characteristics of spatiotemporally homogenized boundary layers at atmospheric reentry-like...

Upload: rhysu

Post on 02-Jun-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    1/14

    Characteristics of

    Spatiotemporally Homogenized Boundary Layers

    at Atmospheric Reentry-like Conditions

    Rhys Ulerich and Robert D. Moser

    Center for Predictive Engineering and Computational Sciences

    Institute for Computational Engineering and SciencesThe University of Texas at Austin

    APS DFD, 24 November 2014

    PECOS

    Acknowledgment: This material is based upon work supported by the Department of Energy [National

    Nuclear Security Administration] under Award Number [DE-FC52-08NA28615].

    R. Ulerich and R. D. Moser, U. T. Austin Homogenized B. L. at Reentry-like Conditions APS DFD, 24 November 2014

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    2/14

    Orion ablation rate predictions sensitive to calibration

    Eddy viscosity-based turbulence models widely used in engineering:

    Higher-fidelity approaches computationally intractable

    Models well-known to be imperfect and unreliable

    Predictions highly sensitive to calibration data [Stogner et al., 2011]

    Calibration data relevant to blunt-bodied vehicle reentry is scarce

    R. Ulerich and R. D. Moser, U. T. Austin Homogenized B. L. at Reentry-like Conditions APS DFD, 24 November 2014

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    3/14

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    4/14

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    5/14

    Problem specifications and simulation resolutionsDomain is10 2.5 3with512 256 256expansion coefficients for 168M DOF

    Case Re Ma99 T99/Tw v+w =vw/u p

    99, = 99(xp)99

    99u2

    99

    t3.199 382 0.904 4.13 8.52e3 0.010t4.134 531 1.152 4.20 7.18e3 0.012

    Case x+ y+1 y+10 z

    +Eddy

    Turnovers

    t3.199 13.9 0.14 6.1 8.4 6.4t4.134 19.0 0.17 7.2 11.4 6.9

    Coleman et al. [1995] 17 0.1 8 10

    Spectra and two-point correlations (in backup) compare favorably

    with Coleman et al. [1995] and Guarini et al. [2000]

    R. Ulerich and R. D. Moser, U. T. Austin Homogenized B. L. at Reentry-like Conditions APS DFD, 24 November 2014

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    6/14

    Inner scaling for simulations t3.199 and t4.134Viscous sublayer and buffer layer but no logarithmic region due to low Re

    100

    101

    102

    103

    y+

    1

    2

    3

    4

    5

    6

    7

    y+

    w

    du+

    dy+

    Case t3.199 (dashed) and t4.134 (solid)

    R. Ulerich and R. D. Moser, U. T. Austin Homogenized B. L. at Reentry-like Conditions APS DFD, 24 November 2014

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    7/14

    Integral thickness and the Clauser parameter= (xp)

    w

    Case /99 Re /99 H=/

    t3.199 0.00643 15.8 0.156 0.0413

    0.02t4.134 0.0392 129 0.161 0.243 0.16Bauman et al. [2011] 0.113 406 0.134 0.847 0.88

    =

    Ly0

    uinviscid u

    uinvisciddy

    104

    103

    102

    101

    100

    y

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    4.5

    Nondimensional

    uinvisc

    u

    u

    Case t4.134

    R. Ulerich and R. D. Moser, U. T. Austin Homogenized B. L. at Reentry-like Conditions APS DFD, 24 November 2014

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    8/14

    Stress contributions to the streamwise momentumReduced maximum relative to Topalian et al. [2014b] due to favorable pressure gradient

    0.0 0.2 0.4 0.6 0.8 1.0

    y/99

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    /w

    Total

    uvx y/Re

    Case t3.199 (dashed) and t4.134 (solid)

    R. Ulerich and R. D. Moser, U. T. Austin Homogenized B. L. at Reentry-like Conditions APS DFD, 24 November 2014

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    9/14

    Reynolds stresses in semi-local units [Huang et al., 199

    Maximumu2 higher than Coleman et al. [1995], Guarini et al. [2000]consistent with wall blowing [Sumitani and Kasagi, 1995]

    0 20 40 60 80 100 1 20

    y

    2

    0

    2

    4

    6

    8

    10

    /u2

    u2v2w2uvk

    Case t3.199

    0 50 100 150

    y

    2

    0

    2

    4

    6

    8

    10

    /u2

    u2v2w2uvk

    Case t4.134

    R. Ulerich and R. D. Moser, U. T. Austin Homogenized B. L. at Reentry-like Conditions APS DFD, 24 November 2014

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    10/14

    Turbulent kinetic energy budgetsPeak production lower than 0.25 found by Schlatter et al. [2009b] from ZPG at Re = 67

