charge-shift bonding and its manifestations in chemistry _ article _ nature chemistry

9
Figure 1: Valence bond computed energies (E ) as functions of the interatomic distances (R) for some bonds. Perspective Nature Chemistry 1, 443 - 449 (2009) Published online: 24 August 2009 | doi:10.1038/nchem.327 Subject Categories: General chemistry | Theoretical chemistry Charge-shift bonding and its manifestations in chemistry Sason Shaik 11 , David Danovich 11 , Wei Wu 22 & Philippe C. Hiberty 33 Electron-pair bonding is a central chemical paradigm. Here, we show that alongside the two classical covalent and ionic bond families, there exists a class of charge-shift (CS) bonds wherein the electron-pair fluctuation has the dominant role. Charge-shift bonding shows large covalent–ionic resonance interaction energy, and depleted charge densities, and features typical to repulsive interactions, albeit the bond itself may well be strong. This bonding type is rooted in a mechanism whereby the bond achieves equilibrium defined by the virial ratio. The CS bonding territory involves, for example, homopolar bonds of compact electronegative and/or lone-pair-rich elements, heteropolar bonds of these elements among themselves and with other atoms (for example, the metalloids, such as silicon and germanium), hypercoordinated molecules, and bonds whose covalent components are weakened by exchange-repulsion strain (as in [1.1.1]propellane). Here, we discuss experimental manifestations of CS bonding in chemistry, and outline new directions demonstrating the portability of the new concept. There are probably only a handful of concepts that are as fundamental and central to chemistry as that of the electron-pair bond. Ever since the ingenious hypothesis of Lewis 11 , followed by pioneering work of Heitler and London 22 , on the origins of electron-pair bonding, and the colossal intellectual construct of Pauling 33 , electron-pair bonding has been traditionally classified into two major families 33,, 44,, 55 . One is the family of covalent and polar-covalent bonds, in which the bonding arises predominantly from stabilization due to the spin-pairing in the covalent structure of the bond. The second family involves the ionic bonds, in which the bonding arises primarily from the electrostatic stabilization of the two oppositely charged fragments. Hence, based on this traditional classification, the bonding type can be characterized by knowledge of the static electronic distribution in the bond, using, for example, electronegativities, or electron-density population analyses provided in standard quantum chemical calculations. However, these traditional classes of bonding cannot describe many intriguing features of bonds, of which we mention two examples, one regarding 'ionic' bonds, the other regarding 'covalent' bonds: Thus, for example, the bonds H 3 Si +0.85 F -0.85 , Li +0.94 F -0.94 and Na +0.91 Cl -0.91 , where the superscripted number corresponds to group charges, all have 'ionic' charge distribution (determined by charge-density integrations) 55,, 66,, 77 . But, whereas Li + F - and Na + Cl - behave chemically as genuine ionic bonds, the 'Si + X - ' bonds (X - = halide, perchlorate, and other electronegative groups) behave chemically as covalent bonds 88,, 99,, 1100 . Another striking example is the difference between H 2 and F 2 ; two homonuclear bonds that by all criteria should be classified as covalent bonds, but exhibit fundamental differences. Consider the energy curves ( Fig. 1) of the two bonds calculated recently 55,, 1111,, 1122 . Figure 1a shows that the H–H bond is indeed covalent; its covalent structure accounts for most of the bonding energy (relative to the 'exact' curve). By contrast, for the F–F bond in Fig. 1b, the covalent structure is entirely repulsive, and what determines the bonding energy and the equilibrium distance is the covalent–ionic mixing. This mixing leads to a resonance energy stabilization, which we have termed the 'charge-shift resonance energy' (RE CS ). Thus, despite their apparent similarity, the two bonds are very different; whereas the H–H bond is a true covalent bond, the F–F bond is a CS bond 55,, 1122 that is completely determined by the RE CS quantity. The above-mentioned Si–X bonds are also CS bonds, and the original papers 55,, 1122,, 1133,, 1144 include a few more puzzling examples that counter the traditional classification. Indeed, our work over the past decade demonstrates that CS bonding constitutes a large and distinct class of bonding alongside the two classical families, and that it possesses unique chemical and physical signatures 55,, 1111,, 1122,, 1133,, 1144,, 1155,, 1166,, 1177,, 1188 . The features of this bond family, its territory and chemical manifestations, are discussed in this Perspective.

Upload: je49

Post on 24-Apr-2015

46 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Charge-Shift Bonding and Its Manifestations in Chemistry _ Article _ Nature Chemistry

FFiigguurree11::VVaalleenncceebboonnddccoommppuutteeddeenneerrggiieess((EE))aassffuunnccttiioonnssoofftthheeiinntteerraattoommiiccddiissttaanncceess((RR))ffoorrssoommeebboonnddss..

PerspectiveNatureChemistry11,443-449(2009)Publishedonline:24August2009|doi:10.1038/nchem.327

SSuubbjjeeccttCCaatteeggoorriieess::GGeenneerraallcchheemmiissttrryy||TThheeoorreettiiccaallcchheemmiissttrryy

Charge-shift bonding and its manifestations in chemistrySasonShaik11,DavidDanovich11,WeiWu22&PhilippeC.Hiberty33

EElleeccttrroonn--ppaaiirrbboonnddiinnggiissaacceennttrraallcchheemmiiccaallppaarraaddiiggmm..HHeerree,,wweesshhoowwtthhaattaalloonnggssiiddeetthheettwwooccllaassssiiccaallccoovvaalleennttaannddiioonniiccbboonnddffaammiilliieess,,tthheerreeeexxiissttssaaccllaassssooffcchhaarrggee--sshhiifftt((CCSS))bboonnddsswwhheerreeiinntthheeeelleeccttrroonn--ppaaiirrfflluuccttuuaattiioonnhhaasstthheeddoommiinnaannttrroollee..CChhaarrggee--sshhiiffttbboonnddiinnggsshhoowwssllaarrggeeccoovvaalleenntt––iioonniiccrreessoonnaanncceeiinntteerraaccttiioonneenneerrggyy,,aannddddeepplleetteeddcchhaarrggeeddeennssiittiieess,,aannddffeeaattuurreessttyyppiiccaallttoorreeppuullssiivveeiinntteerraaccttiioonnss,,aallbbeeiitttthheebboonnddiittsseellffmmaayywweellllbbeessttrroonngg..TThhiissbboonnddiinnggttyyppeeiissrrooootteeddiinnaammeecchhaanniissmmwwhheerreebbyytthheebboonnddaacchhiieevveesseeqquuiilliibbrriiuummddeeffiinneeddbbyytthheevviirriiaallrraattiioo..TThheeCCSSbboonnddiinnggtteerrrriittoorryyiinnvvoollvveess,,ffoorreexxaammppllee,,hhoommooppoollaarrbboonnddssooffccoommppaacctteelleeccttrroonneeggaattiivveeaanndd//oorrlloonnee--ppaaiirr--rriicchheelleemmeennttss,,hheetteerrooppoollaarrbboonnddssoofftthheesseeeelleemmeennttssaammoonnggtthheemmsseellvveessaannddwwiitthhootthheerraattoommss((ffoorreexxaammppllee,,tthheemmeettaallllooiiddss,,ssuucchhaassssiilliiccoonnaannddggeerrmmaanniiuumm)),,hhyyppeerrccoooorrddiinnaatteeddmmoolleeccuulleess,,aannddbboonnddsswwhhoosseeccoovvaalleennttccoommppoonneennttssaarreewweeaakkeenneeddbbyyeexxcchhaannggee--rreeppuullssiioonnssttrraaiinn((aassiinn[[11..11..11]]pprrooppeellllaannee))..HHeerree,,wweeddiissccuusssseexxppeerriimmeennttaallmmaanniiffeessttaattiioonnssooffCCSSbboonnddiinnggiinncchheemmiissttrryy,,aannddoouuttlliinneenneewwddiirreeccttiioonnssddeemmoonnssttrraattiinnggtthheeppoorrttaabbiilliittyyoofftthheenneewwccoonncceepptt..

