characterization of sub-cloud vertical velocity distributions...•sandra yuter &, casey...

33

Upload: others

Post on 26-May-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David
Page 2: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Characterization of sub-cloud vertical velocity distributions

and precipitation-driven outflow dynamics using a ship-

based, scanning Doppler lidar during VOCALS-Rex.

Alan Brewer1, Graham Feingold1, Sara Tucker2, and Mike Hardesty1

1NOAA Earth System Research Laboratory, Boulder, Colorado2Ball Aerospace, Boulder, Colorado

Page 3: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Characterization of sub-cloud vertical velocity distributions

and precipitation-driven outflow dynamics using a ship-

based, scanning Doppler lidar during VOCALS-Rex.

Acknowledge:• Chris Fairall, Bob Banta, Dan Wolfe, Ludovic Bariteau

(NOAA ESRL PSD, CSD & CIRES Univ of Colorado)

• Sandra Yuter &, Casey Burleson, Northern Carolina State University

• Simon de Szoeke, Oregon State Univ

• David Mechem, Univ of Kansas

• Paquita Zuidema, Univ of Miami

• Dave Covert, Univ of Washington

Alan Brewer1, Graham Feingold1, Sara Tucker2, and Mike Hardesty1

1NOAA Earth System Research Laboratory, Boulder, Colorado2Ball Aerospace, Boulder, Colorado

Page 4: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Using ship-based Doppler Lidar observations to

compare with LES models

Two approaches :

• Continuous observations, build statistics of turbulence

profiles, and composite the results.

• Combine high temporal and spatial resolution remote

sensing data to study evolution specific examples.

Page 5: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

This talk :

Preparing Lidar data for comparison

• Combine vertical and horizontal velocity

measurements to create turbulence profiles.

• Strength of the turbulence

• Driving mechanism

• Compositing turbulence profiles to investigate

• Diurnal cycles

• Impact of decoupling and drizzle occurrence

• Anatomy of an outflow

• Summary

Page 6: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Turbulence profiles

• Vertical variance

• Skewness

• Horizontal variance

• TKE

• Isotropy Ratio (vertical vs horizontal variance)

• Eddy Dissipation Rate

• Mean wind speed and direction

• Aerosol backscatter strength

Page 7: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Vertical velocities : form statistics from repeating 10

minute collection periods

Strongest vertical motion at cloud base, negative

skewness consistent with top-down mixing driven

by cloud-top cooling

Page 8: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Horizontal velocities : Spatial variability

Scanning measurements along two orthogonal

axes combined to create total horizontal variance.

Pl 1

Pl 2Ship

Page 9: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

One minute to form horizontal variance profiles,

cover from the sea surface though cloud base.

Samples scales of 30m – 6km.

Horizontal velocities : Spatial variability

Page 10: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

The Isotropy ratio is one for isotropic turbulence

)(2

1 22

horvertTKE )(

2222

2

2

2

vu

w

hor

vert

Vertical HorizontalDominates

Page 11: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Eddy Dissipation Rate

Time (10 Minutes typical)

Vertical Velocity (m/s)

He

igh

t (k

m)

1.5

0

log (k)

height 625m slope -5/3

Epsilon (m2s-2)

10-4 10-3

Sp

ec

tru

m

He

igh

t (k

m)

1.5

0

3/53/2)( kkS

Page 12: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Composite Turbulence Profiles• Form cloud base normalized profiles

• Combine data from entire experiment

• Investigate

– Diurnal cycle

– Connection to decoupling and drizzle occurrence

Page 13: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Vert Var (m2s-2) Skewness

Local Solar Time ( 24 Hrs) Local Solar Time ( 24 Hrs)

1.0

0.0

0.5

1.0

-1.0

0.0

0.0

1.0

Clo

ud

Base N

orm

Heig

ht

0.0

1.0

Clo

ud B

ase N

orm

Heig

ht

Vertical Velocity Variance and Skewness

Cloud Boundaries Solar Insolation

Vertical variance is max at night, skewness

consistent with top-down mixing driven by cloud

top cooling.

Page 14: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

1.0

0.0

0.5

-2

-5

-4

1.0

Clo

ud

Base N

orm

Heig

ht

0.0

1.0

Clo

ud B

ase N

orm

Heig

ht

Cloud Boundaries Solar Insolation

Vert Var (m2s-2) log10(Epsilon)

Epsilon has a diurnal pattern with a maximum at

cloud base and at the surface

-3

Local Solar Time ( 24 Hrs) Local Solar Time ( 24 Hrs) 0.0

Eddy Dissipation Rate

Page 15: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

1.0

0.5

1.0

0.0

1.0

Clo

ud

Base N

orm

Heig

ht

0.0

1.0

Clo

ud B

ase N

orm

Heig

ht

Cloud Boundaries Solar Insolation

TKE (m2s-2) Isotropy Ratio

TKE and Isotropy Ratio

TKE has diurnal pattern with max at cloud base.

