characterization of hydrogenotrophic methanogenic archaea ... · to begin enrichments, serum...

9
1 Characterization of hydrogenotrophic methanogenic Archaea enriched from Trunk River Brittni L. Bertolet Microbial Diversity 2018 - Marine Biological Laboratories Woods Hole, MA INTRODUCTION Inland lakes, rivers, and reservoirs are increasingly recognized for their contribution to atmospheric methane (CH 4 ) concentrations. Globally, inland waters are estimated to produced 25% of the continental land sink in CH 4 every year (Bastviken et al. 2011). However, in a changing world, these estimates are difficult to project and this is largely due to a lack of process-based models that consider the biological complexity of these biogeochemical processes. In inland freshwater and brackish ecosystems, CH 4 is primarily produced biologically by methanogenic Archaea (hereafter referred to as “methanogens”), which regulate the rate of sediment diagenesis and carbon fate (Borrel et al. 2011). Despite this, few ecosystem models of CH 4 production explicitly consider the microbial community and little is known about how differences between methanogens may contribute to variation in ecosystem CH 4 production. Biological methanogenesis occurs via three major metabolic pathways, characterized by their electron donors and terminal acceptors: acetoclastic (using acetate), hydrogenotrophic, (using H 2 /CO 2 ), and methylotrophic (using methyl-compounds as substrates) (Liu & Whitman 2008). In freshwater and brackish sediments, methane is assumed to result primarily from the acetoclastic pathway (Conrad 1999), with many suggesting that the genus Methanosaeta to dominate lake sediment communities (Zepp Falz et al. 1999; Chan et al. 2002). However, community biomarker surveys (16S rRNA and mcrA genes) increasingly document higher-than- expected relative abundances of known or putative hydrogenotrophic methanogens in lakes and soils environments (Nusslein et al. 2001; Conrad et al. 2010). Although sequence-based analyses do not directly consider the active component of a microbial community, the pervasiveness of these groups across regions and ecosystems suggests they may be functionally important constituents of sediment methanogen communities. Unfortunately, few methanogens have ever been isolated from sediments and much is still to be understood about the distribution of physiological traits, such as substrate use, growth rate, and CH 4 yield. In the present study, I sought to isolate and characterize hydrogenotrophic methanogens from Trunk River sediments using both physiological assays and genomics. Although isolation was unsuccessful, I determined how the methanogenic consortium responded to the availability of alternative electron donors using experimental incubations with formate additions. Additionally, using shotgun metagenomics, five metagenome assembled genomes (MAGs) were constructed and used to determine both phylogeny and metabolic potential of the methanogenic consortium.

Upload: others

Post on 20-Apr-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Characterization of hydrogenotrophic methanogenic Archaea ... · To begin enrichments, serum bottles containing sterile anaerobic methanogen media were brought into the anaerobic

1

CharacterizationofhydrogenotrophicmethanogenicArchaeaenrichedfromTrunkRiver

BrittniL.Bertolet

MicrobialDiversity2018-MarineBiologicalLaboratoriesWoodsHole,MA

INTRODUCTION

Inlandlakes,rivers,andreservoirsareincreasinglyrecognizedfortheircontributiontoatmosphericmethane(CH4)concentrations.Globally,inlandwatersareestimatedtoproduced25%ofthecontinentallandsinkinCH4everyyear(Bastvikenetal.2011).However,inachangingworld,theseestimatesaredifficulttoprojectandthisislargelyduetoalackofprocess-basedmodelsthatconsiderthebiologicalcomplexityofthesebiogeochemicalprocesses.Ininlandfreshwaterandbrackishecosystems,CH4isprimarilyproducedbiologicallybymethanogenicArchaea(hereafterreferredtoas“methanogens”),whichregulatetherateofsedimentdiagenesisandcarbonfate(Borreletal.2011).Despitethis,fewecosystemmodelsofCH4productionexplicitlyconsiderthemicrobialcommunityandlittleisknownabouthowdifferencesbetweenmethanogensmaycontributetovariationinecosystemCH4production.