Thereareprobablyonlyahandfulofconceptsthatareasfundamentalandcentraltochemistryasthatoftheelectron-pairbond.EversincetheingenioushypothesisofLewis11,followedbypioneeringworkofHeitlerandLondon22,ontheoriginsofelectron-pairbonding,andthecolossalintellectualconstructofPauling33,electron-pairbondinghasbeentraditionallyclassifiedintotwomajorfamilies33,,44,,55.Oneisthefamilyofcovalentandpolar-covalentbonds,inwhichthebondingarisespredominantlyfromstabilizationduetothespin-pairinginthecovalentstructureofthebond.Thesecondfamilyinvolvestheionicbonds,inwhichthebondingarisesprimarilyfromtheelectrostaticstabilizationofthetwooppositelychargedfragments.Hence,basedonthistraditionalclassification,thebondingtypecanbecharacterizedbyknowledgeofthestaticelectronicdistributioninthebond,using,forexample,electronegativities,orelectron-densitypopulationanalysesprovidedinstandardquantumchemicalcalculations.However,thesetraditionalclassesofbondingcannotdescribemanyintriguingfeaturesofbonds,ofwhichwementiontwoexamples,oneregarding'ionic'bonds,theotherregarding'covalent'bonds:

Thus,forexample,thebondsH3Si+0.85F-0.85,Li+0.94F-0.94andNa+0.91Cl-0.91,wherethesuperscriptednumbercorrespondstogroupcharges,allhave'ionic'

chargedistribution(determinedbycharge-densityintegrations)55,,66,,77.But,whereasLi+F-andNa+Cl-behavechemicallyasgenuineionicbonds,the'Si+X-'bonds(X-=halide,perchlorate,andotherelectronegativegroups)behavechemicallyascovalentbonds88,,99,,1100.

AnotherstrikingexampleisthedifferencebetweenH2andF2;twohomonuclearbondsthatbyallcriteriashouldbeclassifiedascovalentbonds,butexhibit

fundamentaldifferences.Considertheenergycurves(FFiigg..11)ofthetwobondscalculatedrecently55,,1111,,1122.FFiigguurree11aashowsthattheH–Hbondisindeedcovalent;itscovalentstructureaccountsformostofthebondingenergy(relativetothe'exact'curve).Bycontrast,fortheF–FbondinFFiigg..11bb,thecovalentstructureisentirelyrepulsive,andwhatdeterminesthebondingenergyandtheequilibriumdistanceisthecovalent–ionicmixing.Thismixingleadstoaresonanceenergystabilization,whichwehavetermedthe'charge-shiftresonanceenergy'(RECS).Thus,despitetheirapparentsimilarity,thetwobondsare

verydifferent;whereastheH–Hbondisatruecovalentbond,theF–FbondisaCSbond55,,1122thatiscompletelydeterminedbytheRECSquantity.The

above-mentionedSi–XbondsarealsoCSbonds,andtheoriginalpapers55,,1122,,1133,,1144includeafewmorepuzzlingexamplesthatcounterthetraditionalclassification.Indeed,ourworkoverthepastdecadedemonstratesthatCSbondingconstitutesalargeanddistinctclassofbondingalongsidethetwoclassicalfamilies,andthatitpossessesuniquechemicalandphysicalsignatures55,,1111,,1122,,1133,,1144,,1155,,1166,,1177,,1188.Thefeaturesofthisbondfamily,itsterritoryandchemicalmanifestations,arediscussedinthisPerspective.

Page 2: Charge-Shift Bonding and Its Manifestations in Chemistry _ Article _ Nature Chemistry

TheprincipalVBstructureisshowninblueandtheexactgroundstateinred;thelatteristhecovalent–ioniclinearcombinationdefinedbyeq.(1).aa––ff,TheprincipalVBstructureisthecovalentoneforH–H(aa),F–F(bb),B–H(cc)andF–H(dd),andtheioniconeforNa–F(ee)andNa–Cl(ff).Theenergydifferencebetweentheexact(red)curveandthedominantVB-structurecurve(blue),attheminimumdistanceofthebond,isthecharge-shiftresonanceenergy.Partsaaandbbarereproducedwithpermissionfromref.55,©2005Wiley.

FFuullllssiizzeeiimmaaggee((6600KKBB))

TThheeoorreettiiccaallcchhaarraacctteerriizzaattiioonnooffbboonnddttyyppeess

Theemergenceofthreebondingfamilies—covalent,ionicandnowCS—wasoriginallyderivedfrommodernvalencebond(VB)calculations1122.Asexpressedineq.(1),theVBwavefunction( )ofabondA–Xiscomputedasacombinationofthecovalentform cov(A – X),andtwoionicforms, ion(A+X-)and 'ion(A

-X+):

Thebond-dissociationenergy(De)istheenergyofthiscovalent–ionicwavefunctionrelativetotheseparatefragments(A andX )attheirrelaxedgeometric

andelectronicstructures.Thus,Dehastwocontributions;onecomesfromthebondingenergyoftheprincipalVBstructure,andtheotherfromRECSdueto

thecovalent–ionicmixing.TheprincipalVBstructureistheonehavingthelowestenergy,andhencealsothelargestcoefficientamongthethreestructuresineq.(1).ItscontributiontothebondingenergyisreferredtoasDcovorDion,whereinthesubscriptspecifiesthedominantVBstructure.Inallcases,RECSis

determinedbyreferencetotheprincipalVBstructure,forexample, covinFFiigg..11aa––dd,or ion(FFiigg..11ee,,ff).

ThesequantitiescharacterizethebondingtypeascanbegleanedfromFFiigg..11.ThustheprincipalVBstructureforbothH–HandB–His cov,theRECSquantityissmallandmuchlesssignificantthanthelargeDcov(FFiigg..11aa,,cc);inaccordancewiththis,thesebondsareclassicalandpolar-covalenttypes,

respectively.Bycontrast,F–H(FFiigg..11dd)showsaweaklyboundprincipalstructure cov,whereasthemajorcontributiontothebondcomesfromRECS.An

extremecaseistheF–Fbond(FFiigg..11bb)inwhichtheprincipalstructure covisnotevenbonded,thatis,Dcovisnegative,whereasRECSisevenlargerthan

thetotalbondingenergy.Inagreementwiththis,F–HandF–FarebothCSbonds.Finally,inNa–FandNa–Cl(FFiigg..11ee,,ff)theprincipalVBstructureisnow

ion,andtheRECSquantityisaminorcontributor,makingbothclassicalionicbonds,wheremostofthebondingenergyarisesfromtheionicstructure.

