

=⋅

=⋅

( )

( ) ( )

( ) ( )

o

z

oxx

y

cx

o

y y

x

cy

N zdu

dz E A

Q zduz

dz G A

du Q zz

dz G A

φ

φ

=⋅

= +⋅

= −⋅

Strain Energy Density

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

2 22 2 221

2

y yx x T

x y cy cxD L

M QM Q MNU dV ds

E A E I E I G A G A G J

⋅ = ⋅ + + + + + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

∫ ∫

oooy yx xz z

x y x y y x T

L

d dud dudu dV N M M Q Q M ds

dz dz dz dz dz dz

φφ φφ φ

= ⋅ + ⋅ + ⋅ + ⋅ − + ⋅ + + ⋅ ⋅ ∫

Page 41: Chapter_5.11-12_ISA.pdf

Theorem of virtual forces

Energy theorems

The necessary and sufficient condition for a displacement field u is compatible with astrain field D is that, for all the stress field Tψψψψ in equilibrium with a system of loads f ψ v inB and t ψ ΩΩΩΩ in ∂Bt , it holds that internal and external work are equal

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

c c

i i i i ij ijD D Dt u dS X u dV dVψ ψ ψσ ε

∂⋅ ⋅ + ⋅ ⋅ = ⋅ ⋅∫ ∫ ∫

Hypothesis:

• No se considera alabeo por torsión

( )y y y yx x x x T T

k kx y x yL L

M M Q QM M Q Q M MN Nds q u ds P M

E A E I E I G A G A E J

ψ ψψ ψ ψψψ ψ ψδ φ

⋅ ⋅⋅ ⋅ ⋅⋅ + + + + + ⋅ = ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∑∫ ∫

r rr rr r

X

Z

Y

x

z

y

Page 42: Chapter_5.11-12_ISA.pdf

( ) ( )( ) ( )( ) ( ) ( )

o

x x z

o

y y z

o

z z y x

u u z z y

u u z z x

u u z z x z y

φ

φ

φ φ

= − ⋅

= + ⋅

= − ⋅ + ⋅

Kinematic hypotheses Equilibrium equations

z

A

y yz

A

x xz

N dA

Q dA

Q dA

ψ ψ

ψ ψ

ψ ψ

σ

τ

τ

= ⋅

= ⋅

= ⋅

∫ ( )

x z

A

y z

A

T yz xz

M y dA

M x dA

M x y dA

ψ ψ

ψ ψ

ψ ψ ψ

σ

σ

τ τ

= ⋅ ⋅

= − ⋅ ⋅

= ⋅ − ⋅ ⋅

Energy theorems

Theorem of virtual forces

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

x zxz

y zxz

zz

u u

z x

u u

z y

u

z

γ

γ

ε

∂ ∂= +∂ ∂∂ ∂= +∂ ∂

∂=∂

( )ij ij z z xz xz yz yz

D L A

dV ds dAψ ψ ψ ψσ ε σ ε τ γ τ γ⋅ ⋅ = ⋅ + ⋅ + ⋅ ⋅ ⋅∫ ∫ ∫

x xz

A

Q dAτ= ⋅∫ ( )T yz xz

A

M x y dAτ τ= ⋅ − ⋅ ⋅∫

oooy yx xz z

ij ij x y x y y x T

D L

d dud dudu ddV N M M Q Q M ds

dz dz dz dz dz dz

ψ ψ ψ ψ ψ ψ ψφφ φσ ε φ φ

⋅ ⋅ = ⋅ + ⋅ + ⋅ + ⋅ − + ⋅ + + ⋅ ⋅ ∫ ∫

Page 43: Chapter_5.11-12_ISA.pdf

( )

( )

xx

x

y y

y

z T

M zd

dz E I

d M z

dz E I

d M

dz G J

φ

φ

φ

=⋅

=⋅

=⋅

( )

( ) ( )