    0.4

    0.2

    0.0

    0.2

    0.4 u u : u

    /Re

    u2u/2

    u/Re

    p u/Ma2

    Tu//Ma2

    100 101 102 103

    y

    0.006

    0.004

    0.002

    0.000

    0.002

    0.004

    0.006

    p u Tu//Ma2

    p u/Ma2

    ku

    u u

    Case t3.199

    0.4

    0.2

    0.0

    0.2

    0.4 u u :

    /Re

    u2u

    u/Re

    p u/Ma2

    Tu//M

    100 101 102

    y

    0.006

    0.004

    0.002

    0.000

    0.002

    0.004

    0.006

    p u Tu//M

    p u/Ma2

    u u

    Case t4.134

    R. Ulerich and R. D. Moser, U. T. Austin Homogenized B. L. at Reentry-like Conditions APS DFD, 24 November 2014

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    11/14

    Near-wall, root-mean-squared vorticity fluctuationsVs adiabatic-wall, Ma = 2.5by Guarini et al. [2000] and incompressible by Spalart [1988

    0 10 20 30 40 50

    y+

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    0.35

    0.40

    0.45

    x2w/u

    2

    y2

    w/

    u

    2

    z2 w/u

    2

    R. Ulerich and R. D. Moser, U. T. Austin Homogenized B. L. at Reentry-like Conditions APS DFD, 24 November 2014

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    12/14

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    13/14

    Paul T. Bauman, Roy Stogner, Graham F. Carey, Karl W. Schulz, Rochan Upadhyay, and Andre Maurente. Loose-coupling algorithm for simulatihypersonicflows with radiation and ablation. Journal of Spacecraft and Rockets, 48(1):7280, January 2011. doi: 10.2514/1.50588.

    Raul B. Cal and Luciano Castillo. Similarity analysis of favorable pressure gradient turbulent boundary layers with eventual quasilaminarization.Physics of Fluids, 20(10):105106+, 2008. doi: 10.1063/1.2991433.

    Francis H. Clauser. Turbulent boundary layers in adverse pressure gradients. Journal of the Aeronautical Sciences, 21(2):91108, February 19doi: 10.2514/8.2938.

    G. N. Coleman, J. Kim, and R. D. Moser. A numerical study of turbulent supersonic isothermal-wall channel flow. Journal of Fluid Mechanics, 3159183, 1995. doi: 10.1017/S0022112095004587.

    Antonino Ferrante and Said Elghobashi. Reynolds number effect on drag reduction in a microbubble-laden spatially developing turbulent boundalayer. Journal of Fluid Mechanics, 543:93106, October 2005. doi: 10.1017/S0022112005006440.

    Stephen E. Guarini. Direct numerical simulation of supersonic turbulent boundary layers. PhD thesis, Stanford University, 1998.

    Stephen E. Guarini, Robert D. Moser, Karim Shariff, and Alan Wray. Direct numerical simulation of a supersonic turbulent boundary layer at Mac2.5. Journal of Fluid Mechanics, 414:133, 2000. doi: 10.1017/S0022112000008466.

    P. G. Huang, G. N. Coleman, and P. Bradshaw. Compressible turbulent channel flows: DNS results and modelling. Journal of Fluid Mechanics, 185218, 1995. doi: 10.1017/S0022112095004599.

    G. Khujadze and M. Oberlack. DNS and scaling laws from new symmetry groups of ZPG turbulent boundary layer flow.Theoretical andComputational Fluid Dynamics, 18(5):391411, November 2004. doi: 10.1007/s00162-004-0149-x.

    G. Khujadze and M. Oberlack. New scaling laws in ZPG turbulent boundary layer flow.Proceedings of 5th International Symposium on Turbulen

    and Shear Flow Phenomena, pages 443448, 2007.Jukka Komminaho and Martin Skote. Reynolds stress budgets in Couette and boundary layer flows. 68(2):167192, 2002. doi:

    10.1023/A:1020404706293.

    B. E. Launder. Laminarization of the turbulent boundary layer in a severe acceleration. Journal of Applied Mechanics, 31(4):707+, 1964. doi:10.1115/1.3629738.

    Thomas S. Lund, Xiaohua Wu, and Kyle D. Squires. Generation of turbulent inflow data for spatially-developing boundary layer simulations. Jouof Computational Physics, 140(2), March 1998. doi: 10.1006/jcph.1998.5882.

    R. Narasimha and K. R. Sreenivasan. Relaminarization of Fluid Flows, volume 19, pages 221309. Elsevier, 1979. doi:10.1016/S0065-2156(08)70311-9.