Isotropy ratio indicates vertical motion most

important near center of BL at night. Horizontal

motion dominates during day.

Local Solar Time ( 24 Hrs) Local Solar Time ( 24 Hrs) 0.0 0.0 -1.0

Page 16: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Decoupling

Base Cloud

LCLBase CloudIndex Decoupling

Clo

ud B

ase (

m)

Lifting Condensation Level (m)

Page 17: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Decoupling and Drizzle OccurrenceD

rizzle

Pro

xy

High

Low

Oc

cu

rre

nc

e

Well mixed Decoupling Index Decoupled

Entire Experiment

Drizzly Proxy derived from C-Band Radar

Periods of stronger decoupling are associated

with higher drizzle rates

Eastern portion relatively well mixed, western

portion had more decoupling

Page 18: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Vertical Skewness

Vertical Variance

Horizontal Variance

Well mixed Decoupling Index Decoupled

0.0

1.0

Clo

ud

Base N

orm

Heig

ht

0.0

1.0

0.0

1.0

0.0

-1.0

0.0

0.5

2.0

0.0

1.0

Turbulence Profiles as a function of Decoupling Index

Vertical variance strongest for well mixed BL. Horizontal

variance maximum at surface and cloud base.

Page 19: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

TKE (m2s-2)

Isotropy Ratio

Well mixed Decoupling Index Decoupled

Clo

ud

Base N

orm

Heig

ht

0.0

1.0

0.0

1.0

0.0

2.0

0.0

1.0

1.0

Turbulence Profiles as a function of Decoupling Index

Strongest TKE associated with well mixed BL near

cloud base. Ratio: vertical motion important at mid

BL with horizontal variance being more important

at surface.

Page 20: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Anatomy of an Open Cell

• Combine scanning remote sensor data

– Lidar residual velocity

– C-Band reflectivity

• Temporal resolution : 0.5 - 3 minutes to

complete a scan

Page 21: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

16:41 16:48

+ 7 minutes

17:01

+ 13 minutesABC

Page 22: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

16:41

A - B

16:48

+ 2 minutes

16:44

16:45

16:46

AB

0 Range (km) 40

1

0

1

0

1

km

km

km

Page 23: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

17:01

+ 13 minutesC

Page 24: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Summary

• Lidar observational data used to create

statistical accumulations of turbulence

quantities

• Scanning remote sensing data used to

study structure and time evolution of open

cell boundaries.

• Results from both approaches are being

be used to compare to LES models.

Page 25: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David
Page 26: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David
Page 27: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

0

10

20

Shallow PPI

High PPI

Shallow RHI

Zenith

minutes

Repeating 20 minute scan sequence

1 2 3 4 5 6 7 8 9 10 11

21-Oct

24-Oct

UTC time (hours)

HRDL RV Brown -VOCALS 2008: Scan Type vs. Date and Time

stare

PPI

RHI

VStare

in port

0 20 40 60

1 Hour

5 10 15 20

30-Oct

UTC time (hours)

HRDL RV Brown -VOCALS 2008: Scan Type vs. Date and Time

stare

PPI

RHI

VStare

in port

5 10 15 20

30-Oct

UTC time (hours)

HRDL RV Brown -VOCALS 2008: Scan Type vs. Date and Time

stare

PPI

RHI

VStare

in port

24 Hours

Page 28: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Continuous operation 21 Oct – 30 Nov 2008

0 5 10 15 20

21-Oct

24-Oct

27-Oct

30-Oct

02-Nov

05-Nov

08-Nov

11-Nov

14-Nov

17-Nov

20-Nov

23-Nov

26-Nov

29-Nov

UTC time (hours)

HRDL RV Brown -VOCALS 2008: Scan Type vs. Date and Time

stare

PPI

RHI

VStare

in port

Page 29: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Average profiles from

entire experiment: day

vs night

Page 30: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

Combining vertical and horizontal velocity data to

form turbulence profiles.

Page 31: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

16:41 A16:48 B

+ 7 minutes

17:01 C

+ 13 minutes

Page 32: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David

12:45 14:15 16:45

15 minute time stepsAdvection removed

GOES

Imagery:

VOCALS

October 27 2008 25 km

Ship location

Page 33: Characterization of sub-cloud vertical velocity distributions...•Sandra Yuter &, Casey Burleson, Northern Carolina State University •Simon de Szoeke, Oregon State Univ •David