Analternativewaytocharacterizebondinguseselectron-densitytheories,suchasatomsinmolecules(AIM)1199andelectronlocalizationfunction(ELF)2200.TheAIMparameterscanbeeithercalculatedorderivedfromdensitydeterminedexperimentally,andareusedbyexperimentalchemiststocharacterizeinteractionswithinmolecules2211,,2222.Inthistheory,abondisgenerallycharacterizedbyabondpath,whichdefinesamaximumdensitypathconnectingthebondedatoms.Thepointofthepathatwhichthedensityisataminimumiscalledthebondcriticalpoint(BCP),andthevaluesofthedensity, (rc),wherercisthelocusofthebondcriticalpointandtheLaplacian, 2 (rc),atthispointarecharacteristicofthebondingtype.AccordingtoAIM,aclassicalcovalent

bondistypifiedbyasignificant (rc)value,andalargenegative2 (rc).Bycontrast,closed-shellinteractions,whichexperiencePaulirepulsions(also

knownasoverlaprepulsionorexchangerepulsion),asinionicbonds,ortheHe---Heinteraction,havecharacteristicallyasmallcriticaldensityandapositiveLaplacian.

TheLaplacianisespeciallytelling1199,,2233,asitisconnectedtothekineticandpotentialenergydensitiesatBCP,G(rc)andV(rc),respectively,bythefollowing

local-virialtheoremexpression:

Thus,anegativeLaplacianmeansthatthebondingregionisdominatedbytheloweringofthepotentialenergy,whereasapositiveLaplacianmeansthattheinteractionistypifiedbyexcesskineticenergy,andhenceisrepulsive.

TheELFapproachisanothertopologicalmethod,whichusesafunctionrelatedtothePaulirepulsiontocarryoutapartitionofthemolecularspaceintobasinsofattractorsthatcorrespondtothevolumesoccupiedbycoreinnershells,bondsandlonepairs.AsintheLewismodel,avalencebasinmayeitherbelongtoasingleatomicshellorbesharedbyseveral.Inthefirstcase,thebasiniscalledmonosynapticandcorrespondstoalone-pairregion,andinthesecondcaseitispolysynaptic,andspecificallybisynapticforatwo-centrebond.Thebasinpopulation, ,anditsvariance, 22,arecalculatedbyintegratingtheone-electronandthepairdensityoverthevolumesofthecorrespondingbasins.Foraclassicalcovalentbond,thebasinisdisynaptic,itspopulationiscloseto2.0,andthevarianceissignificantlysmallerthanthepopulation,whereasaclassicalionicbondsuchasNaClhasonlycoreandmonosynapticbasins55,,2200,,2244.

Toprovideaglobalpictureofthevariouscategoriesofbonds,27bonds55,,1111,,1122,,1133,,1144,,1155,,1166,,1177,,1188arepresentedinTTaabbllee11,andareorganizedintothreegroups,labelledI–III.ThefirstgroupinvolveshomonuclearbondsfromH–Htothe'inverted'C–Cbondin[1.1.1]propellane(seeFFiigg..22cc)1188.GroupsII

Nature Chemistry

Page 3: Charge-Shift Bonding and Its Manifestations in Chemistry _ Article _ Nature Chemistry

FFiigguurree22::SSoommeeEELLFFrreepprreesseennttaattiioonnssooffeelleeccttrroonnddeennssiittyyiinnaaffeewwttyyppiiccaallccaasseess..

aa,TheELFdisynapticbasin55forH3C–CH3.bb,Themonosynapticbasins55fortheF–Fbond.cc,Disynapticbasinsforthewing

bondsof[1.1.1]propellane,andtwomonosynapticbasinsforthecentralinvertedbond2266.ThenatureofeachbondisfurthercharacterizedbyRECS,theELFbasinpopulation ,anditsvariance

22,thedensity atthebondcriticalpointandthe

correspondingLaplacian 2 (energiesareinkcalmol-1,densitiesinea0-3,Laplaciansinea0

-5).ForH3C–CH3andF–F,the

ELFandAIMparametersaretakenfromRefs55and1111,respectively.For[1.1.1]propellane,theAIMparametersareexperimentalvalues2255(averagedforthewingbonds)fromthestudyofasubstituted[1.1.1]propellanederivative.TheELFdrawingsinaaandbbarereproducedwithpermissionfromref.55,©2005Wiley.TheELFdrawingincisreproducedwithpermissionfromref.2266,©2007Wiley.

FFuullllssiizzeeiimmaaggee((3399KKBB))

TTaabbllee11::AAccoolllleeccttiioonnooffbboonnddsswwiitthhtthheeiirrVVBBaannddAAIIMMpprrooppeerrttiieess::ggrroouuppIIccoorrrreessppoonnddssttoohhoommoonnuucclleeaarrccoovvaalleennttaannddCCSSbboonnddss,,IIIIttoohheetteerroonnuucclleeaarrccoovvaalleennttaannddCCSSbboonnddss,,aannddIIIIIIttooiioonniiccbboonnddss..

FFuullllttaabbllee

andIIIinvolveheteronuclearbonds,fromC–HtoSi–F.EachbondischaracterizedbyVBproperties;theweightoftheprincipalVBstructure( cov, ion),the

bondingenergyofthatstructure(Dcov,Dion)followedbythefullbond-dissociationenergy(De),andRECS,followedbytherelativeresonanceenergy

(%RECS),whichisthepercentageratioofRECStoDe.ForsomeofthebondsweshowAIM-derivedquantities, and2 aswellastheLaplacian

componentsintheBCPforbondingduetotheprincipalstructureofthebond( 2 covor2ion),andthecovalent–ionicresonance(

2res)1111.

LetusfirstinspectthehomonuclearbondsinpartIofTTaabbllee11,whichbyalldefinitionscouldnotpossessstaticbond-ionicities.Thebondenergiesinentries1–4aredominatedbythecovalentcomponent,withRECSbeingtheminorbondingcontribution(<50%).Bycontrast,thebondsinentries6–10,allhavea

bondingenergydominatedbyRECS(>100%),whereasthecovalentstructureisrepulsive(Dcov<0).TheN–Nbond,entry5,isaborderlinecase,withRECSaccountingfor66.6%ofthetotalbondingenergy.LeavingasidetheweakNa–NaandLi–LibondsforwhichallAIMparametersareclosetozero,thereisanexcellentcorrelationbetweentheRECSquantitiesandtheAIMparameters,especiallywithinthesamerowoftheperiodictable.Thus,fromC–CtoF–F

(entries4–7),theresonancecomponentoftheLaplacian( 2res)ismoreandmorenegative,inagreementwiththeincreaseofRECS,whereasthecovalent

component( 2cov)goesfromnegativetopositivevalues,inagreementwiththerepulsivenatureofthecovalentstructureinCSbonds.Asaresult,the

totalLaplacian 2 islargeandnegativeforclassicallycovalentbondsandeitherasmallnegativeorapositivevalueforCSbonds.Notethat,accordingtoboththeRECSandtheexperimentallyderived

2 values2255,the[1.1.1]propellanemoleculeembodiesthetwocategoriesofbonds,classicallycovalentfor

thewingbonds(entry11)andCSbondforthe'inverted'centralbond(entry10).