    Todd A. Oliver, Nicholas Malaya, Rhys Ulerich, and Robert D. Moser. Estimating uncertainties in statistics computed from direct numericalsimulation.Physics of Fluids, 26(3):035101+, March 2014. doi: 10.1063/1.4866813.

    K. Pohlhausen. Zur naherungsweisen integration der differentialgleichung der iaminaren grenzschicht. ZAMM - Journal of Applied MathematicsMechanics / Zeitschrift f ur Angewandte Mathematik und Mechanik, 1(4):252290, 1921. doi: 10.1002/zamm.19210010402.

    R. Ulerich and R. D. Moser, U. T. Austin Homogenized B. L. at Reentry-like Conditions APS DFD, 24 November 2014

  • 8/10/2019 Characteristics of Spatiotemporally Homogenized Boundary Layers at Atmospheric Reentry-like Conditions

    14/14

    P. Schlatter, Q. Li, G. Brethouwer, A. V. Johansson, and D. S. Henningson. High-Reynolds number turbulent boundary layers studied by numericsimulation.Bulletin of the American Physical Society, 54, 2009a. URL http://meetings.aps.org/link/BAPS.2009.DFD.BA.1.

    P. Schlatter, R. Orlu, Q. Li, G. Brethouwer, J. H. M. Fransson, A. V. Johansson, P. H. Alfredsson, and D. S. Henningson. Turbulent boundary layeto Re = 2500 studied through simulation and experiment. Physics of Fluids, 21(5):051702, 2009b. doi: 10.1063/1.3139294.

    Philipp Schlatter and Ramis Orlu. Assessment of direct numerical simulation data of turbulent boundary layers. Journal of Fluid Mechanics, 659116126, 2010. doi: 10.1017/S0022112010003113.

    Mark P. Simens, Javier Jimenez, Sergio Hoyas, and Yoshinori Mizuno. A high-resolution code for turbulent boundary layers. Journal ofComputational Physics, 228(11):42184231, June 2009. doi: 10.1016/j.jcp.2009.02.031.

    Philippe R. Spalart. Direct simulation of a turbulent boundary layer up to Re = 1410. Journal of Fluid Mechanics, 187:6198, 1988. doi:10.1017/S0022112088000345.

    Philippe R. Spalart, Robert D. Moser, and Michael M. Rogers. Spectral methods for the NavierStokes equations with one in finite and two periodirections. Journal of Computational Physics, 96(2):297324, 1991. doi: 10.1016/0021-9991(91)90238-G.

    Roy Stogner, Paul T. Bauman, Karl W. Schulz, Rochan Upadhyay, and Andre Maurente. Uncertainty and parameter sensitivity in multiphysics reflows. In49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, January 2011. doi:10.2514/6.2011-764.

    Yasushi Sumitani and Nobuhide Kasagi. Direct numerical simulation of turbulent transport with uniform wall injection and suction. AIAA Journal(7):12201228, July 1995. doi: 10.2514/3.12363.

    Victor Topalian, Onkar Sahni, Todd A. Oliver, and Robert D. Moser. Slow growth formulation for DNS of temporally evolving boundary layers. InAnnual Meeting of the APS Division of Fluid Dynamics, November 2011.

    Victor Topalian, Todd A. Oliver, Rhys Ulerich, and Robert D. Moser. A consistent spatiotemporal slow growth formulation for the calibration anduncertainty quantification of RANS turbulence models. In preparation, 2014a.

    Victor Topalian, Todd A. Oliver, Rhys Ulerich, and Robert D. Moser. A new temporal slow growth formulation for DNS of wallbounded turbulencpreparation, 2014b.

    Rhys Ulerich. Reducing Turbulence- and Transition-Driven Uncertainty in Aerothermodynamic Heating Predictions for Blunt-Bodied ReentryVehicles. PhD thesis, The University of Texas at Austin, 2014.

    Rhys Ulerich, Kemelli C. Estacio-Hiroms, Nicholas Malaya, and Robert D. Moser. A transient manufactured solution for the compressibleNavierStokes equations with a power law viscosity. In 10th World Congress on Computational Mechanics, Sao Paulo, Brazil, July 2012. d10.5151/meceng-wccm2012-16661.

    Xiaohua Wu and Parviz Moin. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. JournaFluid Mechanics, 630:541, 2009. doi:10.1017/S0022112009006624.

    Xiaohua Wu, Robert G. Jacobs, Julian C. R. Hunt, and Paul A. Durbin. Simulation of boundary layer transition induced by periodically passingwakes. Journal of Fluid Mechanics, 398(1):109153, 1999. doi: 10.1017/S0022112099006205.

    R. Ulerich and R. D. Moser, U. T. Austin Homogenized B. L. at Reentry-like Conditions APS DFD, 24 November 2014