( ) ( )

o

z

oxx

y

cx

o

y y

x

cy

N zdu

dz E A

Q zduz

dz G A

du Q zz

dz G A

φ

φ

=⋅

= +⋅

= −⋅

Energy theorems

Theorem of virtual forces

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

y x y y yx x T Tij ij

x y cx cyD L

M M Q Q Q QM M M MN NdV ds

E A E I E I G A G A G J

ψ ψ ψψ ψψψσ ε

⋅ ⋅ ⋅⋅ ⋅⋅⋅ ⋅ = + + + + + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∫ ∫

oooy yx xz z

ij ij x y x y y x T

D L

d dud dudu ddV N M M Q Q M ds

dz dz dz dz dz dz

ψ ψ ψ ψ ψ ψ ψφφ φσ ε φ φ

⋅ ⋅ = ⋅ + ⋅ + ⋅ + ⋅ − + ⋅ + + ⋅ ⋅ ∫ ∫

Page 44: Chapter_5.11-12_ISA.pdf

c c

i i i iD D

L

t u dS X u dV q u dsψ ψ ψ∂

⋅ ⋅ + ⋅ ⋅ = ⋅ ⋅∫ ∫ ∫r r ( )

k k

P Mψ ψδ φ+ ⋅ + ⋅∑r rr r

Point load and moments

Energy theorems

Theorem of virtual forces

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

( )y y y yx x x x T T

k kx y x yL L

M M Q QM M Q Q M MN Nds q u ds P M

E A E I E I G A G A E J

ψ ψψ ψ ψψψ ψ ψδ φ

⋅ ⋅⋅ ⋅ ⋅⋅ + + + + + ⋅ = ⋅ ⋅ + ⋅ + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∑∫ ∫

r rr rr r

Page 45: Chapter_5.11-12_ISA.pdf

θv

w

y

Ly yQ QM MN N

ψψψ ⋅⋅⋅ + + ⋅ = ∫

Straight beam

Energy theorems

Theorem of virtual forces

Application of the theorem to calculate the movements of a be am

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

Q N M

w

zA B

( ) ( ) ( )0

0

y yx x

x y

L

y y z z y y z z x xk kk k

Q QM MN Ndz

E A E I G A

q u q u dz P P Mψ ψ ψ ψ ψδ δ φ

⋅⋅⋅ + + ⋅ = ⋅ ⋅ ⋅

= ⋅ + ⋅ ⋅ + ⋅ + ⋅ + ⋅

∑ ∑∫

In structures compose by several beams, this equation is applied to each beam andadded

Page 46: Chapter_5.11-12_ISA.pdf

Real state

• The real beam is considered

• A point force (or moment) equal to one isapplied at the point and direction in whichthe displacement (or rotation) want to be

Energy theorems

Theorem of virtual forces

Application of the theorem to calculate the movements of a be am

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

A B

A B

Real state

Virtual state

P

P

Pψ = 1

0

1

Ly y px x

y

x y

Q QM MN Ndz

E A E I G A

ψψψ

δ ⋅⋅⋅ + + ⋅ = ⋅ ⋅ ⋅ ⋅ ∫

the displacement (or rotation) want to becalculated

Page 47: Chapter_5.11-12_ISA.pdf

Castigliano's theorems

Pi∆∆∆∆i

In each point i where a load P is applied the

First theorem

The derivative of the strain energy of a solid in equilibrium with respect to a generalizedmovement of a point is equal to the generalized force applied to it.