Biologicalmethanogenesisoccursviathreemajormetabolicpathways,characterizedbytheirelectrondonorsandterminalacceptors:acetoclastic(usingacetate),hydrogenotrophic,(usingH2/CO2),andmethylotrophic(usingmethyl-compoundsassubstrates)(Liu&Whitman2008).Infreshwaterandbrackishsediments,methaneisassumedtoresultprimarilyfromtheacetoclasticpathway(Conrad1999),withmanysuggestingthatthegenusMethanosaetatodominatelakesedimentcommunities(ZeppFalzetal.1999;Chanetal.2002).However,communitybiomarkersurveys(16SrRNAandmcrAgenes)increasinglydocumenthigher-than-expectedrelativeabundancesofknownorputativehydrogenotrophicmethanogensinlakesandsoilsenvironments(Nussleinetal.2001;Conradetal.2010).Althoughsequence-basedanalysesdonotdirectlyconsidertheactivecomponentofamicrobialcommunity,thepervasivenessofthesegroupsacrossregionsandecosystemssuggeststheymaybefunctionallyimportantconstituentsofsedimentmethanogencommunities.Unfortunately,fewmethanogenshaveeverbeenisolatedfromsedimentsandmuchisstilltobeunderstoodaboutthedistributionofphysiologicaltraits,suchassubstrateuse,growthrate,andCH4yield.

Inthepresentstudy,IsoughttoisolateandcharacterizehydrogenotrophicmethanogensfromTrunkRiversedimentsusingbothphysiologicalassaysandgenomics.Althoughisolationwasunsuccessful,Ideterminedhowthemethanogenicconsortiumrespondedtotheavailabilityofalternativeelectrondonorsusingexperimentalincubationswithformateadditions.Additionally,usingshotgunmetagenomics,fivemetagenomeassembledgenomes(MAGs)wereconstructedandusedtodeterminebothphylogenyandmetabolicpotentialofthemethanogenicconsortium.

Page 2: Characterization of hydrogenotrophic methanogenic Archaea ... · To begin enrichments, serum bottles containing sterile anaerobic methanogen media were brought into the anaerobic

2

METHODS

Samplecollectionandenrichment:Sedimentwascollectedfromthesediment-waterinterfaceofTrunkRiver(TR),a

brackishriverinWoodsHole,MA(Lat:41.534850,Long:-70.641458).Sedimentwastransportedbacktothelaboratoryandplacedinananaerobicchamberuntilinoculation.

Priortoinoculation,selectivemediatoenrichforhydrogenotrophicmethanogenswaspreparedanaerobically.Toprepare1literofmedia,5mLof1Mammoniumchloridesolution,0.1mLof100mMpotassiumphosphate(pH7.2)solution,5mLof1MMESbuffer(pH5.5),1mLoftraceelements,0.1mLof1%Resazurin,and10mLof100Xfreshwaterbase(consistingof100gNaCl,40gMgCl2.6H2O,10gCaCl2.H2O,50gKClperliter)wereaddedperliterofdeionizedwater.Themediawasthenboiledfor10minutesunderastreamofN2/CO2(80%:20%)gastoboiloutoxygen.ThemediawasalsocooledunderN2/CO2.Oncecooled,1mLofmultivitaminsolution,25mLof1Msodiumbicarbonate,and1mLof1Msodiumsulfidewereadded.Mediawasthenbroughtinsidetheanaerobicchamber,andoncethemediabecameclear,25mLofmediawasdispensedinto100mLserumbottles.Serumbottleswerethencrimpedshutwithair-tightrubberseptaandautoclaved.Aftercoolingfromtheautoclave,0.5mLofantibacterialsolution(1gRifampcinSVper100mLwater)wasaddedtoeachbottle.

