chem%350:%statistical%mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/chem350... ·...

7
Winter 2014 Chem 350: Statistical Mechanics and Chemical Kinetics Chapter 6: Adiabatic Reaction Dynamics and Transition State Theory 70 Chapter 6: Adiabatic reaction dynamics and Transition State Theory ...................................................... 70 Bimolecular reactions ............................................................................................................................ 71 Transition State theory .......................................................................................................................... 72 Derivation of universal factor B kT h ....................................................................................................... 74 Kinetic Isotope effect ............................................................................................................................. 75 Chapter 6: Adiabatic reaction dynamics and Transition State Theory General reaction: A + B + C... X + Y + Z ... Rate at which equilibrium is established: Eg. d A dt = rate t () = k φ t () A a B b C c X x Y y Z z [ ] w : concentration of species w . (as molarity or partial pressure) () k t φ : phenomenological rate constant (might depend on time) In general, equation might only be valid for limited amounts of time/concentration regimes. General description can be very complicated as many “elementary” steps might be involved in the reaction. To make progress, we need to reduce a reaction to elementary steps of unimolecular or bimolecular reactions. Then we can apply principles of statistical mechanics. We will consider reactions on a single potential energy surface (adiabatic, BornOppenheimer approximation). Simplest case: Unimolecular reaction A k 1 k 1 B Rate equation: d A dt = k 1 At () k 1 Bt () Steady State: d A dt = 0 () eq At A = 1 1 eq eq k A k B = 1 1 eq eq eq B k K k A = = We have seen before how to calculate equilibrium constants in stat mech. Experimental determination 1 k . Use excess A , neglect [ ] 1 k B

Upload: vanxuyen

Post on 17-Jun-2018

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Winter’2014’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics’ Chapter’6:’Adiabatic’ReactionDynamics’andTransitionState’Theory’71’

Winter  2014   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  6:  Adiabatic  Reaction  Dynamics  and  Transition  State  Theory   70    

Chapter  6:  Adiabatic  reaction  dynamics  and  Transition  State  Theory  ......................................................  70  Bimolecular  reactions  ............................................................................................................................  71  Transition  State  theory  ..........................................................................................................................  72  

Derivation  of  universal  factor   Bk Th

 .......................................................................................................  74  

Kinetic  Isotope  effect  .............................................................................................................................  75    Chapter  6:  Adiabatic  reaction  dynamics  and  Transition  State  Theory           General  reaction:     A+ B +C... X +Y + Z...           Rate  at  which  equilibrium  is  established:  

      Eg.        

d A⎡⎣ ⎤⎦dt

= rate t( ) = kφ t( ) A⎡⎣ ⎤⎦a

B⎡⎣ ⎤⎦b

C⎡⎣ ⎤⎦c

X⎡⎣ ⎤⎦x

Y⎡⎣ ⎤⎦y

Z⎡⎣ ⎤⎦z  

    [ ]w :  concentration  of  species  w .  (as  molarity  or  partial  pressure)  

    ( )k tφ :  phenomenological  rate  constant  (might  depend  on  time)  

 In  general,  equation  might  only  be  valid  for  limited  amounts  of  time/concentration  regimes.  General  description  can  be  very  complicated  as  many  “elementary”  steps  might  be  involved  in  the  reaction.    To  make  progress,  we  need  to  reduce  a  reaction  to  elementary  steps  of  unimolecular  or  bimolecular  reactions.  Then  we  can  apply  principles  of  statistical  mechanics.    We  will  consider  reactions  on  a  single  potential  energy  surface  (adiabatic,  Born-­‐Oppenheimer  approximation).      

  Simplest  case:  Unimolecular  reaction         A

k−1

k1

B  

    Rate  equation:     −

d A⎡⎣ ⎤⎦dt

= k1 A t( )⎡⎣ ⎤⎦ − k−1 B t( )⎡⎣ ⎤⎦  

    Steady  State:      

d A⎡⎣ ⎤⎦dt

= 0             ( ) eqA t A⎡ ⎤⎡ ⎤ =⎣ ⎦ ⎣ ⎦  

        1 1eq eqk A k B−⎡ ⎤ ⎡ ⎤=⎣ ⎦ ⎣ ⎦  

        1

1

eqeq

eq

B kKkA −

⎡ ⎤⎣ ⎦ = =⎡ ⎤⎣ ⎦

 

  We  have  seen  before  how  to  calculate  equilibrium  constants  in  stat  mech.    Experimental  determination   1k .  Use  excess   A ,  neglect   [ ]1k B−    

Page 2: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Winter’2014’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics’ Chapter’6:’Adiabatic’ReactionDynamics’andTransitionState’Theory’71’

Winter  2014   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  6:  Adiabatic  Reaction  Dynamics  and  Transition  State  Theory   71    

       [ ][ ] 1

d Ak dt

A− =  

       ( )

[ ] 1lno

A tk t

A⎡ ⎤⎣ ⎦ = −  

        ( ) [ ] 1k toA t A e−⎡ ⎤ =⎣ ⎦  

        Exponential  decay  of  [ ]A  under  conditions  of  excess  can  be  fitted  to  get   1k .    