ThesamedistinctionbetweenthecovalentandCSbondgroupswasrecentlyshowntoemergefromELFanalysis55.Thus,bondssuchasH–H,C–CandLi–Li,werefoundtopossessdisynapticbasinswithapopulationcloseto2.0andsmallvariances,whereasbondssuchasF–F,Cl–Cl,O–O,Br–Br,N–NandtheinvertedC–Cbondof[1.1.1]propellanepossesssmallbasinpopulations2266( 1.0),withvariancesandcovariancesaslargeasthepopulation.Inthestatisticaltheoryofthebasinpopulations,thecovariances55,,2277gaugedirectlythecovalent–ionicfluctuationsand,usually,arelargefortheCSbondsandsmallforthecovalentbonds55.However,asthecovariancesshowsimilartrendstothevariancesweonlyshowthelatterinthefollowingdiscussion.ThesetrendsaredemonstratedinFFiigg..22,whichshowsthemolecularbasinsforH3C–CH3,F–FandC–Cin[1.1.1]propellane,alongsidetheirVBandAIM

properties.Furthermore,itisseeninFFiigg..22bb,,ccthatthedisynapticbasinsofF–FandtheinvertedC–Cbondofpropellaneareinfacttwomonosynapticbasins,muchlikedissociatedbonds.Thus,thethreemethodsofdiagnosingbondingagreeontheclassificationofhomonuclearbondsintotwofamilies,andtheVBmethodbringsadditionalenergeticinsightthathighlightsthedominantroleoftheRECSenergyintheCSbondgroup.

TurningbacktoheteropolarbondsinpartIIinTTaabbllee11,wenotethefollowingtrends.WhereasthecovalentVBstructureistheprincipaloneforallthesebonds,thebondsstillfallintotwodistinctgroups.Specifically,entries12–15belongtotheclassicalpolar–covalentbondfamilybasedontheir%RECS,which

Page 4: Charge-Shift Bonding and Its Manifestations in Chemistry _ Article _ Nature Chemistry

FFiigguurree33::CCoorrrreellaattiioonnoofftthheecchhaarrggee--sshhiifftt//ccoovvaalleennttbboonnddcchhaarraacctteerrwwiitthhtthheerreeppuullssiivvee//aattttrraaccttiivveennaattuurreeoofftthheeccoovvaalleennttiinntteerraaccttiioonn,,aannddwwiitthhtthheeeelleeccttrroonneeggaattiivviittiieessoofftthheebboonnddeeddaattoommss..

iswellbelow50%.Bycontrast,thebondsinentries16–22allhaveweaklybondedcovalentstructures,andlargeRECSexceeding50%andinsomecases

>100%.InpartIIIofTTaabbllee11theprincipalVBstructureofallbondsisionic.Thebondingenergiesinentries23–26arealldominatedbytheelectrostaticcontributiontobonding(Dion),withsmallRECScontributions.Theseareclassicalionicbonds.Finally,theSi–Fbondinentry27isspecial:itsprincipalVB

structureisionic;itsstaticionicityislarge,butitsRECSissignificant,muchlargerthanthatintheclassicalionicbondsinIII.Valencebondtheorypredicts55

thatthisbondwillbeverydifferentfromionicbonds.Asalreadyalludedtoabove,theSi–Xbondsbehaveasthoughtheywerecovalentdespitetheirlargeionicity88.Here,inIIandIII,thesebondsandtheirheavieranaloguesareclearlymarkedeitherasCSbonds(Si–Cl,Ge–Cl)1144orasbondswithalargeCScharacter(Si–F)55.

TheAIManalysisoftheheteropolarbondsinIIdoesnotdistinguishbetweenthecovalentandCSbonds,buttheLaplaciancomponentsintheBCPshowthattheCSbondshavemorepronounced 2 resvalues

1111comparedwiththeclassicalcovalentbonds,inlinewiththedominantRECSquantity.

Interestingly,theELFanalysis55ofthesebondsshowsbettertheirCSnature;allhavingdepleteddisynapticbasins( =0.86–1.22)withhighvariances(0.64–0.68),andthecaseofSi–FisverysimilartoF–F,withameagrepopulation(0.27)andavariance(0.24)thatisequaltothepopulation.Finally,theAIManalysisoftheclassicalionicbondsinIII(ref.1111)showstheexpectedcharacteristicsfromclosed-shellinteractions;allhavepositiveLaplaciansthataredominatedbytheioniccomponent, 2 ion.Inagreementwiththisclassificationoftheclassicalionicbonds,ELFshows

55thatthesebondsonlypossess

monosynapticbasins.

Insummary,CSbondingemergesasadistinctclassalongsidethecovalentandionicbonds.InVBtheory55,,1111,,1122,,1133,,1144,,1155,,1166,,1177,,1188,CSbondingistypifiedbylargeRECS,andinELF,byadepletedbasinpopulationwithlargevarianceandcovariance

55.Inaddition,homonuclearCSbondingis

characterizedinAIMbyasmallnegativeorapositiveLaplacianoftheelectrondensity1111,,2288.ItshouldbenotedthatthecharacterizationofCSbondingbyAIMandELFelectron-densityanalysesisindependentofthetheoreticalmethodthatisusedtocomputethewavefunctionorelectrondensity;forexample,molecularorbitalbondingtheoryordensityfunctionals55,,1111,showingthatthelattermethodseffectivelyaccountforCSbonding,evenifnotintheexplicitwayachievedbyVBtheory.ThereisofcoursearelationshipbetweentheVBmethodandmolecularorbitalordensity-functional-theory-basedmethodsofenergypartitioning(Kitaura–Morokuma2299,Ziegler–Rauk3300,Baerends–Bickelhaupt3311).Althoughthesemethodsdonot,asyet,makeprovisionstocharacterizeCSbonding,theyshareafewessentialfeatureswiththeVBmodel:themajoroneisthePaulirepulsionthatistheoriginofthelargecovalent–ionicresonanceenergy.InthisrespecttheseenergypartitionmethodsshouldseeadifferencebetweenbondssuchasH2andF2(ref.3322).

PPhhyyssiiccaalloorriiggiinnssooffCCSSbboonnddiinngg

ThelargeRECSquantityofCSbondsisanoutcomeofthemechanismnecessarytoestablishequilibriumandoptimumbondingduringbondformation.This

mechanismhasbeenanalysedbeforeindetail55,,1122,,3333;herewepresentasimpleranalysis.Bycomparingtheatomicandcovalentradiiintheperiodictable,onefindsthatgenerallyrATOM<rcov.Thismeansthatasatoms(fragments)bindtheyshrink.Theshrinkagecausesasteepincreaseinthekineticenergyof