Tobeginenrichments,serumbottlescontainingsterileanaerobicmethanogenmediawerebroughtintotheanaerobicchamberanduncrimped.Approximately1goffreshsedimentwastheninoculatedintoeachbottleandserumbottleswerecrimpedshutwithair-tightrubbersepta.Atthegassingstation,headspacewasreplacedwithaH2:CO2gasmixture(20%:80%),usingthreeroundsofrepeatedvacuumandgasreplacement.Afterheadspacereplacement,allenrichmentswerestoredinthedarkat30degreesCelsius,wheretheyremainedforthedurationofthestudy.

Liquidenrichmentswerepassagedevery7-9daysinthesameliquidmediausingananaerobicsyringe.Atotalofthreepassageswereconductedbeforeisolationstrategieswereemployed.Ateachstepofpassage,productionofCH4wasdeterminedthroughgaschromatographywithaflameionizationdetector(FID)andenrichmentswerevisualizedforauto-florescenceat420nmusingaflorescentmicroscopeandtheAlexa488filter.EnrichmentswithoutCH4productionwerediscarded.Isolationapproaches:

Toisolatehydrogenotrophicmethanogens,anumberofdifferentstrategieswereemployed.First,enrichmentswereseriallydilutedwiththeintenttodilute-to-extinctioninliquidmedia.Thisoccurredinthesamemediadescribedpriorinthesame100mLserumbottleswithaH2/CO2headspace.Toobtaincolonies,agarshakes,flat-bottombottles,andplateswereprepared(Fig.1).Agarosewasaddedtothemethanogenmediadescribedabovetoafinalconcentrationof1%agarforeachmethod.

Shakeswereconstructedin25mLBalchtubes,inwhich9mLofsterileanoxic1%agarmediawereaddedtoeachandmixedwith1mLofinoculumbeforesolidification.MediaandinoculationwaspreparedunderunderastreamofN2/CO2atthegassingstation.Fortheflat-bottombottles,mediawaspreparedasdescribedaboveandinoculumwasspreadonthesurfaceoftheagaraftersolidificationandoccurredintheanaerobicchamber.Forplates,two

Page 3: Characterization of hydrogenotrophic methanogenic Archaea ... · To begin enrichments, serum bottles containing sterile anaerobic methanogen media were brought into the anaerobic

3

differentstrategieswereemployed:topagarandnotopagar.Forallthreemethods,inoculumwasseriallydilutedtodeterminebestinoculationconcentration.Additionally,forallthreemethods,headspacewasreplacedwiththesameH2:CO2gasmixtureandreplenishedeverydaytocontinuouslysupplythenecessarysubstrates.Allcultureswerestoredinthedarkat30degreesCelsiusforthelengthofthestudy.

Figure1.Agarshakes(A),flat-bottombottles(B),andpetriplates(C)usedtoisolatehydrogenotrophicmethanogencolonies.Formategrowthexperiment:

TodeterminehowtheavailabilityofformateaffectedCH4productionratesoftheenrichmentmethanogenicconsortium,experimentalincubationswereconstructedin25mLanaerobicBalchtubes(Fig.2).EachBalchtubecontainedafinalvolumeof12mL(10mLofselectivemethanogenmedia,1mLofinoculationfromasinglesourceenrichment,and1mLofadditionalmediabasedontreatment).Theconsortiumwassubjectedtothreedifferenttreatmentsinwhichtheavailabilityofelectrondonorswasmanipulated.TreatmentsincludedH2-only,formate-only,andH2-formate.Fortreatmentsreceivingformate,formicacidwasaddedtoafinalconcentrationof2mMformate.Additionally,theformate-onlytreatmentcontainedaN2/CO2headspaceinsteadofH2/CO2.Finally,1mLofsterileultra-purewaterwasaddedtotheH2-onlytreatmentstokeeptotalvolumeconstantacrosstreatments.

AB

C

H2-only

H2+Formate

Formate-only

Figure2.Experimentalincubationsfortheformategrowthexperiment.