Energy theorems

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

x

z

y

P1

Pn

∆∆∆∆1

∆∆∆∆n

In each point i where a load Pi is applied thegeneralized movement ∆i is defined in the directionof its line of action

( )N

i i i

i

V PΠ = ∆ − ⋅ ∆∑

Strain energy of the solid as a function of ∆∆∆∆i

Total potential energy of the solid i

Work of the generalized forces

Page 48: Chapter_5.11-12_ISA.pdf

P1

Pi

∆∆∆∆1

∆∆∆∆i

∆∆∆∆n

( )N

i i i

i

V PΠ = ∆ − ⋅∆∑

i0 δ δΠ = ∀ ∆Solid in equilibrium 0i

i i

δ∂Π ∆ =∂∆∑

Theorem of Stationary Potential Energy

Energy theorems

Castigliano's theorems

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

x

z

y

P1

Pn

∆∆∆∆n

i

i

VP

∂ =∂∆

0i i

i i

VP δ

∂ − ⋅ ∆ = ∂∆ ∑

As must be met for any displacement δ∆δ∆δ∆δ∆i

Theorem of Stationary Potential Energy

Using this theorem the generalizedforces acting on the structure can becalculated

Page 49: Chapter_5.11-12_ISA.pdf

Pi∆∆∆∆i

Energy theorems

Castigliano's theorems

Second theorem

The derivative of the complementary strain energy of a solid in equilibrium with respectto a generalized force of a point is equal to the generalized displacement.

In each point i where a load P is applied the

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

x

z

y

P1

Pn

∆∆∆∆1

∆∆∆∆n

Complementary Total potential

energy of the solid

Complementary work of the

generalized forces

( )N

c c

i i i

i

V P PΠ = − ∆ ⋅∑

Complementary Strain energy of the solid as a

function of P i

In each point i where a load Pi is applied thegeneralized movement ∆i is defined in the directionof its line of action

Page 50: Chapter_5.11-12_ISA.pdf

P1

Pi

∆∆∆∆1

∆∆∆∆i

∆∆∆∆n

i0 c Pδ δΠ = ∀ 0c

i

i i

PP

δ∂Π =∂∑

cV ∂∑

( )N

c c

i i i

i

V P PΠ = − ∆ ⋅∑

Energy theorems

Solid in equilibrium

(Theorem of Stationary Complementary potential Energy)

Castigliano's theorems

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

x

z

y

P1

Pn

∆∆∆∆n

c

i

i

V

P

∂ = ∆∂

0c

i i

i i

VP

∂ − ∆ ⋅ = ∂ ∑

As must be met for any displacement δδδδPi

In a linear elastic solid V = V c

i

i

V

P

∂ = ∆∂

Theorem of Crotti-Engesseror

1st theorem of EngesserUsing the second theorem thegeneralized displacement of thestructure can be calculated.Castigliano's method usually refers tothe application of this theorem.

Page 51: Chapter_5.11-12_ISA.pdf

State I

Reciprocal work theorem

P1 P2

Energy theorems

Application of the theorem to calculate the movements of a be am

A force (or moment) equal to one is applied atthe point and direction in which thedisplacement (or rotation) want to becalculated

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

A B

A B

State I(Real state)P

P

P = 11I II

i i p

i

P ⋅∆ = ⋅ ∆∑

State II(Virtual State)

M

It is necessary to calculatethe displacement in thevirtual state, of all points inthe state where there areactual applied load

Page 52: Chapter_5.11-12_ISA.pdf

Z

x

y

Strain energy

2 22 2 221 y yx x TM QM Q MN

V ds

= ⋅ + + + + + ⋅ ∫

Summary

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

XY

z 2

y yx x T

x y cy cxL

V dsE A E I E I G A G A G J

= ⋅ + + + + + ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∫

Theorem of virtual forces

0

1

Ly y px x

y

x y

Q QM MN Ndz

E A E I G A

ψψψ

δ ⋅⋅⋅ + + ⋅ = ⋅ ⋅ ⋅ ⋅ ∫

Page 53: Chapter_5.11-12_ISA.pdf

z

P1

Pi

Pn

∆∆∆∆1

∆∆∆∆i

∆∆∆∆n

1st Theorem of Castigliano

i

i

VP

∂ =∂∆ i

i

V

P

∂ = ∆∂

2sd Theorem of Castigliano

Linear elastic material

Summary

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

x

z

y c

i

i

V

P

∂ = ∆∂

Theorem of Crotti-Engesser

I II II I

i i i i

i i

P P⋅ ∆ = ⋅∆∑ ∑

Reciprocal work theorem

Page 54: Chapter_5.11-12_ISA.pdf

References

BOOK CHAPTERS

J.A. Garrido, A. Foces, Resistencia de Materiales. Universidad de

Valladolid, 1994.