thefragments,whichexceedstheloweringofthepotentialenergyduetothediminishedsize3344,,3355,,3366,,3377,,3388,,3399,,4400.Thus,theshrinkagetipsthevirialratioofthekinetic(T)versuspotential(V)energiesoff-equilibrium(V/T=-2atequilibrium).Thecovalent–ionicresonanceisthemeanswherebythekineticenergycanbereducedtorestorethevirialratio1122,,3344,andthisistrueinallbonds.Thekineticenergyriseduetoshrinkageisproportionaltothecompactnessofbondingpartners,andtherefore,asthefragmentsinbondingbecomemoreelectronegative,andhencemorecompact,thekineticenergyriseduetoshrinkagewillgetsteeper.Moreover,whentheatoms(fragments)bearlone-pairs,athree-electronrepulsionappearsbetweenthe lone-pairofonefragmentandthebondingelectronoftheother.Thiseffectwilldestabilizethecovalentstructure,asenvisagedoriginallybySanderson4411,whotermedthisasthelone-pairbond-weakeningeffect(LPBWE);thisPaulirepulsionraisesthekineticenergyofthebond,andtheeffectbecomesmoresevereasthenumberoflonepairsontheatomincreases.Aselectronegativefragmentsarealsolone-pairrich,thecombinationofatomicshrinkageandLPBWEcausesahighexcesskineticenergy.Insuchcases,theresonanceenergythatwillberequiredtorestorethevirialratiobecomesnecessarilyverylarge,andonefindsbondswithweakenedcovalentstructuresandlargeRECSquantities.Thus,farfrombeingamerephenomenologicalmodel,CSbondingisafundamental

mechanismthatisnecessarytoadjustthekineticandpotentialenergytothevirialratioatequilibrium,inresponsetothePaulirepulsivestrainexertedonthebond.

TheaboverelationshipsareillustratedinFFiigg..33;partashowsaplotofthecovalentpartoftheLaplacianagainstDcovforhomonuclearbonds1111.Intheright

lowerquadrant,whereDcov>0and2cov<0,arethebondswithstabilizedcovalentbonding.Thesecondgroup,intheupperleftquadrant,involves

electronegativeandlone-pair-richatomsand'invertedcarbons',whichundergoCSbonding.Itcanbeseenthatthisbonding-typeisassociatedwithweakenedcovalentspinpairing(Dcov<0),owingtolone-pairrepulsion,whichraisesthekineticenergy,asseenfromthepositivesignof

2cov.

Page 5: Charge-Shift Bonding and Its Manifestations in Chemistry _ Article _ Nature Chemistry

aa,ThecovalentLaplacian, 2 cov,versusthecovalentbondenergy,Dcovforaseriesofhomonuclearbonds.bb,RECS(A–A)

versustheelectronegativityofA( A).cc,RECSforA–AandA–Xbondsversustheaverageelectronegativityofthebond.dd,

RECSfor -bondsversustheaverageelectronegativityofthebond.ee,AplotoftheresonanceLaplacianversustheaverage

electronegativityofthebond.Partsaaandeereproducedwithpermissionfromref.1111,©2009Wiley.Partsbb––ddreproducedwithpermissionfromref.55,©2005Wiley.

FFuullllssiizzeeiimmaaggee((3399KKBB))

FFiigguurree33bbshowstheRECSquantitiesforhomonuclearA–Abonds,plottedagainsttheelectronegativity( A)ofA.Itisseenthatineachperiod,RECSincreasesastheelectronegativtyincreases.FFiigguurree33ccshowsasimilarplotbutnowusingbothhomonuclearandheteronuclearbonds55,andFFiigg..33ddshowsthesametrendfor -bonds1155.ItisapparentthattheRECSquantityofthebondgenerallyincreasesastheaverageelectronegativityofthebond

partnersincreases.Finally,FFiigg..33eeshowsthattheresonancecomponentoftheLaplacianthatgaugestheloweringofthekineticenergybycovalent–ionicmixingalsocorrelateswiththeaverageelectronegativityofthebond1111.InthisrespectwenotethatwhatdeterminestheRECSquantityisnotthesimple

orbitaloverlap,andinfact,theRECSincreasesastheoverlapbecomessmaller55,,1122.Forexample,theorbitaloverlapinH2ismuchlargerthaninF2,

whereasthecovalent–ionicresonanceenergybehavesintheoppositeway.ThisunderscorestherelationshipofRECStotheexchange–repulsiondecrease

inthebondingregionratherthantothesimple'sharingofdensity'asincovalency.

Theexchange–repulsionpressurethatisassociatedwiththelonepairsofelectronegativefragmentsisnottheonlyfactorthatcanpromoteCSbonding.Arecentlyidentifiedadditionalfactor55,,1122,,1133,,1144,,1177wasexpressedinbondsbetweenmetalloidsofgroup14andelectronegativegroups,forexamplealltheSi–F,Si–ClandGe–ClbondsinTTaabbllee11.TheVBcalculationsforthesebondsshowthatthecorrespondingioniccurvefortheMe3Si–Clbond,forexample,

ismuchdeeperthanthatforthecorrespondingMe3C–Clbond1177.Moreover,theioniccurveMe3Si

+Cl-hasatighterminimumthanMe3C+Cl-.Thismeans

thattheMe3Si+ionissmallerthantheMe3C

+ionalongthelineofapproachtothecentralatom(siliconorcarbon),inharmonywiththefactthatthechargeis

completelylocalizedonSiinMe3Si+,whereasitishighlydelocalizedinMe3C

+.Thiscausestheionicandcovalentstructurestobecloseinenergyin

Me3SiCl,thusleadingtoahighRECSquantity,whichisapparentfromTTaabbllee11fortheSi–Clbond1177.

MMaanniiffeessttaattiioonnssooffCCSSbboonnddiinngg

HavingshowntheemergenceofCSbondinganditspromotingfactors,herewefollowwithsomeevidenceforthesignatureofthisbondtypeinthechemicalbehaviour.

EEvviiddeenncceeooffCCSSbboonnddiinnggffrroommeelleeccttrroonn--ddeennssiittyymmeeaassuurreemmeennttss.TheexistenceoftheCSbondfamilywilleventuallybeconsolidatedbyexperimentaldeterminationoftheLaplacianofvariousbonds,asalreadydonefor[1.1.1]propellanederivatives2255,N2O4(ref.4422)andothers

2211.Inthe

meantime,theexistenceoftwodistinctfamiliesalreadyemergesfromelectron-density-differencemaps(measurableexperimentally),whichplotthedifferencebetweentheactualmoleculardensityandthedensityofareferencestatemadefromsphericalatoms( = Mol- Ref),atthesamegeometryas

themolecule.Thesedata4433,,4444,,4455,,4466clearlyshowabond-groupwith >0,whichcoincideswiththeclassicalcovalentbond,andasecondgroupof'no-densitybonds'with <0,whichcoincideswiththeCSbondingfamily.Theexampleof[1.1.1]propellaneshowsthetwobondtypes2255;theC–Cbondsinthewingsarenormalcovalentbondswith >0,whereasthe'inverted'(C–C)has <0.Althoughthedeformationdensitydependsonthedefinitionofthereferenceatomicstate4477,theexampleofpropellanes4433,,4444,,4455,wherethesamemoleculedisplaystwoC–Cbonds,onehavingnegativeandtheotherpositivedeformationdensities,isfreeofthislimitation.

EEvviiddeenncceeffoorrCCSSbboonnddiinnggiinncchheemmiiccaallrreeaaccttiivviittyy.Thefindingsthathalogen-transferreactions(andespeciallyoffluorine)havemuchlargerbarriers(by>20kcalmol-1forX=F)thanthecorrespondinghydrogen-transferprocesses,isassociatedwiththeRECSquantityofthebond

1166.Asweshowed

recently1166,thebarrierdifferencebetweenthetwoseriesfollowsaverysimplerelationship:

NotethatmeasurementofthebarrierdifferenceforthetwoseriesenablesquantificationoftheCSresonanceenergyfromexperimentalbarriers.

