chayatat ratanasawanya march 16, 2011. overview thesis problem the uav pose estimation by posit...

20
Performance of POSIT for real-time UAV pose estimation Chayatat Ratanasawanya March 16, 2011

Upload: ashlyn-heathcoat

Post on 29-Mar-2015

216 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

Performance of POSIT forreal-time UAV pose estimation

Chayatat RatanasawanyaMarch 16, 2011

Page 2: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

2

OverviewThesis problemThe UAVPose estimation by POSIT

Previous workDevelopment of POSIT-based real-time pose

estimation algorithmExperimental resultsQuestions

Page 3: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

3

Thesis problem statementDevelop a flexible human/machine control

system to hover an UAV carrying a VDO camera beside an object of interest such as a window for surveillance purposes.

Method: Human control – Joystick Machine control – Visual-servoing

Application: for the police to use the system to survey a room from outside of a building.

Page 4: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

4

The UAVQ-ball: 6DOF quadrotor helicopterCame with SIMULINK-based

real-time controllersy

x

z

World frame

Helicopter

ControllerX, Z

(desired)

OptitrackX, Z

IMU Roll,

Pitch

SonarY

Y (desired)Yaw(desired)

YawMagnetometer

Desired inputs

X, Y, Z, Yaw

Camera

Page 5: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

5

POSIT algorithmDevelopers: Daniel DeMenthon & Philip

DavidThe algorithm determines the pose of an

object relative to the camera from a set of 2D image points

Reference: http://www.cfar.umd.edu/~daniel/classicPosit.m

POSIT

Image coordinates of min. 4 non-coplanar

feature points3D object

coordinates of the same points

Camera intrinsic

parameters (f, cc)

Rotation matrix of object wrt.

cameraTranslation of

object wrt. camera

Page 6: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

6

Previous workCardboard box targetTook still images of the target from

various locations in the labManual feature points identificationObject pose was estimated offlineTarget was self-occludedNot a real-time process

y

x

z

Object frame

Page 7: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

7

Current workImage-based control algorithm is being

developed

Must be a real-time processUAV pose must be estimated real-time

Target must not be self-occluded Image source: Live video Image processing has to be fast Feature points must be identified automatically

Page 8: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

8

Feature points extraction

Camera

Detect LED

Detect Window

Detect Corners

Discard unwanted

feature points detected

Page 9: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

9

Distortion coeff. from cam

calibration

Feature points undistortion?Fast image processing – no unnecessary

calculationsEvaluate the pose estimated by POSIT from

distorted and undistorted feature points locations

VDO from Camera

Feature points

extraction

Undistortion by look-up

table

POSIT & Inv.

kinematics

Points location

filter

Compare

Optitrack

IMU

POSIT & Inv.

kinematics6DOF UAV pose

estimates

6DOF UAV pose

RollPitch

Page 10: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

10

Experimental setup

Page 11: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

11

Experimental setupThe Q-ball was randomly placed in 20

locations in the lab. Its pose was different in each location.

Acquire live video stream and estimate the UAV pose with POSIT in real-time.

150 6DOF pose estimations, Optitrack, and IMU readings were recorded.

Optitrack readings are used as reference.

Page 12: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

12

Results - XTest Undistorted

pointsDistorted

points Optitrack

1 1.006 1.1748 0.0012 15.8091 14.7321 0.00143 101.816 90.9279 0.00574 3.0482 3.5745 0.00135 2.0852 2.2731 0.00156 5.8156 5.688 0.00167 1.5017 1.4547 0.00148 5.2479 5.4141 0.00119 4.1441 4.4484 0.0015

10 1.2467 1.2847 0.00311 9.0607 9.9454 0.004612 5.5611 6.6607 0.006713 4.3397 4.0936 0.001414 3.5994 3.782 0.001615 38.0258 54.0048 0.001716 2.1597 2.2568 0.001317 8.0223 4.3796 0.001418 0.7739 0.8675 0.001319 0.9564 1.0413 0.001520 7.2199 8.0107 0.0016

Standard Deviation

Page 13: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

13

Results - YTest Undistorted

pointsDistorted

points Optitrack

1 1.0235 1.3126 0.00162 3.2475 6.0226 0.00163 65.5548 53.7607 0.00154 12.6819 12.8114 0.00135 2.3903 2.5973 0.00156 6.0252 4.0652 0.00137 0.2603 0.313 0.00138 0.9041 0.8921 0.00139 1.419 1.515 0.0016

10 1.6733 1.7693 0.015611 5.2706 5.9692 0.002312 5.2413 6.273 0.001413 2.1456 2.3075 0.003314 0.76 0.8236 0.001115 24.5723 34.6469 0.001716 1.3318 1.5206 0.001417 0.7696 0.4422 0.001318 1.5774 1.8228 0.001419 0.921 0.9587 0.001720 4.578 3.3981 0.0013

Standard Deviation

Page 14: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

14

Results - Z Standard Deviation

Test Undistorted points

Distorted points Optitrack

1 0.3511 0.4984 0.00072 2.1178 5.2621 0.00123 30.399 43.4517 0.00124 3.8319 3.7698 0.00095 1.0314 1.0843 0.00116 2.078 1.6947 0.00097 0.1703 0.1464 0.00128 0.429 0.4984 0.0019 1.9335 1.9616 0.0007

10 0.8854 0.9199 0.001411 2.2709 1.9648 0.001112 1.671 1.7368 0.001313 0.5539 0.7699 0.001214 1.4632 1.4751 0.000815 21.0649 35.0081 0.00116 0.4632 0.5104 0.000917 3.1985 1.6658 0.000818 0.6383 0.7831 0.001119 0.8268 0.9394 0.001120 1.2445 1.3881 0.0012