 Of  course  one  could  also  start  with  excess  of  [ ]B ,  and  measure   1k− .  This  would  allow  a  check  of  

relations.      

1

1

eqeq

eq

Bk Kk A−

⎡ ⎤⎣ ⎦= =⎡ ⎤⎣ ⎦

 

   Other  types  of  reactions:  

          A!

k−1

k1

B +C  

       [ ] [ ] [ ][ ]1 1

d Ak A k B C

dt −− = −  

                  1

1

eq eqeq

eq

B C kKkA −

⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦ = =⎡ ⎤⎣ ⎦

 

      If  [ ][ ]B C  is  negligible   ( ) [ ] 1k toA t A e−⎡ ⎤ =⎣ ⎦  

   Bimolecular  reactions      

          A+ B!

k−1

k1

C  

       [ ] [ ][ ] [ ]1 1

d Ak A B k C

dt −− = −    

      Steady  State:       1

1

eqeq

eq eq

C kKkA B −

⎡ ⎤⎣ ⎦ = =⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦

 

     In  presence  of  excess   B ,  such  that   [ ]B  is  constant   ( ) [ ] *k t

oA t A e−⎡ ⎤ =⎣ ⎦ ,   [ ]1* ok k B=  

 Bimolecular  reaction  is  the  limit.  Elementary  reaction  steps  never  involves  more  than  2  colliding  molecules.  Negligible  probability  to  have  3  molecules  colliding  simultaneously.  If  three  molecules  are  needed,  then  one  has  to  first  create  a  complex  of  two  molecules  and  collide  this  with  a  third  molecule  needed  for  reaction.    

Page 3: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Winter’2014’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics’ Chapter’6:’Adiabatic’ReactionDynamics’andTransitionState’Theory’71’

Winter  2014   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  6:  Adiabatic  Reaction  Dynamics  and  Transition  State  Theory   72    

In  our  discussion  of  kinetics  (later  on)  you  will  learn  how  to  think  about  building  complicated  reactions  from  elementary  reaction  steps.      Here  we  focus  on  elementary  reactions  and  focus  on  how  we  can  calculate  rate  constants  from  first  principles  using  information  from  quantum  chemistry  and  statistical  mechanics  calculations  

   Transition  State  theory  

           

To  develop  equations  for  the  rate  of  reactions  we  will  assume  thermal  equilibrium  for  all  species  ,#,A B ,  where  #  refers  to  the  (fleeting)  transition  state  or  “activated  complex”.  

 Overall  reaction:      

      A

k−1

k1

B      [ ][ ]

1

1eq

B kKA k−

= =  

    model:   A!

kd

ka

# →krxn

B    

#⎡⎣ ⎤⎦A⎡⎣ ⎤⎦

=ka

kd

= K#  

    ak :  activation,     dk :  deactivation,     krxn :  rate  to  go  from  #  to   B       Crucial  idea:  consider  forward  reaction  only  ( #k  rate  to  products).             k1 A⎡⎣ ⎤⎦ = krxn #⎡⎣ ⎤⎦  

        k1 = krxn

#⎡⎣ ⎤⎦A⎡⎣ ⎤⎦

= krxn

N#

N A

 

  (Note:  In  chemical  kinetics  one  usually  uses  concentrations  to  derive  things.  In  statmech  we  are  used  to  expressing  things  in  partial  pressures.  I  am  doing  the  derivation  here,  based  on  partial  pressure  as  a  measure  of  concentration.  )  

krxn :  rate  of  moving  to  product  for  molecules  at  transition  state.  