RRaarriittyyooffssiilliicceenniiuummiioonnssiinnccoonnddeennsseeddpphhaasseess.AsSi–XbondshavelargeRECSvalues,theirchemicalbehaviourcanbecontrastedwithcarbon,

whichdoesnotgenerallyinvolveCSbonds.Oneofthemanifestationsistherareionicchemistryofsiliconincondensedphases88,comparedwiththeubiquityincarbon.ArecentVBstudyshowed1177thattheMe3Si

+Cl-structureinaqueoussolutionretainsthetightion-pairminimum,andthusmixesstrongly

withthecovalentstructureandacquireslargeRECS.ThislargeRECSisthemajorreasonwhythebondwillnotundergoheterolysisinsolution(butwillprefer

associativeprocesses),andwhyinthesolidstateevenPh3Si–OClO3isacovalentsolid1100bycontrasttothecarbonanalogue,whichhasanNa+Cl--type

Page 6: Charge-Shift Bonding and Its Manifestations in Chemistry _ Article _ Nature Chemistry

latticewithPh3C+andClO4

-ions4488andothers4499.

CChhaarrttiinnggtthheetteerrrriittoorryyooffCCSSbboonnddiinngg

CSbondingoriginatesfromtheequilibriumconditionofthebond,definedbythevirialratio.Itispromotedbytwomainfactors.

First,byexchangerepulsionthatweakensthecovalencyofthebondandinduceslargeRECSvalues.Thisexcessiveexchangerepulsionistypicalto

electronegativeandlone-pair-richatoms,orbondsweakenedbyexchange–repulsionpressure,asthebridgeheadC–Cbondin[1.1.1]propellane1188,andmanyothersmall-ringpropellanes.

Second,fragmentsthatformextremelysmallcations,whichresembleaproton,withallthepositivechargelocatedatthecentralatom,likeinthesiliceniumcation,R3Si

+,willpromoteCSbondingespeciallywithelectronegativeandlone-pair-richatoms55,,1144,,1177.

Withthesepromoters,CSbondingformsadistinctgroupofbondingthattranscendsconsiderationofstaticchargedistribution,andthatpossessesuniquechemicalsignatures.SomeofthesebondsarecollectedinTTaabbllee11.Butthereareothers,forexample, -bonds,indoublyandtriplybondedmolecules1155,,5500,andinmanyhypercoordinatedcompounds(forexample,PCl5,XeFnandsoon)

55.ClearlymanymoreCSbondsarewaitingtobeidentifiedinnew

molecules.

Futuredirectionsaremany.Afruitfuloneishypercoordinationandaggregation.Thus,forexample,thesmallsizeofR3Si+,andheavieranalogues,mean

thattheywilltendtoformhypercoordinatedcompounds;insolution,inthesolidstate5511andeveninthegasphase,wheresomeunusualmoleculeshavebeenreported5522,,5533,andbridged(Si---X---Si)+systems,whichparticipateincatalyticbondexchangereactions5544.Metal–metalbondsinsomebimetalliccomplexescouldwellbeCSbonds,asinM2(formamidinate)4complexes(M=Nb,Mo,Tc,Ru,Rh,Pd)wherelargepositivevaluesof

2 (rc)havebeen

reported5555.Otherdirectionsinvolvethegenerationof[1.1.1]propellaneinwhichtheCH2wingsaresubstitutedbyheteroatomsthatexertexchangerepulsion

pressureontheinvertedC–Cbond,forexample,HN,OandS(ref.1188).Thein-plane -typebondinortho-benzyneisanotherbondthatisaffectedbyexchange–repulsionpressure.Protonationormethylation(byMe+)ofC–NbondsmayconvertthemintoCSbonds5566,afactthatmayconcernDNAbases,andmayhavemechanisticeffects,asintheprotonatedarginineinthemechanismofnitricoxidesynthase5577.Mostbondsunderimmenseexternalpressure5588arelikelytobeCSbonds,andencapsulatedhighlypositiveionswillbeCS-bound5599,,6600.

Thus,CSbondingisnotmerelyanacademicabstraction.AsnewexamplesorexperimentalmanifestationsofCSbondingwillstarttoaccumulateandberecognized,theconceptofCSbondingwillgraduallybeacceptedbythechemicalcommunity,andwillfindmoreapplications.

References

Lewis,G.N.Theatomandthemolecule.J.Am.Chem.Soc.3388,762–785(1916).|AArrttiiccllee|CChheemmPPoorrtt|1.

Heitler,W.&London,F.Wechselwirkungneutraleratomeunhomöopolarebindungnachderquantenmechanik.Zeits.fürPhysik.4444,455–472(1927).|AArrttiiccllee|CChheemmPPoorrtt|

2.

Pauling,L.TheNatureoftheChemicalBond(CornellUniv.Press,1939).3.

London,F.Zurquantentheoriederhomöopolarenvalenzzahlen.Zeits.fürPhysikA4466,455–477(1928).|AArrttiiccllee|CChheemmPPoorrtt|4.

Shaik,S.,Danovich,D.,Silvi,B.,Lauvergnat,D.&Hiberty,P.C.Charge-shiftbonding–aclassofelectron-pairbondsthatemergesfromvalencebondtheoryandissupportedbytheelectronlocalizationfunctionapproach.Chem.Eur.J.1111,6358–6371(2005).|AArrttiiccllee|CChheemmPPoorrtt|

5.

Bader,R.F.W.&Nguyen-Dang,T.T.Quantumtheoryofatomsinmolecules–Daltonrevisited.Adv.Quant.Chem.1144,63–124(1981).|CChheemmPPoorrtt|6.

Henn,J.,Ilge,D.,Leusser,D.,Stalke,D.&Engles,D.Ontheaccuracyoftheoreticallyandexperimentallydeterminedelectrondensitiesofpolarbonds.J.Phys.Chem.A110088,9442–9452(2004).|AArrttiiccllee|CChheemmPPoorrtt|

7.

Apeloig,Y.inTheChemistryofOrganicSiliconCompoundsVol.1(edsApeloig,Y.&Rappoport,Z.)Ch.2(Wiley,1989).8.

Apeloig,Y.&Stanger,A.Thefirstdemonstrationofsolvolyticgenerationofasimplesiliceniumion(R3Si+).Accessvia1,2-methylmigration.J.Am.

Chem.Soc.110099,272–273(1987).|AArrttiiccllee|CChheemmPPoorrtt|

9.

Prakash,G.K.S.etal.Triphenylsilylperchloraterevisited:29Siand35ClNMRspectroscopyandX-raycrystallographyshowingcovalentnatureinbothsolutionandthesolidstate.Difficultiesinobservinglong-livedsilylcationsinthecondensedstate.J.Am.Chem.Soc.110099,5123–5126(1987).|AArrttiiccllee|CChheemmPPoorrtt|

10.

Page 7: Charge-Shift Bonding and Its Manifestations in Chemistry _ Article _ Nature Chemistry

Zhang,L.,Ying,F.,Wu,W.,Hiberty,P.C.&Shaik,S.Topologyofelectronchargedensityforchemicalbondsfromvalencebondtheory:aprobeofbondingtypes.Chem.Eur.J.1155,2979–2989(2009).|AArrttiiccllee|CChheemmPPoorrtt|

11.