Page 4: Characterization of hydrogenotrophic methanogenic Archaea ... · To begin enrichments, serum bottles containing sterile anaerobic methanogen media were brought into the anaerobic

4

CH4productionwasmonitoredeverydayuntiltheconcentrationofCH4wasunchangingandstationaryphasewasobtained.H2/CO2wasneverreplenished.Incubationswerevisualizedusingmicroscopytodetermineanycursorychangesinrelativeabundancesofuniquecelltypes.

TocalculateCH4productionrates,peakareawasfirstconvertedtopartspermillion(ppm)ofCH4usingastandardcurveproducedonJuly7th,2018.TheconcentrationofCH4(ppm)wasthenconvertedtomicromolar(umol)usingtheidealgaslawandnormalizedbythevolumeofthemedia(mL).TodeterminetherateofCH4production,onlydatafromthegrowthstageoftheexperiment(8/13/2018-8/15/2018)wasusedinalinearregressionagainsttime.Thus,theCH4productionrateisreportedasumolCH4mL-1hr-1.TodeterminedifferencesinCH4productionratesbetweensamples,aone-wayANOVAwasperformedinR.

Metagenomicanalyses:

DNAwasextractedusingaPowerFecalextractionkitfromtheinitialenrichmentsafter21daysofgrowth.DNAwassequencedonanIlluminaHiSeq.RawreadsweretrimmedusingTrimmomatic,co-assembledusingMegaHit,mappedusingBowtie,andbinnedusingconcoct.Oncebinned,MAGswerecheckedforcompletionusingCheckM,whichconsidersthepresenceofsinglecopygenes.TodeterminethephylogenyofconstructedMAGS,16ribosomalproteinsusedinHugetal.2016wereextractedusingaphylogeneticworkflowdescribedinGrahametal.2018.ThisworkflowusesacuratedreferencedatabaseofthesameribosomalproteinsextractedfromavailablemethanogengenomesfromNCBI.Severalphylogenetictreeswereconstructedwiththeentiredatabase,aswellasonlysubsetsofthedatabase.Finally,MAGswereannotatedusingtheRapidAnnotationusingSubsystemTechnology(RAST)platformandmetabolicmodelswerebuiltusingModelSeedinKbase.

RESULTSANDDISCUSSION

Microscopycharacterizationandisolation:ThreeuniquemethanogeniccelltypeswereconfirmedintheTRenrichmentsthrough

microscopy(cocci,rod-like,andspiralshaped)(Fig.3).Additionally,2non-florescentcelltypeswerealsoobserved,withonehighlymotilenon-florescentcelltype.Allcelltypeswereobservedineverypassage,withnonoticeabledifferencebetweenpassagesafterafewdaysofgrowthhadoccurred.However,furtherquantification,eitherwithflowcytometryorspecificFISHprobes,wouldhavegreatlybenefittedthis

Dilution-to-extinctioninliquidmediawasunsuccessfulinproducingpurecultures.CultureseitherproducedCH4andcontinuedtohaveamixedconsortium,ornoCH4wasproducedandfewcellswereeverdetected.Shakesandflat-bottombottleswerealsounsuccessfulinproducingcolonies,howeverallculturesproducedCH4.Theagarplateswerethemostsuccessful.AlthoughIneverobtainedcolonies,onthelastdayofincubation,smallspeckswerenoticeableonthesurfaceoftheagarthatmayhaveproducedcoloniesiflongergrowthwaspossible.Thispotentialforcolonyformationislikelyduetotheincreasedsurfaceareaoftheplates,aswellasthelargeamountofheadspaceavailableintheplatecanisters(Fig.1C).Itisalsoworthnotingthatthesespeckswereobservedonplateswithouttopagarandinoculatedwithundilutedinoculum,sodilutionsarelikelyunnecessaryinfutureattempts.