Page 15: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

15

Results - Roll Standard DeviationTest Undistorted points

Distorted points Optitrack IMU

1 0.1612 0.1823 0.002 0.17522 0.4117 0.1993 0.0018 0.18113 20.6804 20.4654 0.0026 0.13424 0.3264 0.3303 0.0014 0.13775 0.3735 0.3757 0.0018 0.13666 0.2521 0.2036 0.0018 0.14687 0.1268 0.1168 0.0011 0.13348 0.1193 0.1243 0.0014 0.14489 0.2411 0.2424 0.0018 0.1162

10 0.1656 0.174 0.0323 0.14611 0.3348 0.3453 0.0035 0.13312 0.3425 0.3959 0.0015 0.142113 0.3584 0.3624 0.004 0.147914 0.3513 0.3511 0.001 0.141715 32.7365 49.532 0.0024 0.150216 0.1705 0.172 0.0014 0.149717 0.3527 0.1812 0.0011 0.153518 0.1606 0.1734 0.0021 0.15819 0.2017 0.2068 0.0028 0.154120 0.1617 0.1547 0.0014 0.1755

Page 16: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

16

Results - Pitch Standard DeviationTest Undistorted points

Distorted points Optitrack IMU

1 0.2929 0.341 0.0024 0.17132 0.6308 1.3458 0.0024 0.18993 30.0484 37.8968 0.0024 0.17124 4.1615 4.0302 0.0019 0.18355 0.6895 0.7135 0.0021 0.17616 1.3932 0.8914 0.0023 0.15277 0.1101 0.1174 0.0018 0.16318 0.108 0.113 0.0021 0.1869 0.3816 0.3925 0.0026 0.1635

10 0.4045 0.4179 0.0263 0.164111 1.0534 1.112 0.0041 0.196912 1.023 1.117 0.0018 0.1613 0.5073 0.5361 0.0057 0.196614 0.2661 0.2695 0.0018 0.171215 24.6641 37.3222 0.0029 0.152816 0.4542 0.4817 0.0018 0.166417 0.1648 0.0821 0.0018 0.160918 0.3886 0.4266 0.0035 0.1519 0.3142 0.3175 0.0027 0.19720 0.8514 0.6 0.002 0.1685

Page 17: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

17

Results - Yaw Standard Deviation

Test Undistorted points

Distorted points Optitrack

1 0.2562 0.2708 0.00142 2.313 1.8 0.00173 6.73 7.9832 0.00684 0.8439 1.009 0.00115 0.5683 0.604 0.00126 1.3341 1.2284 0.00117 0.5728 0.5252 0.00218 1.2824 1.2913 0.00129 0.9123 0.9474 0.001

10 0.2592 0.2629 0.004911 1.7751 1.8515 0.002712 1.0973 1.2381 0.006913 0.9673 0.8913 0.001314 0.9592 0.9743 0.001215 5.4126 12.7222 0.001716 0.6324 0.6399 0.000917 1.9195 0.9885 0.00118 0.2138 0.2222 0.001519 0.3118 0.3278 0.000920 1.3624 1.4042 0.0011

Page 18: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

18

Mean and SD of errorof all 3000 measurements

DOFDistorted feature points

w.r.t. to OptitrackUndistorted feature

points w.r.t. to Optitrack Optitrack w.r.t. IMU

Mean SD Mean SD Mean SDX (cm) 13.9990 10.3494 16.5993 10.9070 N/A N/AY (cm) 3.9571 4.4958 3.3956 3.8116 N/A N/AZ (cm) 17.5677 8.1526 5.7379 4.3130 N/A N/ARoll (⁰) 1.6193 1.3389 1.2874 1.1580 1.3289 1.0149

Pitch (⁰) 1.3662 1.3103 1.5493 1.4160 0.7635 0.3610Yaw (⁰) 3.5570 1.8350 4.1395 1.8739 N/A N/A

DOFDistorted feature points

w.r.t. to OptitrackUndistorted feature

points w.r.t. to Optitrack Optitrack w.r.t. IMU

Mean SD Mean SD Mean SDX (cm) 15.7600 25.5053 17.6538 25.3427 N/A N/AY (cm) 5.7741 15.4753 4.6884 16.5980 N/A N/AZ (cm) 18.2766 12.6632 6.1423 9.1493 N/A N/ARoll (⁰) 3.0873 13.0284 2.0754 9.0004 1.4342 1.1588

Pitch (⁰) 2.9703 12.4040 2.4043 8.7745 0.7679 0.3615Yaw (⁰) 3.6342 3.6540 4.0707 2.4474 N/A N/A

Excludes #3 &

15

Page 19: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

19

ConclusionPOSIT algorithm is an alternative for real-

time UAV pose estimationTarget consists of a white LED and a window5 non-coplanar feature pts: the LED and 4

cornersPose estimation using undistorted feature

points is more accurate than that using distorted points – significant improvement along Z-direction

Image information may be mapped to positional control inputs via POSIT algorithm

Page 20: Chayatat Ratanasawanya March 16, 2011. Overview Thesis problem The UAV Pose estimation by POSIT Previous work Development of POSIT-based real-time pose

20

SummaryThesis problem & the UAVPrevious work on POSIT – the drawbacksPOSIT-based real-time pose estimation

algorithmFeature points extraction from live VDOFeature points image coordinates undistortionFeature points location filteringReal-time algorithm

Comparison between pose estimated by POSIT, pose from Optitrack, and 2 attitude angles from IMU.