Shaik,S.,Maitre,P.,Sini,G.&Hiberty,P.C.Thecharge-shiftbondingconcept.Electron-pairbondswithverylargeionic-covalentresonanceenergies.J.Am.Chem.Soc.111144,7861–7866(1992).|AArrttiiccllee|CChheemmPPoorrtt|

12.

Lauvergnat,D.,Hiberty,P.C.,Danovich,D.&Shaik,S.ComparisonofC-ClandSi-Clbonds.Avalencebondstudy.J.Phys.Chem.110000,5715–5720(1996).|AArrttiiccllee|CChheemmPPoorrtt|

13.

Shurki,A.,Hiberty,P.C.&Shaik,S.Charge-shiftbondingingroupIVBhalides:avalencebondstudyofMH3-Cl(M=C,Si,Ge,Sn,Pb)molecules.J.

Am.Chem.Soc.112211,822–834(1999).|AArrttiiccllee|CChheemmPPoorrtt|

14.

Galbraith,J.M.,Blank,E.,Shaik,S.&Hiberty,P.C. -bondinginsecondandthirdrowmolecules:testingthestrengthofLinus'sblanket.Chem.Eur.J.66,2425–2434(2000).|AArrttiiccllee|CChheemmPPoorrtt|

15.

Hiberty,P.C.,Megret,C.,Song,L.,Wu,W.&Shaik,S.Barriersofhydrogenabstractionvshalogenexchange:anexperimentalmanifestationofcharge-shiftbonding.J.Am.Chem.Soc.112288,2836–2843(2006).|AArrttiiccllee|PPuubbMMeedd|CChheemmPPoorrtt|

16.

Su,P.,Song,L.,Wu,W.,Shaik,S.&Hiberty,P.C.Heterolyticbonddissociationinwater:whyisitsoeasyforC4H9ClbutnotforC3H9SiCl?J.Phys.

Chem.A111122,2988–2997(2008).|AArrttiiccllee|PPuubbMMeedd|CChheemmPPoorrtt|

17.

Wu,W.,Gu,J.,Song,J.,Shaik,S.&Hiberty,P.C.Theinvertedbondin[1.1.1]propellaneisacharge-shiftbond.Angew.Chem.Int.Ed.4488,1407–1410(2009).|AArrttiiccllee|CChheemmPPoorrtt|

18.

Bader,R.F.W.AtomsinMolecules:AQuantumTheory(OxfordUniv.Press,1990).19.

Silvi,B.&Savin,A.Classificationofchemicalbondsbasedontopologicalanalysisofelectronlocalizationfunctions.Nature337711,683–686(1994).|AArrttiiccllee|CChheemmPPoorrtt|

20.

Coppens,P.Chargedensitiescomeofage.Angew.Chem.Int.Ed.4444,6810–6811(2005).|AArrttiiccllee|CChheemmPPoorrtt|21.

Coppens,P.X-rayDensitiesandChemicalBonding(OxfordUniv.Press,1997).22.

Kraka,E.&Cremer,D.inTheoreticalModelsofChemicalBondingPart2(ed.Maksi ,Z.B.)457–543(Springer,1990).23.

Silvi,B.Thespin-paircompositionsaslocalindicatorsofthenatureofthebonding.J.Phys.Chem.A110077,3081–3085(2003).|AArrttiiccllee|CChheemmPPoorrtt|

24.

Messershmidt,M.etal.Electrondensityandbondingatinvertedcarbonatoms:anexperimentalstudyofa[1.1.1]propellanederivative.Angew.Chem.Int.Ed.4444,3925–3928(2005).|AArrttiiccllee|CChheemmPPoorrtt|

25.

Polo,V.,Andres,J.&Silvi,B.Newinsightonthebridgecarbon-carbonbondinpropellanes:atheoreticalstudybasedontheanalysisoftheelectronlocalizationfunction.J.Comput.Chem.2288,857–864(2007).|AArrttiiccllee|PPuubbMMeedd|CChheemmPPoorrtt|

26.

Lusar,R.,Beltrán,A.,Andrés,J.,Noury,S.&Silvi,B.Topologicalanalysisofelectrondensityindepletedhomopolarchemicalbonds.J.Comput.Chem.2200,1517–1526(1999).|AArrttiiccllee

27.

Rincon,L.&Almeida,R.Onthetopologyoftheelectronchargedensityatthebondcriticalpointoftheelectron-pairbond.J.Phys.Chem.A110022,9244–9254(1998).|AArrttiiccllee|CChheemmPPoorrtt|

28.

Kitaura,K.&Morokuma,K.AnewenergydecompositionschemeformolecularinteractionswithintheHartree-Fockapproximation.Int.J.QuantumChem.1100,325–340(1976).|AArrttiiccllee|CChheemmPPoorrtt|

29.

Ziegler,T.&Rauk,A.OnthecalculationofbondingenergiesbytheHartree-Fock-Slatermethod.Theor.Chim.Acta4466,1–10(1977).|CChheemmPPoorrtt|30.

Velde,G.T.etal.ChemistrywithADF.J.Comput.Chem.2222,931–967(2001).|AArrttiiccllee31.

Krapp,A.,Bickelhaupt,F.M.&Frenking,G.Orbitaloverlapandchemicalbonding.Chem.Eur.J.1122,9196–9216(2006).|AArrttiiccllee|CChheemmPPoorrtt|32.

Hiberty,P.C.,Ramozzi,R.,Song,L.,Wu,W.&Shaik.S.Thephysicaloriginoflargecovalent-ionicresonanceenergiesinsometwo-electronbonds.FaradayDiscuss.113355,261–272(2006).|AArrttiiccllee|CChheemmPPoorrtt|

33.

Kutzelnigg,W.inTheoreticalModelsofChemicalBondingPart2(ed.Maksi ,Z.B.)1–44(Springer,1990).34.

Ruedenberg,K.Thephysicalnatureofthechemicalbond.Rev.Mod.Phys.3344,326–376(1962).|AArrttiiccllee|CChheemmPPoorrtt|35.

Feinberg,M.J.&Ruedenberg,K.Paradoxicalroleofthekinetic-energyoperatorintheformationofthecovalentbond.J.Chem.Phys.5544,1495–1591(1971).|AArrttiiccllee|CChheemmPPoorrtt|

36.

Wilson,C.Q.&Goddard,W.A.III.Theroleofkineticenergyinchemicalbinding.Theor.Chim.Acta.2266,195–210(1972).|AArrttiiccllee|CChheemmPPoorrtt|37.

Rozendaal,A.&Baerends,E.J.Amomentum-spaceviewofthechemicalbond.IThefirst-rowhomonucleardiatomics.Chem.Phys.9955,57–9138.

Page 8: Charge-Shift Bonding and Its Manifestations in Chemistry _ Article _ Nature Chemistry

(1985).|AArrttiiccllee|CChheemmPPoorrtt|

Ruedenberg,K.&Schmidt,M.Whydoeselectronsharingleadtocovalentbonding?Avariationalanalysis.J.Comput.Chem.2288,391–410(2007).|AArrttiiccllee|PPuubbMMeedd|CChheemmPPoorrtt|

39.