Page 5: Characterization of hydrogenotrophic methanogenic Archaea ... · To begin enrichments, serum bottles containing sterile anaerobic methanogen media were brought into the anaerobic

5

Figure3.WetmountfromTRmethanogenenrichments,visualizedunderafilter(Alexa488).Methanogensarevisualizedbasedonauto-florescenceat420nm,whichisduetothepresenceofredoxcofactorF420.Uniquecelltypesaredenotedwitharrows.EffectsofformateavailabilityonCH4productionratesofenrichments: FormateavailabilityhadasignificanteffectonconsortiumCH4productionrates(Fig.3B).Alltreatmentsweresignificantlydifferentfromeachother,andincubationswithbothformateandH2hadthehighestrateofCH4production.Interestingly,incubationsreceivingonlyformateasthesoleelectrondonorhadnegligibleCH4production.WhileatraceamountofCH4wasdetectedonthefirstdayofsampling,thisismostlikelyduetoresidualH2thatwasintroducedintheinoculationasCH4concentrationsdidnotincreaseotherwisethroughoutthelengthoftheincubation.However,thisisunconfirmed.

ItisworthnotingthatthesignificantincreaseinCH4productionwhenbothelectrondonorsarepresentisgreaterthanthesumoftheH2-onlyandformate-onlytreatments,suggestingsomeinteractionthatispromotingCH4productionwhenbothelectronacceptorsareavailable.Previousresearchershaveseenevidenceofformate-dependentreductionofCO2withH2inothermembersofMethanobacteriales(Yangetal.2016),whichmaybecontributingtohigherCH4productionrates.However,becausecommunityassemblywasnotdeterminedattheendoftheexperiment,itisdifficulttodeterminethemechanismbehindthiseffect.AnalysesofmetabolicmodelsfromtheconstructedMAGsmayprovidefurtherinsight.

Page 6: Characterization of hydrogenotrophic methanogenic Archaea ... · To begin enrichments, serum bottles containing sterile anaerobic methanogen media were brought into the anaerobic

6

Figure3.AverageCH4concentrationintheheadspaceofexperimentalincubationsforeachdayandtreatment(A).CH4productionrateofeachtreatmentduringthegrowthphase(8/13/18-8/15/18)(B).Errorbarsrepresentstandarderror.Metagenomicanalysisofenrichments:

Shotgunmetagenomicsequencingoftheconsortiumenrichmentsretrievedfourmethanogenbins(M1-M4)andonebacterialbin(B1)(Fig.4).MAGsM1-M3werenearcomplete(90.1-98.9%)withlessthan1%contamination.MAGM4wasmoderatelycomplete(65.8%)withlessthan1%ofcontamination,andMAGB1wassemi-complete(82.7%)with1.3%contamination.TheseMAGsconstitutedonly25.4%ofthetotalbase-pairssequenced,andfurtherrefinementofotherbinscouldprovideadditionalcompleteorsemi-completeMAGs.

Figure4.Visualizationofcompletemetagenomeassembledgenomes(MAGs)constructedfromshotgunmetagenomicsequencingofTRsedimentenrichments.VisualizationwasgeneratedusingAnvi’o.

0

10

20

30

40

8/13/18 8/15/18 8/17/18Date

CH

4 con

cent

ratio

n (u

mol

)Treatment

Formate

H2

H2+Formate

0.00

0.01

0.02

0.03

0.04

Formate H2 H2 + FormateTreatment

CH

4 pro

duct

ion

(um

ol m

L-1 h

r-1)

*

**

***A B

ParentLengthGC-contentbrit2brit4Ribosomal RNAs

M2

M3

M4

B1

M1

Page 7: Characterization of hydrogenotrophic methanogenic Archaea ... · To begin enrichments, serum bottles containing sterile anaerobic methanogen media were brought into the anaerobic

7

Phylogeneticanalysisof16ribosomalproteinsextractedfromtheconstructedMAGsplacedallmethanogenMAGswithinknownhydrogenotrophicmethanogengenerawithhighconfidence(Fig.5).Fourdifferenttreesweregenerated,eachwithadifferentnumberofreferencegenomes,andalltreesdisplayedthesameplacementofMAGs.Thus,thephylogenyisvisualizedinFigure5withonlyasubsetofthereferencedatabase.