2 and 9

Ortiz Berrocal, L “Resistencia de Materiales”, Ed. McGraw Hill,

1998

5 and 9

P.P. Benham, R.J. Crawford, Mechanics of Materials, Longman 7

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

P.P. Benham, R.J. Crawford, Mechanics of Materials, Longman

Scientific and Technical, 1991.

7

Samartin Quiroga, A. “Resistencia de Materiales”, Ed. Bellisco. 1990 2,3 and 4

Page 55: Chapter_5.11-12_ISA.pdf

Given the structure of the figure, determine the horizontal displacement of point C.

The effect of axial and shear in the movements is not considered

8

Example

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

4

2

A

B C

D

8 m

4 m

Page 56: Chapter_5.11-12_ISA.pdf

4

8B C

4 m

Calculation of reactions

0

0

H

V

F

F

=

=

=

∑∑∑

Example

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

2

A D

8 m

4 m

6,51,5

5 1

0

0

A

C

M

M

=

=∑∑

Page 57: Chapter_5.11-12_ISA.pdf

B CMoment distribution

Stretch AB

( ) 5M s s= ⋅

s

s

Example

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

A D

( ) 5M s s= ⋅

Stretch BC

( ) 320

2M s s= + ⋅

( ) 1352

2M s s= − ⋅

0 < s < 4

4 < s < 8

Stretch CD

( )M s s=

( ) 4M s s= −

0 < s < 2

2 < s < 4

s

Page 58: Chapter_5.11-12_ISA.pdf

1

B C

Example

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

A D

Virtual state

Page 59: Chapter_5.11-12_ISA.pdf

1

B C

( )M s sψ =

Moment distribution

Stretch ABs

s

Example

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

A D

0,50,5

1

( )M s s=

Stretch BC

( ) 42

sM sψ = −

s

Virtual state

Page 60: Chapter_5.11-12_ISA.pdf

3 13s s

( )3

1 0

1

L

xi xic

i x i

M Mdz u

E I

ψ

=

⋅ ⋅ = ⋅⋅∑ ∫

Example

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

( ) ( ) ( )4 4 4

0 0 0

3 1320 4 52 4

5 2 2 2 20 1 c

x x xi i i

s ss s

s sds ds ds u

E I E I E I

+ ⋅ ⋅ − − ⋅ ⋅ − ⋅ ⋅ ⋅ + ⋅ + ⋅ + = ⋅⋅ ⋅ ⋅∫ ∫ ∫

382 1

3cu

E I= ⋅

Page 61: Chapter_5.11-12_ISA.pdf

1 B C

sStretch BC

Moment distribution

Example

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

A D

1/81/8

( ) 118

M s sψ = − ⋅

To calculate the rotation in B

Virtual state

Page 62: Chapter_5.11-12_ISA.pdf

3 13s s

( )3

1 0

1

L

xi xic

i x i

M Mdz u

E I

ψ

=

⋅ ⋅ = ⋅⋅∑ ∫

Example

Departamento de Mecánica de Medios Continuos y Teoría de Estructuras

( ) ( )4 4

0 0

3 1320 1 52 1

2 8 2 80 0 1 B

x xi i

s ss s

ds dsE I E I

θ

+ ⋅ ⋅ − − ⋅ ⋅ − − ⋅ − ⋅ + = ⋅

⋅ ⋅∫ ∫

128 1

3B

E Iθ = − ⋅