       

#⎡⎣ ⎤⎦A⎡⎣ ⎤⎦

= K# =q# / N#

qA / N A

⎛⎝⎜

⎞⎠⎟→ "

q#

qA

"  

 

Page 4: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Winter’2014’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics’ Chapter’6:’Adiabatic’ReactionDynamics’andTransitionState’Theory’71’

Winter  2014   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  6:  Adiabatic  Reaction  Dynamics  and  Transition  State  Theory   73    

  Use  same  formula  as  for  chemical  equilibrium!    Same  equilibrium  principles.  The  factor  N  is  included  in  the  translational  partition  function  as  usual.  It  is  a  bit  of  a  nuisance  to  write  it  correctly.    Calculating   Aq :  calculate  molecular  structure,  vibrational  frequencies,  energy  at  minimum.            

A A A A AA e zp t R vq q q q q q=  

      For  transition  state,  we  can  proceed  in  analogous  way    

#q :  calculate  structure  of  transition  state;  calculate  vibrational  frequencies,  transition  state  electronic  energy.    Something  special  about   #  (non-­‐linear  TS)  

We  have  3 7N −  harmonic,  real  vibrational  frequencies,  and  one  imaginary  frequency,  which  needs  to  be  treated  in  a  special  way.  The  normal  mode  of  the  imaginary  frequency    is  along  the  reaction  coordinate.  

    q# = qrxn

# ⋅ qe#qzp

# qt#qR

#qv#( ) = qrxn

# ⋅ !q#  

  qrxn# :  component  of  partition  function  along  reaction  coordinate  

q# :  partition  function  of  transition  state,  for  all  motions  except  ‘vibration’  along  reaction  coordinate  

      It  then  follows  that  the  forward  reaction  rate  is  given  by  

        k1 = krxn

qrxn

qA

= krxnqrxn# !q#

qA

⎛⎝⎜

⎞⎠⎟  

     

    We  will  see  that       krxnqrxn

# =kBT

h     13 1~10 s−  

          k1 =

kBThq#

qA

⎝⎜⎞

⎠⎟  

      Or:       k1 =

kBTh

q#

qAqB

⎝⎜⎞

⎠⎟          if  bimolecular  ( A+ B # → C )  

 

  The  determining  factor  in  

q#

qA

 is   KeKzp    as  it  is  for  chemical  equilibria.  The  theory  is  very  similar.    

       

q#

qA

= e− ΔEe+ΔEzp( )/kBT ⋅qt

# qR# qv

#

qtAqR

AqvA    

 

Page 5: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Winter’2014’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics’ Chapter’6:’Adiabatic’ReactionDynamics’andTransitionState’Theory’71’

Winter  2014   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  6:  Adiabatic  Reaction  Dynamics  and  Transition  State  Theory   74    

We  get  an  exponential  temperature  dependence  from   e zpE EΔ + Δ ,  power  of  T  dependence  

from  the  remaining  fraction,  often  just  a  constant  if  same  #  of  molecules  for  reactants  and  

transition  state.  Other  contribution   Bk Th

 

             

zpEΔ :  the  difference  in  zeropoint  energy  between  reactant  and  transition  state  

    ( ) ( )3 7 3 6

1 1

1 12 2

N N

zp i iTS Ri i

E ω ω− −

= =

Δ = −∑ ∑h h    

    Please  note  the  number  of  normal  modes  in  each  sum.  If  the  molecular  structure  is  linear,  the  number  of  normal  modes  increases  by  1,  as  usual.    

Derivation  of  universal  factor   Bk Th

 

       

a) Partition  function   qrxn#  

 

Potential  is  flat  in  transition  state  region   ,2 2o ox xδ δ⎡ ⎤− +⎢ ⎥⎣ ⎦

 

→  Assume  particle  in  the  box  types  of  partition  functions  

      qrxn

# =2πmkBT

h2 ⋅δ  

Notes:      1)  if  reaction  coordinate  involves  a  single  atom,  we  can  assign  mass  m.  In  general,  reaction  coordinate  is  some  collective  motion  (normal  mode  of  transition  structure).  We  do  not  know  m  !  2)  We  do  not  know  δ  either  !!  