ThephylogeneticanalysisofMAGB1wasnotasconclusive.RibosomalproteinsplacedB1withintheTenericutesphylum,withintheMollicutesclass.Althoughno16Sor23SrRNAgeneswereassembled,one5SrRNAgenecouldbeextractedfromtheMAG,andthiswas92%identicaltothegeneinaTenericutesMAGassembledfromenrichmentsfromamethaneseep(Skennertonetal.2016).Membersfromthisgrouparehypothesizedtobeanaerobicfermenters,thatmaysupplymethanogenswithsubstratessuchasacetateandethanol.Itisinconclusive,however,whetherthisisatruesyntrophicrelationship,andfurtherresearchisstillneededtounderstandtheroleofthefree-livingTenericuteswithinmethanogeniccommunities.MembersofMollicuteshavealsobeenshowntopossessresistancetoRifampicinantibiotics,whichmayexplainthepresenceofthisgroupinourenrichments.

Figure5.PhylogenyofmethanogenMAGsconstructedfromTRsedimentenrichments.Desulfurococcusamylolyticuswasusedasanout-groupandbootstrapvaluesarereported.

0.2

Methanococcus maripaludis

Methanocella arvoryzae

TR M4

Candidatus Methanomethylophilus alvus

Methanothermus fervidus

Methermicoccus shengliensis

Methanobacterium formicicum

Methanobrevibacter smithii

Methanofollis ethanolicus

Methanosphaerula palustris

Methanosphaera sp. WGK6

Methanothermobacter marburgensis

Methanococcus aeolicus

Methanobacterium congolense

TR M2

Methanoplanus limicola

Methanococcoides burtonii

Methanocorpusculum bavaricum

Methanosaeta concilii

Methanobrevibacter wolinii

Methanobacterium paludis

Methanopyrus kandleri

Methanothermobacter thermautotrophicus

Methanobacterium lacus

Methanospirillum hungatei

TR M1

Methanococcus voltae

Methanoculleus bourgensis

Methanofollis liminatans

Methanothermococcus thermolithotrophicus

TR M3

Methanolinea tarda

Methanocorpusculum labreanum

Methanotorris formicicus

Methanoregula boonei

Candidatus Methanoperedens nitroreducens

Methanoregula formicica

Methanomassiliicoccus luminyensis

Desulfurococcus amylolyticus

0.98

0.86

1

0.97

1

1

0.91

1

1

0.98

1

0.92

1

1

0.96

1

0.28

0.66

0.991

1

1

1

1

1

0.98

1

1

0.37

0.69

1

0.83

0.98

1

1

1

Page 8: Characterization of hydrogenotrophic methanogenic Archaea ... · To begin enrichments, serum bottles containing sterile anaerobic methanogen media were brought into the anaerobic

8

CONCLUSIONSANDFURTHERDIRECTIONS

HydrogenotrophicmethanogenicconsortiumfromTRsedimentswereenrichedandcharacterized.Atleast5distinctmicroorganismswerepresentandCH4productionratesweresensitivetotheavailabilityofelectrondonors.AdditionsofformatesignificantlyincreasedCH4

productionascomparedwithincubationsreceivingonlyH2.Thishasimplicationsforunderstandingmethanogenesisinnature,asrarelyarecommunitiesisolatedwithonlyoneavailableelectrondonor,andmaypointtoecologicallyimportantmetabolisms.Further,analysisofconstructedMAGsalsosupportedtheuseofformateasanimportantintermediateinthereductionofCO2tomethaneinthishydrogenotrophiccommunity.InbothMAGsM2andM3,formatedehydrogenaseswerepresent,whicharenecessaryforformatedonationofelectronstoheterodisulfideinthelaststepofmethanogenesis.However,furtherresearchisneededtoconfirmthemechanismforhowformateisbeingutilizedbythisconsortium.