Bickelhaupt,F.M.&Baerends,E.J.Kohn-Shamdensityfunctionaltheory:predictingandunderstandingchemistry.Rev.Comput.Chem.1155,1–86(2000).|CChheemmPPoorrtt|

40.

Sanderson,R.T.PolarCovalence(AcademicPress,1983).41.

Messerschmidt,M.,Wagner,A.,Wong,M.W.&Luger,P.AtomicpropertiesofN2O4basedonitsexperimentalchargedensity.J.Am.Chem.Soc.

112244,732–733(2002).|AArrttiiccllee|PPuubbMMeedd|CChheemmPPoorrtt|

42.

Dunitz,J.D.&Seiler,P.TheabsenceofbondingelectrondensityincertaincovalentbondsasrevealedbyX-rayanalysis.J.Am.Chem.Soc.110055,7056–7058(1983).|AArrttiiccllee|IISSII|CChheemmPPoorrtt|

43.

Dunitz,J.D.,Schweizer,W.B.&Seiler,P.X-raystudyofthedeformationdensityintetrafluoroterephthalodinitrile:weakbondingdensityintheC-Fbond.Helv.Chem.Acta6666,123–133(1983).|AArrttiiccllee|CChheemmPPoorrtt|

44.

Coppens,P.,Yang,Y.W.,Blessing,R.H.,Cooper,W.F.&Larsen,F.K.Theexperimentalchargedistributioninsulfurcontainingmolecules.Analysisofcyclicoctasulfurat300and100K.J.Am.Chem.Soc.9999,760–766(1977).|AArrttiiccllee|CChheemmPPoorrtt|

45.

Savariault,J.-M.&Lehmann,M.S.ExperimentaldeterminationofthedeformationelectrondensityinhydrogenperoxidebycombinationofX-rayandneutrondiffractionmeasurements.J.Am.Chem.Soc.110022,1298–1303(1980).|AArrttiiccllee|IISSII|CChheemmPPoorrtt|

46.

Ruedenberg,K.&Schwarz,W.H.E.Nonsphericalatomicgroundstatedensitiesandchemicaldeformationdensitiesfromx-rayscattering.J.Chem.Phys.9922,4956–4969(1990).|AArrttiiccllee|CChheemmPPoorrtt|

47.

GomesdeMesquita,A.H.,MacGillavryC.H.&Eriks,K.Thestructureoftriphenylmethylperchlorateat85°C.ActaCrystallogr.1188,437–443(1965).|AArrttiiccllee|CChheemmPPoorrtt|

48.

Kim,K.-C.etal.Crystallographicevidenceforafreesilyliumion.Science229977,825–827(2002).|AArrttiiccllee|PPuubbMMeedd|CChheemmPPoorrtt|49.

Ploshnik,E.TheTripleBond–AValenceBondTheoryPointOfViewMScThesis,HebrewUniv.(2005).50.

Kost,D.&Kalikhman,I.Hypercoordinatesiliconcomplexesbasedonhydrazineligands.Aremarkablyflexiblemolecularsystem.Acc.Chem.Res.4422,303–314(2009).|AArrttiiccllee|PPuubbMMeedd|CChheemmPPoorrtt|

51.

Dávalos,J.Z.,Herrero,R.,Abboud,J.-L.M.,Mó,O.&Yáñez,M.Howcancarbonbecovalentlyboundtofiveligands?ThecaseofSi2(CH3)7.Angew.

Chem.Int.Ed.4466,381–385(2007).|AArrttiiccllee|CChheemmPPoorrtt|

52.

Fernández,I.,Uggerud,E.&Frenking,G.Stablepentacoordinatecarbocations:structureandbonding.Chem.Eur.J.1133,8620–8626(2007).|AArrttiiccllee|CChheemmPPoorrtt|

53.

Panisch,R.,Bolte,M.&Müller,T.Hydrogenandfluorine-bridgeddisilylcationsandtheiruseincatalyticC-Factivation.J.Am.Chem.Soc.112288,9676–9682(2006).|AArrttiiccllee|PPuubbMMeedd|CChheemmPPoorrtt|

54.

Llusar,R.,Beltran,A.,Andrés,J.,Fuster,F.&Silvi,B.Topologicalanalysisofmultiplemetal-metalbondsindimersoftheM2(formamidinate)4type

withN=Nb,Mo,Tc,Ru,Rh,andPd.J.Phys.Chem.A110055,9460–9466(2001).|AArrttiiccllee|CChheemmPPoorrtt|

55.

Shaik,S.inMoleculesinNaturalScienceandMedicine:AnEncomiumforLinusPauling(edsMaksi ,Z.B.&Eckert-Maksi ,M.)253–266(EllisHorwood,1991).

56.

Cho,K.B.,Carvajal,M.A.&Shaik,S.Firsthalf-reactionmechanismsofnitricoxide.Theroleofprotonandoxygencoupledelectrontransfersinthereactionbyquantummechanical/molecularmechanicalcalculations.J.Phys.Chem.B111133,336–346(2009).|AArrttiiccllee|PPuubbMMeedd|CChheemmPPoorrtt|

57.

Grochala,W.,Hoffmann,R.,Feng,J.&Ashcroft,N.W.Thechemicalimaginationatworkinverytightplaces.Angew.Chem.Int.Ed.4466,3620–3642(2007).|AArrttiiccllee|CChheemmPPoorrtt|

58.

Dognon,J.-P.,ClavaguéraC.&Pyykkö,P.Apredictedorganometallicseriesfollowinga32-electronprinciple:An@C28(An=Th,Pa+,U2+,Pu4+).J.

Am.Chem.Soc.113311,238–243(2009).|AArrttiiccllee|PPuubbMMeedd|CChheemmPPoorrtt|

59.

Rupar,P.,Staroverov,V.N.&Baines,K.M.Acryptand-encapsulatedgermanium(II)dication.Science332222,1360–1363(2008).|AArrttiiccllee|PPuubbMMeedd|CChheemmPPoorrtt|

60.

InstituteofChemistryandTheLiseMeitner-MinervaCenterforComputationalQuantumChemistry,TheHebrewUniversityofJerusalem,91904,Jerusalem,Israel.

1.

StateKeyLaboratoryofPhysicalChemistryofSolidSurfacesandCollegeofChemistryandChemicalEngineering,XiamenUniversity,Xiamen361005,P.R.China.

2.

Page 9: Charge-Shift Bonding and Its Manifestations in Chemistry _ Article _ Nature Chemistry

LaboratoiredeChimiePhysique,GroupedeChimieThéorique,CNRSUMR8000,UniversitédeParis-Sud,91405OrsayCédex,France.3.

Correspondenceto:SasonShaik11e-mail:ssaassoonn@@yyffaaaatt..cchh..hhuujjii..aacc..iill

Correspondenceto:WeiWu22e-mail:wweeiiwwuu@@xxmmuu..eedduu..ccnn

Correspondenceto:PhilippeC.Hiberty33e-mail:pphhiilliippppee..hhiibbeerrttyy@@llccpp..uu--ppssuudd..ffrr

ISSN 1755-4330 EISSN 1755-4349

About NPGContact NPGRSS web feedsHelp

Privacy policyLegal noticeAccessibility statement

Nature NewsNaturejobsNature AsiaNature Education

Search: go

© 2009 Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

partner of AGORA, HINARI, OARE, INASP, CrossRef and COUNTER