Page 6: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Winter’2014’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics’ Chapter’6:’Adiabatic’ReactionDynamics’andTransitionState’Theory’71’

Winter  2014   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  6:  Adiabatic  Reaction  Dynamics  and  Transition  State  Theory   75    

 Second  assumption:  all  molecules  in  the  transition  state  region  that  have  a  positive  velocity  will  

react.  The  rate  depends  on  how  fast  they  traverse  the  transition  state  region:   xVδ  

We  can  calculate  how  fast  molecules  traverse  the  TST  region:  

        krxn =

Vx P Vx( )dVx0

∫  

      ( )xP V :  probability  to  have   xV  

Once  again,  use  equilibrium  arguments.   xV  follows  Maxwell-­‐Boltzmann  distribution  

               

P Vx( ) = e−mVx2 /2kBT

e−mVx2 /2kBT dVx−∞

∫  

    Here  we  use  a  Boltzmann  distribution  for  ‘kinetic  energy’    

      Integrate  (Gaussian  integrals)→   krxn =

kBT2πm

 

 Assumption:  Even  at  the  transition  state  geometry,  the  velocity  distribution   xV  is  given  by  Maxwell-­‐Boltzmann  (where  potential  energy  is  very  high).  This  seems  a  bit  counter  intuitive.  I  do  not  have  a  good  rationale  for  this.      A  great  virtue  of  the  above  derivation  is:  

      qrxn

# ⋅ krxn =2πmkBT

h2 ⋅δ⎛

⎝⎜

⎠⎟ ⋅

kBT2πm

⎝⎜

⎠⎟ =

kBTh

 

    Unknown   m, δ  cancel.  How  convenient!    It  will  be  clear  that  this  factor  is  an  estimate.  Transition  state  theory  is  not  as  robust  as  other  aspects  of  statistical  mechanics.  There  are  variations  on  the  theme  in  the  scientific  literature.  

   Kinetic  Isotope  effect       Isotope  effects  are  strongest  (or  even  observable  only)  if  protons  are  replaced  by  Deuterium      

1) Primary  isotope  effect:  H or  D  is  involved  in  reaction  path,  or  the  main  atom  that  is  moving  

a. Isotope  substitution  does  not  affect  electronic  structure  calculations  →  same  PES,  same  stationary  points    However  mass  enters  mass-­‐weighted  Hessian,  and  this  affects  the  frequencies  

      ω ~ g

m        (For  diatomics.  Analogous  for  polyatomics)  

  →pure  proton  frequency  is   2  times  as  large  as  D  frequency.  A  good  example  would  be  to  compare  the  vibrational  frequencies  in  HCl  and  DCl.  

Page 7: Chem%350:%Statistical%Mechanics…scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/Chem350... · Winter’2014’Chem%350:%Statistical%Mechanics%and%Chemical%Kinetics’ Chapter’6:’Adiabatic’ReactionDynamics’andTransitionState’Theory’71’

Winter  2014   Chem  350:  Statistical  Mechanics  and  Chemical  Kinetics    

Chapter  6:  Adiabatic  Reaction  Dynamics  and  Transition  State  Theory   76    

   If  proton  movements  defines  reaction  coordinate,  then  in  the  reactant  this  vibrational  frequency  

contributes  to        3 6

1

12

N

zp ii

E ω−

=

= ∑ h .  

 But  it  is  missing  from  transition  state  

       3 7

,#1

12

N

zp ii

E ω−

=

= ∑ h  

 

   

klight

kheavy

≈ e−1

2! ωheavy

R −ω lightR( )/kBT

>1   ω heavy ~ 1

2ω light    (for  D  vs.  H)  

            →  light  particle  faces  less  of  a  barrier  than  heavy  particle  

         [ ][ ]

[ ][ ]

# #

light heavyA A

⎛ ⎞ ⎛ ⎞>⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

Also  note  that  m did  cancel  out  in  the  derivation  of  

kBTh

.  The  cause  of  the  effect  is  not  

that  light  particles  move  faster.  The  effect  is  due  to  zeropoint  motion  (purely  quantum!)           krxn ⋅qrxn

# is  the  same  for  any  particle  (or  collective  coordinate).      

b) In  secondary  isotope  effect,  the  isotope  of  interest  is  not  involved  in  the  reaction  coordinate  → zeropoint  effects  more  or  less  cancel,  minor  residual  effect  on   /light heavyk k .  One  can  

expect  the  effect  of  isotopic  substitution  to  be  much  smaller  then.    So  the  effect  of  isotopic  substitution  can  tell  you  something  about  the  nature  of  the  transition  state.  

   A  good  example  of  a  primary  kinetic  isotope  effect  would  be  the  HCN  to  CNH  reaction  rate  vs.  DCN  to  CND.  This  is  clearly  a  primary  isotope  effect  and  easy  to  calculate  using  Gaussian  calculations  plus  matlab  processing.  It  will  also  illustrate  the  concept  of  calculations  on  transition  states  and  reaction  rates  without  bogging  us  down  in  computational  complexities.  We  will  explore  in  the  computer  lab!