Inthisstudy,thecoupleduseoffunctionalassaysandgenomicsanalyseswasapowerfultoolforunderstandingthemetaboliccapacityofmicrobialcommunities,butfurtherworkwouldgreatlybenefittheseconclusions.Particularly,understandingdynamicchangesinthemicrobialconsortiumafterexperimentationwouldhavehelpedsupporthypothesesforhowformateadditionsaffectedCH4production.Thiscouldhavebeenaccomplishedthrougheither16Ssequencing,flowcytometry,orFISHvisualizationoranyotherwaytoquantifymicrobialcommunities,andsubsequentexperimentsshouldconsideremployingsuchmonitoring.

ACKNOWLEDGMENTS

ThankyoutoMadelineLopezMunozandGeorgeO’Toole,whomadealltheanaerobicworkpossible.ElainaGrahamforcontributingsomuchcodeandsupportwiththebioinformatics.RachelWhitaker,GabriellaKovacikova,ScottDawson,NickiLimoli,andJamieHallforendlessencouragement.AlloftheMBLMicrobialDiversitycoursestafffortheincrediblehelpandsupportandknowledge.

REFERENCES

BastvikenD,TranvikLJ,DowningJA,CrillPM,Enrich-PrastA.2011.Freshwatermethaneemissionsoffsetthecontinentalcarbonsink.Science331:50.

BorrelG,JézéquelD,Biderre-PetitC,Morel-DesrosiersN,MorelJP,PeyretP,FontyG,LehoursAC.2011.Productionandconsumptionofmethaneinfreshwaterlakeecosystems.Researchinmicrobiology162(9):832-47.

ChanOC,WolfM,HepperleD,CasperP.2002.Methanogenicarchaealcommunityinthesedimentofanartificiallypartitionedacidicboglake.FEMSMicrobiologyEcology42:119-129.

ConradR.1999.Contributionofhydrogentomethaneproductionandcontrolofhydrogenconcentrationsinmethanogenicsoilsandsediments.FEMSMicrobiologyEcology28:193-202.

Page 9: Characterization of hydrogenotrophic methanogenic Archaea ... · To begin enrichments, serum bottles containing sterile anaerobic methanogen media were brought into the anaerobic

9

ConradR,KloseM,ClausP,Enrich-PrastA.2010.Methanogenicpathway,13Cisotopefractionation,andarchaelcommunitycompositioninthesedimentoftwoclear-waterlakesofAmazonia.LimnologyandOceanography55:689-702.

GrahamED,HeidelbergJF,andTullyBJ.2018.Potentialforprimaryproductivityinaglobally-distributedbacterialphototroph.TheISMEJournal12:1861-1866.

LiuY,WhitmanWB.2008.Metabolic,phylogenetic,andecologicaldiversityofmethanogenicarchaea.Ann.N.Y.Acad.Sci.1125:171–189.

NussleinB,ChinKJ,EckertW,ConradR.2001.EvidenceofanaerobicsyntrophicacetateoxidationduringmethaneproductionintheprofundalsedimentofsubtropicalLakeKinneret(Israel).EnvironmentalMicrobiology3:460-470.

SkennertonCT,HaroonMF,BriegelA,ShiJ,JensenGJ,TysonGW,OrphanVJ.2016.PhylogeneticanalysisofCandidatus‘Izimaplasma’species:free-livingrepresentativesfromTenericutescladefoundinmethaneseeps.TheISMEJournal10:2679-2692.

YangGC,ZhouL,MbadingaSM,LiuJF,YangSZ,GuJD,MuBZ.2016.Formate-dependentmicrobialconversionofCO2anddominantpathwaysofmethanogenesisinproductionwaterofhigh-temperatureoilreservoirsamendedwithbicarbonate.FrontiersinMicrobiology7:365.

ZeppFalzK,HolligerC,GrobkopfR,LiesackW,NozhevnikovaAN,MullerB,WehrliB,HahnD.1999.VerticledistributionofmethanogensinanoxicsedimentofRotsee(Switzerland).Appliedandenvironmentalmicrobiology65:2402-2408.